

Jerzy Plonka

THE ALGEBRAIC SUM OF A SEMILATTICE ORDERED
SYSTEM OF RELATIONAL SYSTEM

Dedicated to J. Mycielski

O. Preliminaries

By a type of relational systems we mean a mapping $\tau : R \rightarrow N$, where R is a set of relational symbols and N is the set of positive integers. By a relational system of type τ we mean a pair $\mathfrak{A} = (A; R^{\mathfrak{A}})$, where A is a non-empty set and $R^{\mathfrak{A}}$ is the set of relations on A being realizations of symbols from R i.e. for each $r^{\mathfrak{A}} \in R^{\mathfrak{A}}$ the arity of $r^{\mathfrak{A}}$ is equal to $\tau(r)$. If $\langle a_1, \dots, a_{\tau(r)} \rangle \in r^{\mathfrak{A}}$, we shall write simply $r^{\mathfrak{A}}(a_1, \dots, a_{\tau(r)})$. A relation $r^{\mathfrak{A}}$ is a function on variables $x_1, \dots, x_{\tau(r)-1}$ if for every $a_1, \dots, a_{\tau(r)-1} \in A$ there exists the unique $a \in A$ such that $r^{\mathfrak{A}}(a_1, \dots, a_{\tau(r)-1}, a)$. In this case we shall say shortly that $r^{\mathfrak{A}}$ is a function.

Let $\mathfrak{A} = (A; R^{\mathfrak{A}})$ and $\mathfrak{B} = (B; R^{\mathfrak{B}})$ be two relational systems of type τ . A mapping $h : A \rightarrow B$ is a homomorphism if for every $r \in R$, $a_1, \dots, a_{\tau(r)} \in A$, $r^{\mathfrak{A}}(a_1, \dots, a_{\tau(r)})$ implies $r^{\mathfrak{B}}(h(a_1), \dots, h(a_{\tau(r)}))$.

In [2] and [3] a construction of algebras was defined, called the sum of a direct system of algebras. This construction was based on the notion of a semilattice. In [4] a similar construction was defined for relational systems.

In this paper we define a uniform construction, called the algebraic sum of a semilattice ordered system of relational

systems, where we do not distinguish between functions and relations. The algebraic sum is a generalization of that from [2] and [3], and is connected with that from [4] (see Remark 1 and (v)).

The problem of finding such a generalization was suggested to me by J. Mycielski.

1. Algebraic sum

By a semilattice ordered system of relational systems of type τ we mean a triple

$$\mathcal{A} = ((I; \leq), \{\mathbb{A}_i\}_{i \in I}, \{h_i^j\}_{i, j \in I; i \leq j})$$

satisfying the following three conditions:

(i) $(I; \leq)$ is a join-semilattice, i.e. for every $i, j \in I$ there exists their supremum $i \vee j$. If there are unary symbols in R then $(I; \leq)$ has the least element ω ;

(ii) every \mathbb{A}_i is a relational system of type τ , where $\mathbb{A}_i = (A_i; R^i)$ and for every $i, j \in I$, if $i \neq j$ then $A_i \cap A_j = \emptyset$;

(iii) for each $i \leq j$, h_i^j is a homomorphism of \mathbb{A}_i into \mathbb{A}_j , where h_i^i is the identity map and if $i \leq j \leq k$ then $h_j^k \circ h_i^j = h_i^k$.

We define a new relational system $S(\mathcal{A}) = (\bigcup_{i \in I} A_i; R^S)$ of type τ , where for every $r \in R$, $a_1 \in A_{i_1}, \dots, a_{\tau(r)} \in A_{i_{\tau(r)}}$ and $k = \sup\{i_1, \dots, i_{\tau(r)-1}\}$ we have

$$r^S(a_1, \dots, a_{\tau(r)}) \text{ iff } i_{\tau(r)} = k \text{ and}$$

$$r^k(h_{i_1}^k(a_1), \dots, h_{i_{\tau(r)-1}}^k(a_{\tau(r)-1}), a_{\tau(r)}).$$

The relational system $S(\mathcal{A})$ will be called the algebraic sum of \mathcal{A} . We have the following propositions (iv) and (v).

(iv) If $\tau(r)=1$ for some $r \in R$ then $r^S=r^\omega$. If $\tau(r)=2$

for some $r \in R$ then $r^S = \bigcup_{i \in I} r^i$.

Remark 1. In [4] a sum of a direct system of relational systems was defined, where for a given semilattice ordered system \mathcal{A} of relational systems there was the following definition concerning $S(\mathcal{A})$. If $r \in R$, $a_j \in A_{i_j}$, $j=1, \dots, \tau(r)$, $q = \sup\{i_1, \dots, i_{\tau(r)}\}$ then

$$(1.1) \quad r^S(a_1, \dots, a_{\tau(r)}) \text{ iff } r^q(h_{i_1}^q(a_1), \dots, h_{i_{\tau(r)}}^q(a_{\tau(r)})).$$

So the construction in [4] does not distinguish the last variable and therefore it is not a particular case of the algebraic sum. The both constructions coincide if we assume that $1 \notin \tau(R)$ and $i_{\tau(r)} = q$ in (1.1).

(v) For every $r \in R$, r^S is a function in $S(\mathcal{A})$ iff for each $i \in I$, r^i is a function in A_i . If \mathcal{A} is a semilattice ordered system of algebras then $S(\mathcal{A})$ is an algebra and the algebraic sum $S(\mathcal{A})$ is equivalent to that defined in [2] and [3].

2. Partition function

Let $\mathcal{A} = (A; R^{\mathcal{A}})$ be a relational system of type τ . A binary function $\circ : A \times A \rightarrow A$ will be called a partition function of \mathcal{A} if it satisfies the following formulas:

- (2.1) $a \circ a = a$, $(a \circ b) \circ c = a \circ (b \circ c)$, $a \circ b \circ c = a \circ c \circ b$ for every $a, b, c \in A$;
- (2.2) if $\tau(r) = n > 1$ for $r \in R$, $a_1, \dots, a_n \in A$ and $z \in A$, then $r^{\mathcal{A}}(a_1, \dots, a_n)$ implies $r^{\mathcal{A}}(a_1 \circ z, \dots, a_n \circ z)$;
- (2.3) for $r \in R$, $\tau(r) = n$, $a_1, \dots, a_n \in A$, we have $r^{\mathcal{A}}(a_1, \dots, a_n)$ iff $a_n \circ a_i = a_n$ for $i=1, \dots, n$, $a_1 \circ \dots \circ a_n = a_1 \circ \dots \circ a_{n-1}$ and $r^{\mathcal{A}}(a_1 \circ a_n, \dots, a_{n-1} \circ a_n, a_n)$;
- (2.4) if $\tau(r)=1$ for $r \in R$, $a_1 \in A$ then $r^{\mathcal{A}}(a_1)$ implies $z \circ a_1 = z$ for every $z \in A$.

Remark 2. If \mathbb{A} is an algebra, then this notion of a partition function coincides with that defined in [3].

Theorem 1. To every partition function τ of a relational system $\mathbb{A} = (A; R^{\mathbb{A}})$ of type τ there corresponds a representation of \mathbb{A} in the form $\mathbb{A} = S(\mathcal{A})$, where \mathcal{A} is constructed as follows:

(c₁) Define in A a relation \sim putting for $a, b \in A$, $a \sim b$ iff $a \cdot b = a$ and $b \cdot a = b$. It turns out that \sim is an equivalence on A . Let $\{A_i\}_{i \in I}$ be the set of equivalence classes of \sim .

(c₂) Define in I a relation \leq putting for $i, j \in I$, $i \leq j$ iff for some $a \in A_i$, $b \in A_j$, $b \cdot a = b$. It turns out that $(I; \leq)$ is a join-semilattice. If $\tau(r) = 1$ for some $r \in R$, then denote by ω the element of I such that $A_\omega \cap r^{\mathbb{A}} \neq \emptyset$.

(c₃) For every $r \in R$, with $\tau(r) > 1$ put $r^i = r^{\mathbb{A}}|_{A_i}$ for $i \in I$. If $\tau(r) = 1$ put $r^i = \{x \cdot b : x \in r^{\mathbb{A}}\}$ and b is a fixed element of A_i . It turns out that for each $r \in R$ with $\tau(r) = 1$, $r^i \subseteq A_i$; in particular, $r^\omega = r^{\mathbb{A}}$. Put $R^i = \{r^i : r \in R\}$ and $\mathbb{A}_i = (A_i; R^i)$. Then every \mathbb{A}_i is a relational subsystem of \mathbb{A} .

(c₄) If $i \leq j$ put for every $x \in A_i$ and fixed $b \in A_j$, $h_i^j(x) = x \cdot b$. It turns out that (iii) is satisfied.

(c₅) It turns out that $\mathbb{A} = S(\mathcal{A})$ for the semilattice ordered system \mathcal{A} of relational systems constructed in this way.

(c₆) Conversely, if $\mathbb{A} = S(\mathcal{A})$ for some semilattice ordered system \mathcal{A} of relational systems, then put for $a \in A_i$, $b \in A_j$, $a \cdot b = h_i^j(a)$ where $q = i \vee j$. Then \mathbb{A} satisfies formulas (2.1)-(2.4).

(c₇) The correspondence between partition functions of \mathbb{A} and representations of \mathbb{A} in the form $S(\mathcal{A})$ is one-to-one.

The proof is very similar to that in [3], so we do not present it here.

3. Example

Let $\tau_0: \{r\} \rightarrow N$ be a type of relational systems, where

$\tau_0(r)=3$. Denote by \mathbb{R} the set of all reals and let $a \in \mathbb{R}$, $a > 0$. Put $T = \{(x, y) \in \mathbb{R} \times \mathbb{R} : 0 \leq y \leq a, |x| + y \leq a\}$ (see Figure 1).

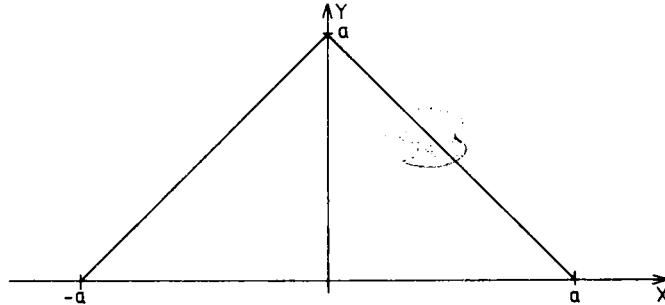


Figure 1.

For every b with $0 \leq b < a$ put $A_b = \{(x, b) : (x, b) \in T\}$. We define in A_b a ternary relation r^b by

$$r^b((x_1, b), (x_2, b), (x_3, b)) \text{ iff } x_1 \leq x_3 \leq x_2.$$

So r^b is the usual relation "to lie between" on an open interval. Let $\mathbb{A}_b = (A_b, r^b)$. Denote $B = \{b : 0 \leq b < a\}$. We define a semilattice ordered system \mathcal{A} of relational systems putting $\mathcal{A} = ((B; \leq), \{\mathbb{A}_b\}_{b \in B}, \{h_b^c\}_{b, c \in B; b \leq c})$, where \leq is the usual order on reals in B and for $b, c \in B$, $b \leq c$ and $(x, b) \in A_b$ we put $h_b^c((x, b)) = \langle \frac{c-b}{a-b}x, c \rangle$, where $k' = a - k$ for $k \in B$ (see Figure 2).

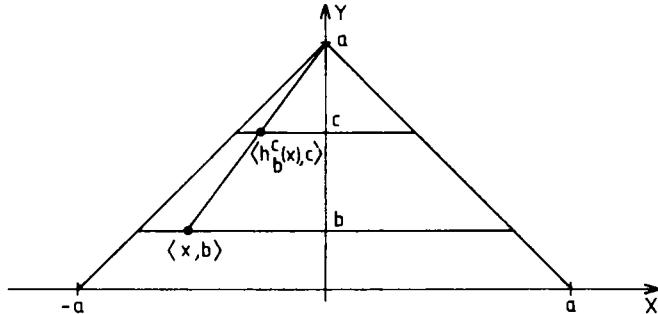


Figure 2.

Then \mathcal{A} is a well defined semilattice ordered system of relational systems. In $S(\mathcal{A})$ we get a ternary relation r^S

satisfying: $r^s(\langle x_1, b \rangle, \langle x_2, c \rangle, \langle x_3, d \rangle)$ iff $d = \max\{b, c\}$ and $r^d(\langle \frac{d'}{b'} x_1, d \rangle, d, \langle \frac{d'}{c'} x_2, d \rangle, \langle x_3, d \rangle)$ (see Figure 3).

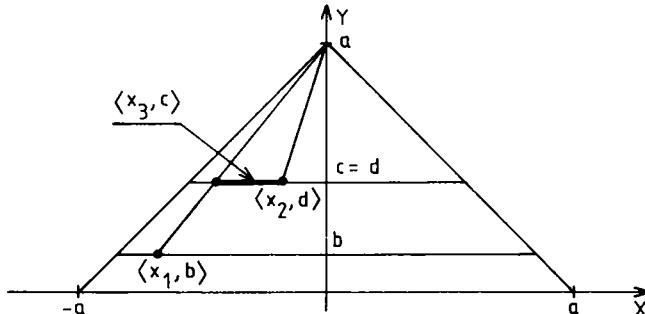


Figure 3.

One can see that $\langle x_3, d \rangle$ must lie inside the angle $\langle x_1, b \rangle, \langle 0, a \rangle, \langle x_2, c \rangle$, and on the level $\max\{b, c\}$.

Recall that an identity $\varphi=\psi$ is regular if the sets of variables occurring in φ and ψ are identical (see [2]). It was proved in [2] that if \mathcal{A} is a non-trivial semilattice ordered system of algebras ($|I|>1$) then $S(\mathcal{A})$ preserves all regular identities satisfied in all \mathfrak{A}_i and does not satisfy any other identities.

Problem. What formulas of the first order language are preserved by algebraic sums $S(A)$? Such problems were studied in [1].

REFERENCES

- [1] K. Halkowska, J. Plonka: On formulas preserved by the sum of a direct system of relational systems, Math. Nachrichten 86 (1978) 117-120
- [2] J. Plonka: On a method of construction of abstract algebras, Fund. Math. 61(1967) 183-189
- [3] J. Plonka: On the sum of a direct system of universal algebras with nullary polynomials, Algebra Universalis 19 (1984) 197-207

[4] J. Plonka: On the sum of direct system of relational systems, Bull. Acad., Polon. Sci. Ser. Math. 21(7) (1973) 595-597.

MATHEMATICAL INSTITUTE OF THE POLISH ACADEMY OF SCIENCES,
KOPERNIKA 18, WROCLAW, POLAND

Received December 22, 1989.

