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A CLASSIFICATION OF STRICTLY SIMPLE ALGEBRAS

WITH TRIVIAL SUBALGEBRAS

An algebra A 1is called strictly simple if A 1is simple
and every proper subalgebra of A is trivial (i.e. one-
~element). Since each 1locally finite minimal variety is
generated by a finite strictly simple algebra, it is hoped
that they will be better understood by studying the structure
of strictly simple algebras (cf. Problem 10 in [3]). In [16]
and {17] we investigated finite simple algebras without proper
subalgebras, and determined them, up to term equivalence, when
all fundamental operations are surjective. The proof is based
on a strong version of Rosenberg’s primal algebra characteri-
zation theorem [10].

This paper starts the study of finite strictly simple
algebras having trivial subalgebras with the analogue of the
main result of [16]. We present a classification determining
the maximal clones of all those finite strictly simple alge-
bras with trivial subalgebras which do not generate a congru-
ence permutable variety (Theorem 1; cf. also Corollary 2). The
proof does not make use of (major parts of) the proof of
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Rosenberg’s theorem. In fact, it is much simpler than the
latter, which is shown also by the fact that, with some
modifications, the proof given here works for infinite
algebras (and local term operations replacing term operations)
as well, provided they have at least two trivial subalgebras.

As a consequence of Theorem 1, we get for every finite set
A and for every nonvoid subset U of A the full list of maximal
subclones of the clone consisting of all operations f on A
with f(u,...,u)=u for all ueU (Corollary 2). We note that
the special case |U|=1 was proved earlier by D. Lau (5], and
the case U=A was also known before (see [15]). Further, we
apply Theorem 1 to get a necessary and sufficient condition
for a finite strictly simple algebra A having at 1least one
trivial subalgebra and such that the fundamental operations of
A are surjective to generate a congruence permutable variety
(Corollary 3), and for a functionally complete algebra A with
at least one trivial subalgebra to be quasiprimal (Corollary
6). It turns out that in both cases the condition involves
only subalgebras of Az.

1. Main results

We adopt the convention that algebras are denoted by
boldface capitals and their universes by the corresponding
letters in italics. Two algebras are called term equivalent
(polynomially equivalent], if they have the same clone of term
[(polynomial] operations. The clone of term operations of an
algebra A is denoted by Clo A. For a set A and for k=1, the
nonvoid subsets of Ak will also be called k-ary relations (on
A), and for an algebra A the universes of subalgebras of A
will be called subuniverses of A. (Hence a subuniverse is
always nonempty).

Recall\that a finite algebra A is called quasiprimal if
every operation on A preserving the internal isomorphisms
(i.e. isomorphisms between subalgebras) of A is a tern
operation of A. The concept as well as the following

characterization of quasiprimal algebras is due to A.F. Pixley
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(71, (8].

A finite algebra A is quasiprimal if and only if the
ternary discriminator

t(x,y,z) = {z 1f x=y,
x otherwise

on A is a term operation of A.

An algebra A is said to be affine with respect to an
Abelian group A if A and A have the same universe, the quater-
nary relation

Q. = {(a,b,c,d)eA4: a-b+c=d}
A

is a subuniverse of A4, and x-y+z 1is a term operation of A.
The algebras that are affine with respect to A are well known

to be related to the module i.e. i considered as a

(End A)A’
module over its endomorphism ring End A.

An algebra A is affine with respect to an Abelian group A
on its unlverse if and only if A is polynomlally equivalent to

a module RA for some subring R of End A.

A k-ary relation B on A is called totally reflexive if it
contains each k-tuple from Ak whose components are not
pairwise distinct. Further, B is called totally symmetric 1if
it is closed under permuting the components. (As a rule, "to-
tally" is omitted if k=2). A totally reflexive, totally
symmetric relation BsA®  is called central if B+AK and
1,...,ak_l)eB for all
€A. The set of all such elements ¢ is called the

there exists a ceA such that (c,a
Ay, 00y
centre of B. Observe that every unary relation is totally
reflexive and symmetric, hence the unary central relations are
exactly the nonvoid proper subsets of A. For a fixed subset U
of A, a central relation will be called U-central if U is
contained in its centre.
For an element aeA vwe set

X, = (Ax{a})u({a}xA).
As usual, a binary relation on A is <called irreflexive, if
none of the pairs (a,a), aeA, belongs to it. For a fixed
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subset U of A, the binary relations of the form
X,vY with ueU and Y an irreflexive binary relation on A-U

will be called U-crosses on A.

The principal result of the paper is the following
theorem.

Theorem 1, Let A be a finite strictly simple algebra
having at least one trivial subalgebra, and let U be the set
of all elements u of A for which {u} is a trivial subalgebra
of A. Then one of the following conditions holds:

(a) A is quasiprimal;

(b) A is affine with respect to an elementary Abelian
p-group (p prime);

(c) there is a U-central relation among the subuniverses
of Ak for some kz2;

(d) there is a bounded partial order among the subuni-
verses of Az such that every element of U is a bound (conse-
quently |U|=2);

(e) there is a symmetric U-cross among the subuniverses of
Az.

We present some applications.

(A) Theorem 1 can be used to determine the maximal
subclones of the clone Cy consisting of all operations f on A
with f(u,...,u)=u for all ueU. For a k-ary relation B and
an operation f on A, f is said to preserve B if B is a subuni-
verse of the algebra (A;f)k. The operations preserving a fixed
relation B form a clone, which will be denoted by Py.

Corollary 2. Let A be a finite set and U a nonvoid subset
of A. The maximal subclones of C are exactly the clones

U
C,,nP where B is one of the following relations.

° ?I) B is a nonempty proper subset of A distinct from the
singletons {u}, ueU;

(II) B is a nontrivial equivalence relation on A such
that {u} is a singleton block of B for all ueU;

(III) B is a permutation of A of prime order such that U
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is invariant under B, B has at most one fixed point in U and
no fixed point in A-U;

(IV) B = {(a,b,a+b); a,beA} for an elementary Abelian
2-group ﬁ = (A;+,0), and U = {0};

(v) B is a k-ary U-central relation (kz2);

(VI) B is a bounded partial order such that every element
of U is a bound (consequently |U|s2);

(VII) B is a symmetric U-cross.

The case |U[=1 was proved earlier by D. Lau [5], while
the case U=A (when CU=CA
operations on A) was solved independently by several

is the clone of all idempotent

participants of the Séminaire de Mathématiques Supérieures on
"Universal algebra and relations" (Montreal, 1984), among
others R.W. Quackenbush and the author. In [15] the result is
derived from a more general theorem on idempotent algebras. An
interesting feature of this proof is that it works for
infinite base sets as well, thus yielding a description for

the so-called maximal locally closed subclones of C Keeping

<
this in mind, we give a proof for Theorem 1 (and hence for
Corollary 2) which can be modified with some effort to yield
the infinite analogues as well, provided |U|z2 (see the Re-

mark at the end of Section 2).

(B) We call an algebra surjective if all its fundamental
operations are surjective. For example, every strictly simple
groupoid (or, more generally, every strictly simple algebra
with a single fundamental operation) is surjective, unless its
operation is constant.

Corollary 3. Let A be a finite, surjective, strictly sim-
ple algebra having at least one trivial subalgebra, and let U
be the set of all elements u of A for which {u} is a trivial
subalgebra of A. Then A generates a congruence permutable
variety if and only if none of the following relations B
occurs among the subuniverses of A2:

(x¢) B is a U-cross;

(8) B is a binary U-central relation with centre U, |U|=1;



154 A. Szendrei

() B is a bounded partial order such that U is the 2-
~element set consisting of the bounds.

This shows that for an algebra A satisfying the
assumptions of Corollary 3, A generates a congruence permuta-
ble variety if and only if A% has no subuniverse B with |a|<
<|B|<|A|2. We note that none of the relations (a)-(7¥) can be
omitted in Corollary 3, as is shown by the following
proposition.

Propositidn 4. Let A be a finite set and U a nonvoid
subset of A. For each of the binary relations B in (a)-(7),
there exists an algebra A of finite type such that

(i) A is strictly simple and the trivial subalgebras of
A are exactly the singletons {u}, ueU;

(ii) A is surjective; and

(iii) A and B (and in case (7) also B-l) are the only sub-
universes of A? that are not direct products of subuniverses
of A.

Remarks. 1. If B is of type (a) or (B), then the algebra A
satisfying the requirements of Proposition 4 can be chosen to
be term equivalent to (A;CUAPB).

2. If B is of type (7), then the analogous claim is not
true in general. In fact, if |A|=8 and B is the partial
order

then G. Tardos’s proof [18] for the fact that PB is not

finitely generated yields also that is not

C{0 l}nPB
X ’
finitely generated; hence (A;CUnPB) is not term equivalent

to any algebra of finite type.

(C) Recall that an algebra A is said to be functionally
complete if it is finite and every operation on A is a polyno-
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mial operation of A. Recently K. Kaarli [4) proved that every
functionally complete algebra having no proper subalgebras is
quasiprimal. If the algebra has trivial subalgebras, then the
conclusion is no longer true; namely we have the following

Proposition 5. Let A be a finite set and U a nonvoid
subset of A. For an arbitrary U-cross B on A, A=(A;CUnPB) is
functionally complete algebra whose subalgebras are exactly
the singleteons {u},ueU, and A is not quasiprimal.

It follows from Theorem 1 that every nonquasiprimal,
functionally complete algebra having trivial subalgebras is a
reduct of these algebras.

Corollary 6. Let A be a functionally complete algebra
having no nontrivial proper subalgebras. Assume A has a
trivial subalgebra, and let U be the set of all elements u of
A for which {u} is a trivial subalgebra of A. Then A is duasi-
primal if and only if there is no symmetric U-cross among the
subuniverses of a2,

In a forthcoming paper we will apply Theorem 1 to the
investigation of strictly simple Abelian algebras (i.e.
strictly simple algebras satisfying the Term Condition).

2. Proof of Theorem 1

The cardinality of a set A is denoted by |A|. For
convenience we identify every natural number n with the set
n={0,...,n-1}. The full symmetric group on n is denoted by S,

‘We introduce some operators on relations that will be
needed in the sequel. For BcA" and for i A

0,...,ik_len,
o} P . B= {(x, ,...,x. ) (%,,...,%X___.)€B}
(10,...,1k_1) i, i1 0 n-1
is the projection of B onto its components io""’ik-l’ In

particular, if I = {io,...,ik_l} is a subset of n with

1g<c..<i,_, then we write pr; B instead of pr(io""'ik—l)B.

T = pr B
PY om,..., (n-1)m) >’

i.e. B" arises from B by permuting its components according to

Furthermore, for any nesn, ve set B
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n. In particular, if n=2 and m is the transposition, then we
write B™! instead of B".

n . .
For BsA and for an equivalence relation € on n, we set

Be = {(xo,...,xn_l)eB: xi=xj whenever (i,j)ec}.

Let I, denote the subset of n consisting of the least elements
of the blocks of £, and put

equ = pry B
c

€

In the subscript, instead of €, it will often be more
convenient to write the list of nonsingleton blocks of €; e.qg.
n-1
eqo1 B = {(xo,xl,...,xn_z)eA : (xo,xo,xl,...,xn_z)eB}.
For BsAn, 1s1<n, and al,...,an_leA, we define the 1l-ary
relation arising from B by "fixing the jth component at aj for
j=1,...,n-1" as follows:

B(xo,...,xl_l,al,...,an_1)=

1
= {(xo,...,xl_l)eA : (xo,...,xl_l,al,...,an_l)eB}.

It is straightforward to check that if for some algebra A,
B is a subuniverse of An, then the relations pry B, Bc' eq, B
described above are also subuniverses of the corresponding
powers of A, provided they are nonempty. If, in addition, {aj}
(1=j=n-1) are singleton subalgebras of A, then B(xo,...

""xl-l’al""'an—l) is a subuniverse of Al, provided it is
nonempty.
With the foregoing notations, an n-ary relation B on A is

n-1

totally reflexive if and only if e B=A for all i,jem,

q. .
i<j, and totally symmetric if and oni; if B<B for all
meS . An n-ary relation B will be called reflexive if
ed, ,-p B=A. It will be convenient to consider the
permutations o of A as binary relations {(x,%x0): xeA}, and
conversely, to call every relation of this form a permutation.
The identity permutation, considered as a binary relation
(i.e. the diagonal of Az) will be denoted by A.

In what follows, we will need a concept generalizing the

automorphisms of algebras. Before the definition we prove a
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lemma.

Lemma 7. Let A be a finite set. For a k-ary relation C on
A (kz2), the following conditions are equivalent:
k-1

(i)  |c|=|a|*", ana Pry_(3)C = A for all iek;
(ii) for all iek, the projection mapping of C omitting
the ith component is one-to-one and onto k-1;

(iii) for every jek there exists a (k-1)-ary operation
Fg on A such that
- J
(1) C = {(xo,...,xj_l,Fc(xo,...,xj_l,xj+1,...,xk_l),xj+1,...

. k-1
cee X _1). (xo'""xj-l'xj+1""’xk-1)€A },

j .
(2) Fc(ao,...,ai_l,x,ai+1,...,aj_l,aj+1,...,ak_1) is a
permutation of A for all iek, 1i#j, and for all elements

ao"'"ai—l'ai+1’""aj-l'aj+1""ak—1€A' and

(3) the identities
i J
rc(xo""'xi-l’xi+1""'xj-l’rc(xo’""xi-l’xi’xi+1’""xj—l'

xj+1,...,x _1),xj+1,...,xk_1) = x4

hold for arbitrary distinct indices 1i,jek.

Proof. The equivalence (i)e(ii) and the implication
(iii)»(ii) are obvious, so assume (ii) holds for C. By symme-
try it suffices to prove (1), (2) for Jj=k-1. Since the

projection mapping € — pry_,C = Ak-l is bijective, there is
a uniquely determined operation Fg-l satisfying (1) (for

j=k-1). Also, for arbitrary index ie(k-1) and for arbitrary
fixed elements ao'""ai-l’ai+1""’ak-2€A the mapping

Clagre-er@y_1/X85 100003 _o0Y) — A, (X,y) —Y
is bijective. Here
C(ao,...,ai_l,x,ai+1,...,ak_z,y)=

k-1
= {(x,l“c (ao,...,ai_l,x,a ..,ak_z)): XeA},

i+1’-
k-1
p ERRRLTERTE L FURPRER
is a permutation of A. This proves (2).

implying that the unary operation T (a

...,ak_z)
To show (3) let, say, i<j, and consider the permutations
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_ i
n(x) = Fc(ao,...,ai_l,ai+1,...,aj_l,x,aj+l,...,ak_1),
= rJ
o (x) Fc(ao,...,ai_l,y,ai+1,...,aj_l,aj+1,...,ak_l).
Clearly,
C(ao,...,ai_l,y,ai+1,...,aj_l,x,aj+1,...,ak_l) =

= {(n(x),x):xeA} = {(y,o(y)):yeA}.

Thus n and o are inverses of each other, proving the equality
in (3) for
(x

. P X

0f rXioarXiparo e XXy g i Xy y)

= (ao""'ai—l'ai+1’""aj-l’aj+1""’ak—1)’

The latter is an arbitrary (k-2)-tuple, hence (3) follows.

Definition. Let A be a finite algebra. For k22 a k-auto-
morphism (or, if k is clear from the context, a multi-auto-

k

morphism) of A is a subuniverse C of A satisfying the

equivalent conditions of Lemma 7.

Note that the 2-automorphisms of A are just the automor-
phisms of A. Further, the quaternary relation Qﬁ occuring in
the definition of an affine algebra A is a 4-automorphism of
A.

Lemma 8, Let B be a subuniverse of A", 1f pr;B  is a
multi-automorphism of A for some Ism, |I|z2, then there
exists iem such that |B|=|prm_{i}8|.

Proof. For simplicity, assume I=k, 2sksm. Then

B — prm_{o}B, (xo’xl'""xk-l'xk""'xm-l) - (xl,...

""xk-l'xk""'xm-l)
is bijective, since the component X, of B is uniquely deter-
mined by Xi,... /X, ;.
Lemma 9, Let A be a finite algebra, and let mz2. Assume

that every subuniverse of Am-l

has cardinality a power of
|A|. If B is a subuniverse of A" whose cardinality is not
a power of |[A|, then

(4) Pry_(i;B = A"l for all iem.

Proof. Note first that for every 1l<m, every subuniverse
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¢ of Al has cardinality a power of [A|, since A™ 1 "lic is
a subuniverse of A™ ! and its cardinality |A]m_1_1|c| is a
power of |A|. In particular, the only subuniverses of A

are A and singletons (if any).
We prove that prIB=A|I| for all proper subsets I of m.

First let, say, I={i}. If pr{i}B is distinct from A, then
it is a singleton, implying that
B = (pr{i}B)x(prm_{i}B).

By assumption both factors have cardinality a power of |[Af,
hence so is B, a contradiction. Thus pr{i}B=A for all iem.

Suppose our claim is false and let, say, k be a minimal
proper subset of m such that prkB#Ak. By the foregoing
observation we have kz2. So by the minimality of X,
prk__{i}B=Ak_1 for all iek. Since  k<m, the subunivifie
pr,B has cardinality a power of |A|. Thus |pry B|=|A| '
whence pr B is a k~automorphism of A. By Lemma 8 we
conclude that |B|=|prm_{j}B| for some  jem. However, by
assumption the right hand side is a power of |A|, while the
left hand side is not. This contradiction completes the proof.

Lemma 10. Let A be a finite algebra having a trivial

subalgebra {0}, and assume that for some mz3 every subu-

niverse of A®™ ! nas cardinality a power of |A|. Let B be
a subuniverse of A™ such that |B] is not a power of |a|,
and let
B’ = B(xo,...,xm_z,O),
B = {(xo,...,xm_l)eAm : there is a yeA such that

(xm_z,xl,...,xm_3,y)eB and (xo,...,x _3,y,xm_1)eB}.
If B #A"1, then

(i) B’ is an (m-1)-automorphism of A;

(ii) B is a subuniverse of AT,

X I..m-2

B = {(x m_3l Bl

m
xm_l)eA : (xo,..., (xm_z,xl,...

...,xm_3),xm_l)eB},

AR

and we have

(xo,...,xm_z,O)eB if and only if x0=xm_2;
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(iii) the mapping
¢: B — B,

m-2
(xo,...,xm_l) - (xo,...,xm_3,FB, (xm-z'xl""'xm—s)’xm—l)
is bijective, and hence |B|=|B]|.

Proof. (i) By Lemma 9 (4) holds, and therefore

. _ =2 . _
(5) pr(m-l)-{i}B = A for all ie(m-1).

Since B’ is obviously a subuniverse of Am-l, |B’| is a power
m-2 (as B’ «aA™"1

(ii) It is straightforward to check that B is a subuni-

of [A|, implying |B’ |=|A] ). This proves (i).
verse of Am, and in view of (i), the equality for B holds. For

€A we have (Xg,...,x 0)eB if and only if

XoreeorXp o m=-2"

(x X 2 x x X .))eB’

0" "m=-3"B ‘"m-2'"1'"""'"m-3 ’

or equivalently,

0 -2

Xy = FB'(xl""'xm-B'r:’ (xm_z,xl,...,xm_a)).

However, by Lemma 7 the right hand side is P proving the
last claim in (ii). ’

(iii) Fixing Xoreser Xy arbitrarily, we know that

-2
> F:, (xm_z,xl,...,xm_3)

component is a permutation of A, hence ¢ is one-to-one. For

-3'%p-1

the mapping x of the remaining

m-2

arbitrary m-tuple (xo,...,xm-s,y,xm_l)ea there exists xm_zeA
_ -2
such that y = r:, (Xp_prXyrer-r¥y_3)s SO that  (Xg,«-e /Xy 4,

b4 X
m-2'"m-

1)eﬁ, proving that ¢ is onto.

Lemma 11, Let A be a finite algebra having a trivial
subalgebra {0}, and assume that for some mz3 every subuni-
verse of A®! has cardinality a power of |A|. If B is a sub-
universe of A™ whose cardinality is not a power of |A], then

: m-1 .
(1) B(xo,...,xi_l,o,xi+1,...,xm_1)=A for all iem, and
(ii) B is totally reflexive.

Proof. We use the notations of the previous lemma.

(i) By symmetry it suffices to show that B’ =aA""1, Suppose

B’ «aP"1 of A3.

Using (4), (5) one can easily see that

. Consider the subuniverse C=pr{o’m_2'm_1}B
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_ _ _ a2
Prig,13C = Prig,2)C = Pryy, ¢ = 2

Furthermore, by the property of B established in Lemma 10
(ii), (a,b,0)eC if and only if a=b. Thus C#A>. If  3=m-1,
then by the assumption on the subuniverses of Am_l we get that
|c|=|A|2,'and hence C is a 3-automorphism of A. Now it follows
from the bijectivity of ¢ in Lemma 10 (iii) that the
projection

B — prm_{o}B, (xo,xl,...,x _1) — (xl,...,xm_l)

is bijective. By Lemma 9 we have B = A", implying

Pr,_ (o}
|B|=|A|m-l, which contradicts the assumptions of the lemma.

It remains to settle the case m=3. Replacing B with B
(which is now equal to C) we may assume without 1loss of
generality that B(x,y,0)=A, in other words,

(6) (x,y,0)eB & x=y.

Then, clearly, B(O,x,y)*Az, which implies by Lemma 10 (i)
(with the components interchanged) that B(0,x,y) is a per-
mutation. Hence the subuniverse eq,,B of A% contains only
one pair with first component 0 (namely (0,0)), yielding that
erIBaAz. However, Ax{O}:eqolB, therefore by the assumption on
the subuniverses of Az we conclude that equality holds here,
that is,

(7)) - (x,%X,Y)€B o y=0.

Now let
R = {(x,y)eAZ; (c,d,x%),(c,d,y)eB for some c,deA}.

Clearly, R is a subuniverse of Az, ASR since pr{z}B = A, and

R#A2 since (0,y)eR holds only if y=0. Indeed, if (0,Y)€R,
then (c,d,0),(c,d,y)eB for some c,deA, hence applying (6)
and (7) we get c=d and y=0. Thus R=A, which means that the
projection

B — Pr(o'l}B: (x,¥,2) » (x,Y)

is bijective. By Lemma 9 we have = Az, yielding

P¥{0,1)"
|B|=|A|2, which contradicts the assumptions of the lemma. This
completes the proof of (i).
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(ii) Let i<jem. By (i) the subuniverse eqijB of A
contains every (m-1)-tuple with one component 0, whence
|A|m-2<|eqijB|S|A|m-1. The assumption on the cardinalities of

subuniverses of A" 1 yields that eqijB=Am'1. Hence B is
totally reflexive, as claimed.

Now we look at the subuniverses of AZ.

Lemma 12, Let A be a finite, strictly simple algebra
having at least one trivial subalgebra. If B is a subuniverse
of A2 such that pr{o}B =pr;,,B=a2a and |A|<|B|, then there
exists an element 0OeA such that {0} is a trivial subalgebra of

A and B(x,0) = A or B(0,x) = A.

Proof. Let U be the set of all elements ueA such that {u}
is a trivial subalgebra of A. For arbitrary wueU, B(x,u) and
B(u,x) are subuniverses of A, hence each of them is A or a
singleton contained in U. Assume that, in contrary to our
claim, B(x,u) and B(u,x) are singletons for all ueU. Then
Bn02 is a permutation of U. Hence

C = {(x,y)eAZ: (x,2),(y,z)eB for some 2zeA}

is a reflexive, symmetric subuniverse c. A% such that C(x,u)=
=C(u,x)={u} for all ueU. Further, C#A, since equality here

together with pr B=A would imply that B is a

{0)® = Pryy
permutation of A, contradicting |B|>|A|. Therefore the
transitive closure of C is a congruence of A distinct from A,
in which every element of U forms a singleton block. However,

this is impossible, as A is simple.

Lemma 13. Let A be a finite algebra such that every proper
subalgebra of A is trivial, and let {0} be a fixed trivial

2

subalgebra. If A has a subuniverse B such that pr{O}B =

= pr{l}B = A, |A|<|B|, B(x,0)={0}, then either some finite

power Ak of A has a totally reflexive, totally symmetric
subuniverse distinct from Ak and A (if k=2), or there exists
an element eeA-{0} such that B(x,e)=A.

Proof. For kz1 let Rk = {(xo,...,xk_l)eAk: there exists an

aeA with (xi,a)eB for all iek}. Clearly, R,=A and Ast as
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pr{o}B=A; moreover, R2$A since otherwise pr{o}B = pr{l}B = A
would imply that B is a permutation of A, contradicting |B|>
>|A].
Let |A|=n, A={ag,...,a,_;}. 1f Rn=An, then there exists
an element eeA such that (ai,e)eB for all ien, that is,
B(x,e)=A. Otherwise, let kz2 be the least integer such that
RktAk. Since Rk_1=Ak-1, therefore R, is totally reflexive.

Clearly, Ry is totally symmetric. Furthermore, it is easily

seen to be a subuniverse of Ak. As we have seen before, R2¢A,
so the proof is complete.

Lemma 14. Let A be a finite, strictly simple algebra
having at least one trivial subalgebra, and let U be the set
of all elements ueA such that {u} is a trivial subalgebra of
A. Assume no finite power Ak (kz2) of A has a totally
reflexive, totally symmetric subuniverse distinct from Ak and
A (if k=2). '

(i) If B is a non-reflexive subuniverse of a2

such that
pr{o}B = pr{l}B = A and |A|<|B|, then B is a U-cross.

(ii) If B is a reflexive subuniverse of A2 witn |a]<|B|<
<|A|2, then its transitive closure is a bounded partial order
on A such that every element of U is a bound.

Proof. (i) By Lemma 12, there exists an element 0eU such
that, say, B(0,x)=A. Since B is not reflexive, the subuniverse
eq01B of A is a singleton, namely {0}, as (0,0)eB. Thus
B(x,0)2{0}. Supposing equality holds here we would get from
Lemma 13 that there exists an element eeA with B(x,e)=A. Then
(e,e)eB, implying e=0, whence B(x,0)=A.

Thus XOSB. For arbitrary element ueU-{0}, the subuni-
verses B(u,x) and B(x,u) of A contain 0 and do not contain
u, hence B(u,x)=B(x,u)={0}. Therefore the relation =B-xo
is contained in (A-U)z. Since eq018={0}, Y is irreflexive on
A-U. Thus B is a U-cross.

(ii) Again by Lemma 12, there exists an element 0eU such
that, say, B(0,x)=A. Since BAB™! is a reflexive, symmetric
subuniverse of Az, we have BnB-1=A, that is, B is antisymmet-
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ric. Hence B(x,0)={0}. Let B be the transitive closure of B.

It is easy to check that B is a subuniverse of Az, Bsg, and

ﬁ(o,x)=A, é(x,0)={0}. By the same reason as above, ﬁ is anti-
symmetric. Thus B is a partial order with 1least element 0.
Applying Lemma 13 for ﬁ we get that it has a greatest element
e as well. If there existed an element ueU such that u=z0,e
then g(x,u) would be a proper, nontrivial subuniverse of A,
as it contains 0, u, and fails to contain e. This completes

the proof.

Lemma 15. Let A be a finite, strictly simple algebra
having at least one trivial subalgebra, and let U be the set
of all elements ueA such that {u} is a trivial subalgebra of
A. Assume some finite power Al (mz2) of A contains a totally
reflexive, totally symmetric subuniverse distinct from A" and
A (if m=2). If m is chosen minimal with this property and B is
a totally reflexive, totally symmetric subuniverse of A"
distinct from A™ and A (if m=2), then B is U-central.

Proof. For arbitrary ueU, B(xo,...,x _z,u)= is a totally

reflexive, totally symmetric subuniverse of Am L1 m=2, then

Lemma 12 combined with the symmetry of B implies X,sB for
some 0eU. Thus B(xo,u)=A is obvious if u=0, and in view of
O,ueB(xo,u) it follows also if u=x0. If mz3, then the mini-

m-1

mality of m yields that B(xo,..., _z,u)=A . Hence in

X
m
either case B is central and u belongs to the centre of B.

Thus B is U=-central.

Now we are in a position to conclude the proof of
Theorem 1. Let A be a finite strictly simple algebra having at
least one trivial subalgebra , and let U be the set of all
elements u of A for which {u} is a trivial subalgebra of A. If
each subuniverse of each finite power of A has cardinality a
power of A, then, by a result of R.W. Quackenbush (9] A
generates a congruence permutable variety, and hence by a
theorem of R. McKenzie [6] (cf. also ([13], ({2]) one of
conditions (a), (b) holds for A. If some finite power Al (mz2)
of A contains a totally reflexive, totally symmetric
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subuniverse distinct from A" and A (if m=2), then by Lemma 15,
(c) holds for A. So assume no finite power Ak (kz2) of A has a
totally reflexive, totally symmetric subuniverse distinct from
Ak and A (if k=2), and some power A" of A has a subuniverse B
with |B| not a power of |A|. Suppose m is chosen minimal with
respect to the existence of such B. We have mz2, as A has no
nontrivial proper subalgebras. Were mz3, we would get from
Lemma 11 (ii) that B is totally reflexive, and hence the
subuniverse n(B": nesn) of A" is totally reflexive and
totally symmetric, which is impossible. Thus m=2. Now by
Lemma 9 the hypotheses of Lemma 14 (i) or (ii) are satisfied.
Hence applying the lemma, and in case (i) taking BnB-l, we
see that (d) or (e) holds for A.

Remark. Observe that the role of Lemma 13, where we made
essential use of the finiteness of A, is restricted merely to
the proof of Lemma 14. However, if |U|z2, then both of the
claims (i), (ii) in Lemma 14 can be proved directly, without
any assumption on the totally reflexive, totally symmetric
subuniverses of finite powers of A. (It suffices to 1look at
the subuniverses B(x,u), B(u,x) (ueU) of A).

Apart from this, finiteness is apparently crucial through-
out the section because of the arguments using the cardinali-
ties of subuniverses of finite powers of A. However, applying
multi-automorphisms, one can modify these arguments so that
they work for infinite algebras as well. Namely, for not
necessarily finite algebras, multiautomorphisms can be defined
by the equivalent conditions (ii) and (iii) in Lemma 7.
Lemmas 9-10, 12, 14 (for |U|22) go through, with occasional
slight changes in the proofs, for all algebras having no non-
trivial proper subalgebras, if one takes for m the least
positive integer for which A" has a subuniverse B such that

(*) B¢Am, pr{i}B=A for all iem, and prIB is not a multi-
-automorphism of A for any subset Ism, |I|z2.

For Lemma 11 we have to assume, in addition, that none of the

projection mappings B — prm_{i}B = Am_l, iem, is bijective.

The following claim shows that should this fail for the B we
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started with, we can always replace it with another
subuniverse of A" having the required property.

Claim., Let B be a subuniverse of A" (mz2) such that

prm-{i}B = a"?! for al1 iem, and the projection mapping B —

-— pr(m_l)B = A"l g bijective, while the projection mapping

B — pry_ o8 = A™1 js not bijective. Then for the sub-

universe

* , m .
B = {(xo,xo,xl,...,xm_z)eA : there is a yeA such that

(xolxll . lxm_2IY) r (xlolxll 0. Ixm_zly)EB}

* m-1

of Am, none of the projection mappings B*—a PT = A '

. o aia e *_ .m m-(1)”
iem, is bijective, and B =A".

Lemma 8 becomes superfluous, and Lemma 15 remains valid
without change. Finally, if no finite power A™ of A has a sub-
universe B satisfying (*), then, instead of Quackenbush’s
theorem (9], one can apply the results of [14] on locally
paraprimal algebras, and hence conclude that A is either
locally quasiprimal, or locally affine.

In this manner, if |U|z2, then Theorem 1 can be extended

to infinite algebras as well.

3. Proofs of the corollaries

(A) First we prove that every proper subclone of CU is

contained in P, or equivalently, for every algebra A with
CloAcCU,

for at least one of the relations B in (I)-(VII). So assume A

B
B is a subuniverse of the corresponding power of A,

is an algebra such that CloAcC If A has a proper subalgebra

distinct from the singletons {u?, ueU, then its universe B
clearly satisfies (I). If A is not simple, say B is nontrivial
congruence of A, then either (II) holds for B, or for some
ueU, the block B(x,u) of B containing u is a subuniverse of A
as described in (I).

From now on we assume that A is strictly simple and the
trivial subalgebras of A are exactly {u}, ueU. So we can apply
Theorem 1. If (a) holds, then A has a nontrivial automorphism

(as it has no nontrivial proper subalgebras), and hence it has
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an automorphism o of prime order. Clearly, ¢ carries trivial
subalgebras into trivial subalgebras, hence U is invariant
under o. Furthermore, since the fixed points of o form a
subalgebra in A, it follows that o has at most one fixed
point, and the fixed point (if any) belongs to U. Thus ¢ is as
described in (III).

Now suppose (b) holds for A. It is well known that for an
affine algebra A and for arbitrary element 0OeA there exists an
(unique) Abelian group A with neutral element 0 such that A is
affine with respect to A, namely, the operation + of A is
defined by x+y=p(x,0,y) where p is the unique term operation
of A satisfying Mal’tsev’s identities P(X,Y.Y)=P(Y,Y.X).
Therefore there is no loss of generality in assuming that A is
affine with respect to an elementary Abelian p-group (p prime)
ﬁ=(A;+,0) such that 0eU. Since {0} is a subalgebra of A, A is
a reduct of the module (EndA)
operation of A is of the form

Hence every fundamental

rix; (rieEnd A, iem).

lem
Now it is easy to verify that U is a subgroup of A Further,

if |U|>1 and wueU-{0}, then the mapping A — A, X - X+u
is an automorphism of A satisfying the requirements in (III).
If U={0} and p>2, then selecting an integer c>1 that is of
prime order modulo p, we get that the mapping A — A, X 3 Ccx
is an automorphism of A satisfying the requirements in (III).
In the remaining case U={0}, p=2, the subuniverse

Q.(x,0,y,2) of A3 is as described in (IV).
A

Finally, if (c¢), (d), or (e) holds for A, then we have
nothing to prove: the same relations are listed in V), (vVI),
(VII), respectively.

It is easy to see that for every relation B in (I)-(VII),
C..nP is a proper subclone in C

U "B
in C

y+ To prove their maximality

U it suffices now to verify that there are no proper
inclusions between any two of them. In fact, the argument
shows also that equality can hold only in the "obvious" cases,

namely when either both relations are of type (III) and are
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powers of each other, or both relations are of type (VI) and
are inverses of each other.

So let B, B’ be two distinct relations in (I)-(VII). We
intend to prove that, except for the cases just mentioned,

(8) Cy"Pg 4 CynP

Consider the algebras A = A; CynP

B °
B) and A’ = (A;CUnPB,.

First let B be as descrlbed in (I) or (III). Then A is
quasiprimal, and (8) holds for every B’ which is not of type
(I) or (III). So assume B’, too, is as described in (I) or
(IITI), and hence A’ is also quasiprimal. Observe that in case
(I) the algebras have no nontrivial automorphisms, and the
proper subalgebras are exactly B [resp. B‘] and {u}, ueU; in
case (III) the automorphisms are exactly the powers of B
[resp. B’ ], and the algebras have no proper subalgebras other
than {u}, ueU. Thus (8) holds unless B, B’ are both of type
(ITII) and are powers of each other.

Now let B be of type (IV). Then A is term equivalent to
the module (End 3)3, hence A is simple Aand has no proper
subalgebras other than {0}. Moreover, as A is a 2-group, A has
no nontrivial automorphisms. This impl es (8) wunless B’ is
also of type (IV). In that case (8) follows by checking that
the term operation + of A does not preserve B’ if B’ #B.

The remaining cases can be handled in a uniform way. We
illustrate the method on the case when B is of type (VII). So
let B be a U-cross such that XOSB, 0eU. We consider nxt
matrices M with entries in A such that
(9) the rows are pairwise distinct, and none

of the vectors (u,...,u),uelU, occurs among the rows.

The rows of M will be denoted by Mi, ien. If (9) holds for M,
then for arbitrary n-tuple a=(a°,...,an_1), we can define a
t-ary operation on A as follows:

a; if(xo,...,x

(x reee Xy 1)= u if (xo,...,x

t_1)=M1 for some ien,
IM,a £-1)=(4,...,u) for some ueU,
0 otherwvise.

It is easy to see that if
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(10) (ai,aj)eB whenever (Mi,Mj)eBt, i,jen, i=#j,

then -fM,aECUAPB' (For t-tuples v,weAt, (v,w)eBt denotes that
v and w are componentwise in relation B).

Now let B’ be one of the relations in (I)-(VII) distinct
from B, say B’ is n-ary, and select a matrix M such that the
set of columns of M is exactly B’. Clearly, (9) and (10) are

now equivalent to requiring that

(9')n pr(i’j)B’¢A for all i,jen, i=j,
pr{i}B’¢{u} for all ien, ueU,

and

(10’)n (ai,aj)eB whenever pr B’ <B, i,jen, i=j,

(i,3)
respectively. Thus (9) holds, and (8) follows by verifying
that we can always select an n-tuple a¢B’ with (10), implying
fM,achan and fM,aépB"

A similar argument works also if B belongs to the families
(II), (V) or (VI). We note that if B is of type (VI), then the

existence of the required monotone operations such that

M, a
Iu (u,...,u) = u for ueU and
,a
gM,a(Mi) =a; for all i=0,...,n-1
follows from the fact that the rows of the matrices M corre-
sponding to the relations B’ in (I)-(VII) are pairwise
incomparable under B (componentwise) unless B‘’, too, 1is of

type (VI) and B’sB. The details are left to the reader.

(B) The necessity in Corollary 3 is obvious. For the suf-
ficiency we apply Theorem 1. Let A be a strictly simple
algebra such that the trivial subalgebras are exactly {u},ueU,
and A does not generate a congruence permutable variety. By
Theorem 1 one of conditions (c)-(e) holds for A. If, in
addition, A is surjective, then we can apply the following
well-known and easy lemma (cf. [11], [12]).

Lemma 16. Let A be a finite surjective algebra. If B is a
subuniverse of Ak (kz2), then for arbitrary 1 (1=1l=n-1),

1l
(B)l= {(xo,...,xl_l)eA : (xo,...,xk_l)eB for all xl,...,xk_leA}
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is a subuniverse of Al provided it is not empty.

Thus, if B is a U-central subuniverse of Ak, then (B)l’
the centre of B, is a proper subuniverse of A containing U.
Hence U is the centre of B and |[U|=1. Now (B), is a U-central
subuniverse of A2 with the same centre as B. If B is a bounded
partial order, then (B)1 and (B-l)1 are the two singletons
containing the bounds, hence |U|=2. This completes the proof

of Corollary 3.

For the proof of Proposition 4 we slightly modify the
construction used at the end of the proof of Corollary 2.
First let B be a U-cross with XOSB, 0eU, or a binary U-
-central relation with centre U={0}. Let B’ be a binary
relation on A satisfying (9')2. We show that for n=max(|A|,3)+
+2 and for some tz|B’|, there exists an nxt matrix M such
that the set of columns of the submatrix of M consisting of

the first two rows equals B’, and
(11) (ni,nj)m‘ for all i,jen, i#j, {i,j}#{0,1}.

By the assumption on B’ there exist (b,b’"),(c,c’)eB’ such
that b#0, c’#0. Hence there exist elements d,d’eA such that
d=b, d’#c’ and one of the pairs (b,b), (d,b) and one of the
pairs (¢’ ,c’) (&' ,c¢’) fails to belong to B. Thus any matrix
M whose first 2(n-2) columns are as shown below, and is such
that the columns of the submatrix consisting of the first two
rows equals B’, otherwise arbitrary, satisfies the require-
ments.

(b b b ... b b b b ... b - .. )
c c ¢ ... € c c N - R .
d b b ... b a ¢ ¢ ... ¢
b 4a b ... b ¢ & ¢ ... c
b b b ... 4 ¢ ¢ c ... & ‘
In view of (11), for arbitrary n-tuple a=(ao,...,an_1) with
(ao,al)eB provided B’<B, the operation fM a belongs to

’
C,.nP_,. Hence to each B’ satisfying (9’ and distinct from B

u"Fp ),
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and Az, there exists a surjective operation fM a such that
!
fM,achnPB and fM,aépB" Thus the algebra A whose operations
are these fH a while B’ runs over
1,
(i) all binary relations SxA with 1s|S|<|A|, S#{u}

for all ueU,

(ii) all nontrivial equivalencies on A, and

(iii) all relations in (a)-(7) distinct from B,
has the properties stated in the proposition.

A similar idea works also if B is a bounded partial order
with bounds 0, 1. Now the last n rows of M are to be
constructed so that they be incomparable (by the componentwise
order) to the first two rows and to one another as well. They
can always be chosen so that they consist of 0’s and 1’s. The

role of fM a is to be taken by monotone operations 9. a
’ ’
such that
gM,a(ol"'lo)=ol gM,a(ll"’ll)=ll
and
gM,a(Mi)=ai for all 1i=0,...,n-1.
It can be shown that such a Iv. a exists if for the n-tuple
?
a=(ao,...,an_1) we have (ao,al)eB provided B’sB, and

(ao,al)eB_1 provided B’ <B~l. The details are left to the

reader.
To see the claim in the first remark, observe that for B a
U-cross with X_.<B, 0€U, or a binary U-central relation with

0

centre U={0}, Cy"Pg contains a majority operation, e.g. the

one defined below:

x 1if x=y or x=z,

n(x,y,z) = y if y=z

0 otherwise.
Adding this operation to A, we get an algebra A’, which
inherits properties (i)-(iii) in Proposition 4, and has a
majority operation as well. Hence by a theorem of K.A. Baker
and A.F. Pixley [1] A’ is term equivalent to (A;CUnPB).

(C) The only nontrivial statement in Proposition 5 is
that the algebra A=(A;CUnPB) is functionally complete.



172 . A. Szendrei

However, as we have seen in part (B), A has a majority

operation, and the only reflexive subuniverses of A% are A and

Az. Thus it follows from the theorem of K.A. Baker and
A.F. Pixley [1] that A is functionally complete.

In Corollary 6 the necessity is obvious, while the suffi-
ciency follows from Theorem i by observing that conditions

{b)-(d) cannot hold for a functionally complete algebra.
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