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CONNECTED PARTITIONS AND CYCLE MATROIDS OF GRAPHS

Introduction

In [5, p.57) it was shown that:

The partially ordered set of all partitions of an
(w) n-element set is a geometric lattice which is isomorphic

to the lattice of closed sets of the cycle matroid
of the complete graph Kn.

This is not true if we consider an arbitrary graph G,
since in general we have more partitions of V(G) than closed
sets of the cycle matroid of G. However, we can ask which
interesting partitions of the vertex set of an arbitrary
connected simple graph should be chosen to obtain from them
the lattice isomorphic to the lattice of closed sets of the
cycle matroid of G. In this paper we answer this question.

We say that a partition P of V(G) is connected if every
class of P induces a connected subgraph of G. We denote by’
?C(G) the set of all connected partitions of V(G).

Let M(G) denote the cycle matroid of G and let (LU(G);s)
be the lattice of closed sets in M(G). In Section 1 we prove
that the poset (?C(G);s) is isomorphic to the geometric lat-
tice (LU(G);S). This result is a generalization of (w) since
in a complete graph K every partition of V(Kn) is connect-
ed. Let us also note that we do not assume G to be finite.

In Section 2 we study the problem how the lattice
(?C(G);S) is situated in the lattice (?(G);=), where P(G)
denotes the set of all partitions of V(G).

Another class of special partitions of a connected graph
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was described in (2] and [3].

1. A representation theorem for the poset of connected

partitions of a graph

We shall consider only simple, connected graphs. Let
G=(V(G);E(G)) be a graph. An arbitrary partition of the ver-
tex set V(G) will be called a partition of G. A partition P of
G will be called connected if for every class AeP the sub-
graph <A> induced by A in G is connected.

We denote by P(G) the set of all partitions of G and by

?C(G) the set of all connected partitions of G. For Pl,Pze
€P(G) we write as usual PISP2 if for every AeP1 there
exists BeP,, such that As<B. It is known that ?(G) with
relation s is a complete lattice. Obviously, the set ?C(G)

with respect to s is a poset.

Let G be a connected graph. Consider an operator

gt 2E(G)—» 2E(G) defined as follows:
For X<E(G), let oG(X)=XuxD, where XD is the set of all

edges ecE(G) such that there exists a simple cycle C=(e1,e

g e
...,en) in G with e=e_, E(C)nx={e1,...,en_1}.

It is known that o is a closure operator having two prop-
erties:

(EP) If x,yeE(G), yeoG(x), yeaG(Xu{x}), then xeoG(Xu{y})
(the exchange property),

(FP) For X<E(G) and xeE(G) it follows that xeoG(X) implies
xeaG(F) for some finite subset F of X (the finite char-
acter property).

Thus the pair M(G)=(E(G);0G)
cycle matroid induced by G (see(S5}]).

is a matroid, called the

We shall write o instead of Og if there is no danger of
confusion.

We say that a set XsSE(G) 1is closed if o (X)=X.

It is known that the set LU(G) of all closed sets in M(G)
is a complete lattice with respect to inclusion (see [5],
Chapter 20).

Let P be a partition of a graph G and AeP. We put:

E(A) = {x€E(G): x€E(<A>)},
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E(P) = L_)E(A).
AeP

Lemma 1, For every Pe?c(G), the set E(P) 1is closed in
M(G) .

Proof. Let eec(E(P)). We have to show that if ee(E(P))D,
then e€E(P). Let ee(E(P))D. Then there exists a simple cycle
n-1E(P) .
Since CIRRER YL S form a path in G, so there exists a class
AeP such that el,...,en_leE(A). But <A> 1is an induced
subgraph of G, consequently eeE(A). Thus o (E(P))=E(P).

C = (el,ez,...,en), such that e=e, and €1r:0008

Lemma 2, If XeLo(G), then there exists PE?C(G) such
that E(P)=X.

Proof. Let X be closed in M(G). We define in V(G) a rela-
tion R(X) putting for u,veV(G):

uR(X)v if u=v or there exists a simple chain LI SRR

(1) {such that ug=u, u =v and all edges {ui,ui+1} for

i=0,1,...,n-1 belong to X.

Obviously, R(X) is an equivalence relation, so it induces
a connected partition P(X) in G. We show that E(P(X))=X.
Evidently, XSE(P(X)). Let {u,v}€E(P(X)). So there exists
AeP(X) such that u,veA. Hence there exists a simple chain of
the form (1). If n=1, then {u,v}eX since there are no paral-
lel edges in G. Otherwise, we get a simple cycle UgrUgsees
A such that {ui,ui+1}ex for i=0,1,...,n-1. Since X is

closed, so {uo,un}ex.

Lemma 3. For every partition PeP(G), there exists the
unique partition P® such that Pce?c(G) and E(Pc)=E(P).

Proof. Let P={Ai}i€I be a partition of the graph G. Let
P® consists of all ASV(G) for which there exists ieI such
that <A> is a component of <A;>. Obviously, P¢ is connected,
pP®sP and E(P®)=E(P). N

Let P'e?_(G), E(P’' )=E(P®) and P’ #P®. Then there exists
veV(G) such that [V]P, = [v]Pc. Put A=[V]Pc, A’=[v]P, and

let weA\A’. If there is weA’\A, then the proof is analogous.
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Since the graph <A> is connected, so there exists a simple

chain Wyeoo Wo,Voreee,V such that woeA\A’, voeAnA’ and

{wo,vo}e E(G). Consequently, {wo,vo}eE(Pc)\E(P’), a contra-
diction. Thus we have P’ =p°.

Lemma 4. If Pl,Pze?c(G), then PlsP iff E(Pl)sE(Pz).

2

Proof. If P,sP, and eeE(Pl), then obviously eeE(Pz).

Let E(Pl)sE(Pz), ue[v]P and uxv. It is enough to show that
1

ue(vlp . Since P1 is connected, so there exists a chain u=u,,
2

el,uz,...,un_l,en_l,un=v in G such that ul,uz,...,une[v]Pl.

Hence el,...,en_leE(Pl) and €1se-0@ eE(Pz). From the de-

n-1
finition of E(P) it follows that {ui,uj}eE(Pz) implies

uie[uj]P . Thus ul,uz,...,une[v]Pz.

2
Next theorem follows by Lemmas 1-4.

Theorem 1. If G is a connected simple graph, then the
mapping ¢ : ?C(G) - LU(G) defined by ¢ (P)=E(P) is an
isomorphism of the poset (?c(G);?) and the lattice
(L, (G) ;<) .

Corollary 1. The poset (PC(G);s) is a geometric lattice.

Corollary 2. Let G1 and G2 be two connected simple graphs.

Then (?C(G);S) is isomorphic to (?C(Gz);S) iff M(G
isomorphic to M(Gz).

1) is
Let us observe that the notion of a connected partition

can be extended to an arbitrary (not necessarily connected and
simple) graph. Then we have

Corollary 3. For every graph*G the lattice* (?C(G);s) is
isomorphic to the lattice (Lo(G );s<), where G is a simple
graph obtained from G by canceling loops and substituting
every set of parallel edges by one of them.
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2. Properties of the lattice of connected partitions of a
graph

For Pl,Pze?(G) we denote by P1
bound (join) and by PlAP2 the greatest lower bound (meet) of

P, and P,. If BsSV(G), then \/B and A B denote the least

upper bound and the greatest lower bound of elements of B.
Finally, we denote by P(G) the lattice (P(G);v,A).

va the 1least upper

Lemma 5, Let {Pilier be a family of connected partitions

of G and let ue([vV] Vpi for some u,veV(G). Then there ex-
ieI

ists a sequence Pkl,...,Pkm of partitions in {(Pi}ier and

there exists a chain Vor€yrVyreses@nVp in G such that nzo0,

Vo=V: VL =u and VorVyre++1Vp belong to the same class of the

0

partition P, v...vP_ .
k1 km

Proof. If u=v, then the proof is trivial. Let uzv. It is
known (see [1)) that ue([v) \V P implies that there exist
i

iel
kl,...,kmeI, wo,wl,...,wmeV(G), {m>0), such that Wo=V, Wp=u,
ws+le[ws]p for s=0,1,...,m-1. However, Pks+1 is connec-
s+l
ted, so there exists a chain xo,el,xl,...,en(s),xn(s) such
s’ s8'"s s s
0 n(s) 0o .1 n(s)
that XTWg, Xg Wil and KgrXgyeoo s Xg e[ws]p . So
s+1
the chain
o 1.1 n(o n(o0 o 1 n(l
v=x°,eo,x°,...,eo( ),xo( ) xl,el,...,xl( ) =

0 n(m41) n(m-1) _
Xpreeer®p g +Xpoq =

satisfies the requirements of the lemma for n=n(0)+...+n(m-1).

In fact, ue[v], , where P=P_v...vP, . Further, xje[v] s,
P k1 km s P
s s
where P Pklv...kas+1, [v]Ps:[v]p , since P sP.

From Lemma 5 next Corollary and Theorem follow.

u

Corollary 4. If . {Pi}ieI is a family of connected
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partitions of G, then )J’Pie?c(c).
leIl

Theorem 2. The set ?C(G) is a join subsemilattice of the
semilattice (P(G);v).

Let Ve and Ae be the join and the meet operations in
?c(G). Denote by PC(G) the lattice (?C(G);vc,Ac). Observe
that the least element of PC(G) and the greatest element of
Pc(G) coincide with the least and the greatest elements of
P(G) respectively. Moreover, an atom of Pc(G) is an atom of
P(G), since it must be of the form {{vl,vz}}u{{v : veV(G)\

\{vl,vz}}, where Vv vzeV(G), V. #*V and {vl,vz}eE(G).

1’ 1 72

Remark 1. The meet PlAP2 of two connected partitions P,
and P, of G need not be a connected partition of G. For exam-

ple see Py and P, in Figure 1.

v,j—m— Vv

4 3
Pl = {{vl}l{vzlv3lv4}}l
v v Pz = {{vllvzlv4}l{v3}}'
1 2
Figure 1.

Remark 2, If Pl,Pze?c(G), then PlACP2 is a partition
whose classes are connected components induced in V(G) by the
edges from E(Pl)nE(Pz).

Lemma 6. For every Pl,Pze?(G) we have:

1° E(P,)nE(P,) = E(P;nP,),

2° E(P,)UE(P,) S E(P VP,).

We omit the simple proof.

Remark 3. Note that the inclusion E(Plvpz)sE(Pl)uE(Pz)
does not need to hold. For example consider partitions P1 and
P3={{v1,v3,v4},{v2}} of a graph in Figure 1.

Recall that for PeP(G), we denoted by P® the unique
connected partition such that E(PC)=E(P) (see Lemma 3).

From Lemmas 3 and 6 we have
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Theorem 3. The mapping V¥ : ?(G) — ?c(G), where w(P)=P°,
is an idempotent endomorphism of (P(G);A) onto (?C(G);Ac).

Theorem 4. If P Pze?c(G), then P, covers P. in Pc(G) iff

1’ 2 1

P2 covers P1 in P(G).
Proof. The sufficiency is obvious. We prove the necessity.

Let P, covers P, in Pc(G). So there exist classes of P which

2 1 2
are unions of more then one class of Pl' If there exist two
such classes Al and Az, then consider a partition Pe?c(G)

consisting of A, and all classes from P which are not

1
included in A,. Then all P,, P, P, are different and P, <P<P,,

contrary to the assumption. So only one class of Pz, _ say Al,
is a join of more one class of P,. Let A= }EéBi, where
B;eP, and all B; are different. Assume that |I|>2. Since P,
is connected, so <A1> is a connected subgraph of G. Hence
there exist 10,joEI, 1,3y such that <Bi°qu0> is connected.
Consider a partition P’ consisting of Bi qu and all classes
0 0

of P1 different from those. Then P’e?c(G) and P1<P’<P2 , a
contradiction. Thus |I|=2 and P, covers P, in P(G).

Remark 4. It is known that the lattice P(G) is simple

(see [4]), i.e. it has only trivial congruence relations. Note
that Pc(G) _does not need to be simple, for example if Tn is
a tree with n vertices (n>2), then the lattice Pc(Tn) is a

Boolean Algebra having 2™ 1 elements.
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