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CONNECTED PARTITIONS AND CYCLE MATROIDS OF GRAPHS 

Introduction 
In [5, p.57] it was shown that: 

The partially ordered set of all partitions of an 
n-element set is a geometric lattice which is isomorphic 
to the lattice of closed sets of the cycle matroid 
of the complete graph Kn· 

This is not true if we consider an arbitrary graph G, 
since in general we have more partitions of V(G) than closed 
sets of the cycle matroid of G. However, we can ask which 
interesting partitions of the vertex set of an arbitrary 
connected simple graph should be chosen to obtain from them 
the lattice isomorphic to the lattice of closed sets of the 
cycle matroid of G. In this paper we answer this question. 

We say that a partition Ρ of V(G) is connected if every 
class of Ρ induces a connected subgraph of G. We denote by 
PC(G) the set of all connected partitions of V(G). 

Let M(G) denote the cycle matroid of G and let (L(r(G);£) 
be the lattice of closed sets in M(G). In Section 1 we prove 
that the poset (^(G) is isomorphic to the geometric lat-
tice (L(r(G);£). This result is a generalization of (w) since 
in a complete graph K n every partition of v( K

n) is connect-
ed. Let us also note that we do not assume G to be finite. 

In Section 2 we study the problem how the lattice 
(?>c(G);s) is situated in the lattice (^(G) ;*) , where T(G) 
denotes the set of all partitions of V(G). 

Another class of special partitions of a connected graph 



184 Ζ. Majeher, J. Plonka 

was described in [2] and [3]. 

1. A representation theorem for the poset of connected 
partitions of a graph 

We shall consider only simple, connected graphs. Let 
G=(V(G);E(G)) be a graph. An arbitrary partition of the ver-
tex set V(G) will be called a partition of G. A partition Ρ of 
G will be called connected if for every class AeP the sub-
graph <A> induced by A in G is connected. 

We denote by ?{G) the set of all partitions of G and by 
?*C(G) the set of all connected partitions of G. For Ρ^,Ρ^ 
ePfG) we write as usual p

1
s p

2 ^ e v e ry AeP^ there 
exists B«P2 such that ASB. It is known that ^(G) with 
relation s is a complete lattice. Obviously, the set 
with respect to s is a poset. 

Let G be a connected graph. Consider an operator 
aG: 2 E ( G )—• 2 E ( G ) defined as follows: 

For XSE(G), let σ_(Χ)=ΧυΧ°, where XD is the set of all 
edges eeE(G) such that there exists a simple cycle C=(elfe2,.. 
...,e ) in G with e = e

n# E(C)nX={e1#...,en-1}. 
It is known that σ G is a closure operator having two prop-

erties: 
(EP) If x,yeE(G), yea^X) , y€σ6(Χυ{χ}), then xeaG(Xu{y}) 

(the exchange property), 
(FP) For XSE(G) and xeE(G) it follows that χεσ^Χ) implies 

xea_(F) for some finite subset F of X (the finite char-
acter property). 

Thus the pair M(G)=(E(G);σ_) is a matroid, called the υ 
cycle matroid induced by G (see[5]). 

We shall write σ instead of if there is no danger of u 
confusion. 

We say that a set X£E(G) is closed if σ(Χ)=Χ. 
It is known that the set L

a( G) o f all closed sets in M(G) 
is a complete lattice with respect to inclusion (see [5], 
Chapter 20). 

Let Ρ be a partition of a graph G and AeP. We put: 
E(A) = {xeE(G): xeE(<A>)}, 
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E(P) = ^ ) E (A). 
AeP 

Lemma 1. For every Pe?>c(G), the set E(P) is closed in 
M(G) . 

Proof. Let βεσ(Ε(Ρ)). We have to show that if e€(E(P))D, 
then eeE(P). Let ee(E(P))D. Then there exists a simple cycle 
C = (e.,e_,...,e ), such that e = e„ a n d e ,...,e eE(P). X « Π il X II χ 
Since βι'···'θ

η_ι for® a path in G, so there exists a class 
AeP such that e^,...,en_^eE(A). But <A> is an induced 
subgraph of G, consequently eeE(A). Thus σ(Ε(Ρ))=E(P). 

Lemma 2. If XeL^G) , then there exists Pe?>c(G) such 
that E(P)=X. 

Proof. Let X be closed in M(G). We define in V(G) a rela-
tion R(X) putting for u,v«V(G): 

( 1 ) 

uR(X)v if u=v or there exists a simple chain Ug,»^,...,^ 
such that uQ=u, ufi=v and all edges for 
i=0,1,...,η-l belong to X. 

Obviously, R(X) is an equivalence relation, so it induces 
a connected partition P(X) in G. We show that E(P(X))=X. 
Evidently, XSE(P(X)). Let {u,v}eE(P(X)). So there exists 
AeP(X) such that u,veA. Hence there exists a simple chain of 
the form (1). If n=l, then {u,v>eX since there are no paral-
lel edges in G. Otherwise, we get a simple cycle u^u^,... 
...,u such that {uj/ui+i}€X i=0,1,...,η-l. Since X is 
closed, so {u„,u }eX. o n 

Lemma 3. For every partition Pey(G), there exists the 
unique partition P c such that Pce?>c(G) and E(PC)=E(P). 

Proof. Let p =í Ai}i ej b e a partition of the graph G. Let 
P° consists of all ASV(G) for which there exists iel such 
that <A> is a component of <A^>. Obviously, P c is connected, 
PcsP and E(PC)=E(P). 

Let P'e?>c(G), E(P')=E(PC) and P'*PC. Then there exists 
veV(G) suchthat [v]p/ = [v]pc. Put A=[v]pc, A'=[v]p/ and 
let weA\A' . If there is weA' \A, then the proof is analogous. 
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Since the graph <A> is connected, so there exists a simple 
chain w,...,wQ,vQ,...,ν such that wQ€A\A' , vQ€AnA' and 
{w0,vQ}e E(G). Consequently, {wQ,vQ>eE(Pc)\E(P' ), a contra-
diction. Thus we have P'=PC. 

Lemma 4. If P ^ P ^ P ^ G ) , then P 1
SP 2 iff E(P )SE(P2). 

Proof. If p
1
s p

2
 a n d eeEÍPj^), then obviously e«E(P2). 

Let E(P1)£E(P2), ue[v]p and u*v. It is enough to show that 
ue[v] . Since P. is connected, so there exists a chain u=u., 

2 
β!»^» · · · »un-i'en-l'un=v i n G s u c h t h a t ui'u2'*'*'une[V]P ' 
Hence e^... »e

n_ieE(pi) a n d ej_» · · · 'en-l6E^P2^ " F r o m t h e d e~ 
finition of Ε(P) it follows that {u.,u.}€E(P_) implies ι j ¿ 
ui € [ uj ]P ' T h u s ul'u2'''''un€[v]P * 2 2 

Next theorem follows by Lemmas 1-4. 
Theorem 1. If G is a connected simple graph, then the 

mapping φ : ?C(G) —» L^G) defined by φ(Ρ)=Ε(Ρ) is an 
isomorphism of the poset (?"C(G) ; and the lattice 

Corollary 1. The poset (?»c(G); a) is a geometric lattice. 

Corollary 2. Let Gĵ  and G 2 be two connected simple graphs. 
Then (Pc(G);s) is isomorphic to (y>c(G2) iff M(G^) is 
isomorphic to M(G2). 

Let us observe that the notion of a connected partition 
can be extended to an arbitrary (not necessarily connected and 
simple) graph. Then we have 

Corollary 3. For every graph G the lattice {9 ( G ) i s 
* * 

isomorphic to the lattice (L(J.(G ) ;£), where G is a simple 
graph obtained from G by canceling loops and substituting 
every set of parallel edges by one of them. 
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2. Properties of the lattice of connected partitions of a 
graph 

For P1,P2«?>(G) we denote by p
1
v p

2
 t h e least upper 

bound (join) and by p
1
a P

2 the greatest lower bound (meet) of 
P^ and P 2· If BSV(G), then V Β and /\ Β denote the least 
upper bound and the greatest lower bound of elements of B. 
Finally, we denote by P(G) the lattice (?>(G);v,a). 

Lemma 5. Let b e a family of connected partitions 
of G and let ue[v] w D for some u,v«V(G). Then there ex-

ici 1 

ists a sequence Ρ^ ,...,Ρ^ of partitions in an<* 
1 m 

there exists a chain vo'ei'vi'···,en'vn G s u c h t h a t n*0, 
vQ=v, vn=u and νο'νι'*"·'ν

η
 b e l o n 9 to the same class of the 

partition Ρ^ ν.,.νΡ^ . 
1 m 

Proof. If u=v, then the proof is trivial. Let u*v. It is 
known (see [1]) that ue[v] implies that there exist 

ici 1 
kl'· · ·'km€l' w o ' w l " - " w m € V ( G ) ' i m > 0 )' s u c h t h a t wo = v' wm = u' 
w .€[»]_ for s=0,l,...,m-1. However, P. is connec-

lc s+1 s+1 s + 1 

ted, so there exists a chain x^e^x*,... such s s s s s 

that x°=v . x"(S)=wc,. and x?,*!,...,x£(e,«[v_]p . So s s s s+l s s s s P. 
s+1 

the chain 
v=x° e 1 χ 1 e n ( 0 ) x n ( 0 ) = x° e 1 x n ( 1 ) = v o ' o ' o ' ' ' ' ' o ' 0 1 1 ' ' ' ' 1 

_ 0 η(m-1) η(m-1) _ 
- 2'"*"' m-1 'm-1 " u 

satisfies the requirements of the lemma for n=n(0)+...+n(m-l). 
In fact, U€[v]p , where p=pfc v'"'vPk ' Further» x^e[v]ps, 

s 1 " s where Ρ = P t ν.,.νΡ. , [v]Dss[v]„ , since Ρ *P. 
*1 s+1 * * 

From Lemma 5 next Corollary and Theorem follow. 
Corollary 4. If a faaily of connected 



188 Ζ. Majeher, J. Plonka 

partitions of G, then \/P.€J> (G). 
i€l 1 c 

Theorem 2. The set ?>c (G) is a join subsemi lattice of the 
semilattice (J'iGJj-v). 

Let vc and ac be the join and the meet operations in 
Ρ (G) . Denote by P„(G) the lattice (?\,(G);v ,λ ). Observe O c o o o 
that the least element of PC(G) and the greatest element of 
Pc(G) coincide with the least and the greatest elements of 
P(G) respectively. Moreover, an atom of PC(G) is an atom of 
Ρ(G), since it must be of the form {{ν1#ν2>}υ{{ν : veV(G)\ 
\(v1,v2)}, where v^v^VfG) , νχ*ν2 and {v^v^eEfG) . 

Remark 1. The meet Ρ^ Λ Ρ2 o f t w o connected partitions P^ 
and P2 of G need not be a connected partition of G. For exam-
ple see P^ and P2 in Figure 1. 

v4 v3 
= {{v1},{v2,v3,v4}}, 

V i V 2 P2 = {{v1,v2,v4>f{v3>}. 
Figure 1. 

Remark 2. If P ^ P ^ i ^ G ) , then f,
1
A
c
p
2
 a partition 

whose classes are connected components induced in V(G) by the 
edges from Ε ( Ρ 1 ) λ Ε ( Ρ 2 ) . 

Lemma 6. For every P^P^PfG) we have: 
1° E(P1)nE(P2) =Ε(ΡιΛΡ2), 
2° Ε(Ρ1)υΕ(Ρ2) S E(P1vP2). 

We omit the simple proof. 
Remark 3. Note that the inclusion E(PJVP2) SEÍP^uEfPj) 

does not need to hold. For example consider partitions P̂ ^ and 
P3={{v1,v3/v4},{v2}> of a graph in Figure 1. 

Recall that for PeP(G), we denoted by P c the unique 
connected partition such that E(P°)=E(P) (see Lemma 3). 

From Lemmas 3 and 6 we have 
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Theorem 3. The mapping ψ : ?>(G) —* ?>C(G) , where 0(P)=Pc, 
is an idempotent endomorphism of (?>(G);a) onto (?>C(G);aC). 

Theorem 4. If P ^ P ^ P (G), then P 2 covers Ρ χ in PC(G) iff 

Ρ2 covers P^ in P(G). 

Proof. The sufficiency is obvious. We prove the necessity. 
Let P_ covers P, in IP (G). So there exist classes of P_ which 2 l c 2 
are unions of more then one class of P^. If there exist two 
such classes Aĵ  and A2, then consider a partition PePc(G) 
consisting of A^ and all classes from P^ which are not 
included in A ^ Then all Ρ , Ρ, P 2 are different and P1<P<P2, 
contrary to the assumption. So only one class of P2, say A^, 
is a join of more one class of ?.. Let Α.. = ^ B . , where 

ici 
B^eP^ and all B^ are different. Assume that |l|>2. Since P2 

is connected, so <A^> is a connected subgraph of G. Hence 
there exist i0,jQ€l, i0"io s u c h t h a t < B¿ u Bj > i s connected. 
Consider a partition P' consisting of B. uB. and all classes 

of P. different from those. Then P' e? (G) and P,<P'<P_ , a 1 C 1 2 
contradiction. Thus |I|=2 and P 2 covers P̂ ^ in P(G) . 

Remark 4. It is known that the lattice P(G) is simple 
(see [4]), i.e. it has only trivial congruence relations. Note 
that p

c( G) .does not need to be simple, for example if T n is 
a tree with η vertices (n>2), then the lattice Ρ (T ) is a n-1 c η Boolean Algebra having 2 elements. 
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