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A CLASSIFICATION OF STRICTLY SIMPLE ALGEBRAS 
WITH TRIVIAL SUBALGEBRAS 

An algebra A is called strictly simple if A is simple 
and every proper subalgebra of A is trivial (i.e. one-
-element). Since each locally finite minimal variety is 
generated by a finite strictly simple algebra, it is hoped 
that they will be better understood by studying the structure 
of strictly simple algebras (cf. Problem 10 in [3]). In [16] 
and [17] we investigated finite simple algebras without proper 
subalgebras, and determined them, up to term equivalence, when 
all fundamental operations are surjective. The proof is based 
on a strong version of Rosenberg's primal algebra characteri-
zation theorem [10]. 

This paper starts the study of finite strictly simple 
algebras having trivial subalgebras with the analogue of the 
main result of [16]. We present a classification determining 
the maximal clones of all those finite strictly simple alge-
bras with trivial subalgebras which do not generate a congru-
ence permutable variety (Theorem 1; cf. also Corollary 2). The 
proof does not make use of (major parts of) the proof of 
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Rosenberg's theorem. In fact, it is much simpler than the 

latter, which is shown also by the fact that, with some 

modifications, the proof given here works for infinite 

algebras (and local term operations replacing term operations) 

as well, provided they have at least two trivial subalgebras. 

As a consequence of Theorem 1, we get for every finite set 

A and for every nonvoid subset U of A the full list of maximal 

subclones of the clone consisting of all operations f on A 

with f(u,...,u)=u for all ueU (Corollary 2). We note that 

the special case |U|=1 was proved earlier by D. Lau [5], and 

the case U=A was also known before (see [15]). Further, we 

apply Theorem 1 to get a necessary and sufficient condition 

for a finite strictly simple algebra A having at least one 

trivial subalgebra and such that the fundamental operations of 

A are surjective to generate a congruence permutable variety 

(Corollary 3), and for a functionally complete algebra A wiòa 

at least one trivial subalgebra to be guasiprimal (Corollary 

6). It turns out that in both cases the condition involves 
2 

only subalgebras of A . 

1. Main results 

We adopt the convention that algebras are denoted by 

boldface capitals and their universes by the corresponding 

letters in italics. Two algebras are called term equivalent 

[polynomially equivalent], if they have the same clone of term 

[polynomial] operations. The clone of term operations of an 

algebra A is denoted by Clo A. For a set A and for k ü , the 
ν 

nonvoid subsets of A will also be called k-ary relations (on 

A), and for an algebra A the universes of subalgebras of A 

will be called subuniverses of A. (Hence a subuniverse is 

always nonempty). 

Recall that a finite algebra A is called quasiprimal if 

every operation on A preserving the internal isomorphisms 

(i.e. isomorphisms between subalgebras) of A is a term 

operation of A. The concept as well as the following 

characterization of quasiprimal algebras is due to A.F. Pixley 
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[7], [8]. 
A finite algebra λ is quasiprimal if and only if the 

ternary discriminator 

t(x,y,z) = jz i f 

x̂ otherwise 
on A is a term operation of A. 

An algebra A is said to be affine vith respect to an A A 

Abeli an group A if A and A have the same universe, the quater-
nary relation 4 Qa = {(a,b,c,d)eA : a-b+c=d} A 

4 is a subuniverse of A , and x-y+z is a term operation of A. 
A The algebras that are affine with respect to A are well known 

A A to be related to the module (En<| i*e· A considered as a 
A module over its endomorphism ring End A. 

A 

An algebra A is affine with respect to an Abelian group A 
on its universe if and only if A is polynomially equivalent to A A a module RA for some subring R of End A. 

A k-ary relation Β on A is called totally reflexive if it 
k 

contains each k-tuple from A whose components are not 
pairwise distinct. Further, Β is called totally symmetric if 
it is closed under permuting the components. (As a rule, "to-
tally" is omitted if k=2). A totally reflexive, totally k k symmetric relation BSA is called central if B*A and 
there exists a ceA such that (c, a1#..., a^^) eB for all 
a^,...,ajt_1eA. The set of all such elements c is called the 
centre of B. Observe that every unary relation is totally 
reflexive and symmetric, hence the unary central relations are 
exactly the nonvoid proper subsets of A. For a fixed subset U 
of A, a central relation will be called U-central if U is 
contained in its centre. 

For an element aeA we set 
Xa = (Ax{a})u({a}xA). 

As usual, a binary relation on A is called irreflexive, if 
none of the pairs (a,a), aeA, belongs to it. For a fixed 
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subset U of A, the binary relations of the form 
XuuY with ueU and Y an irreflexive binary relation on A-U 
will be called U-crosses on A. 

The principal result of the paper is the following 
theorem. 

Theorem 1. Let λ be a finite strictly simple algebra 
having at least one trivial subalgebra, and let U be the set 
of all elements u of A for which {u} is a trivial subalgebra 
of A. Then one of the following conditions holds: 

(a) A is quasiprimal; 
(b) A is affine with respect to an elementary Abelian 

p-group (p prime); 
(c) there is a U-central relation among the subuniverses 
ν of A for some k&2; 
(d) there is a bounded partial order among the subuni-

2 
verses of A such that every element of U is a bound (conse-
quently |U|s2); 

(e) there is a symmetric U-cross among the subuniverses of 
A 2 . 

We present some applications. 

(A) Theorem 1 can be used to determine the maximal 
subclones of the clone Cy consisting of all operations f on A 
with f(u,...,u)=u for all ueU. For a k-ary relation Β and 
an operation f on A, f is said to preserve Β if Β is a subuni-

k 
verse of the algebra (A;f) . The operations preserving a fixed 
relation Β form a clone, which will be denoted by Ρβ. 

Corollary 2. Let A be a finite set and U a nonvoid subset 
of A. The maximal subclones of Cy are exactly the clones 
CTInP_ where Β is one of the following relations. U D 

(I) Β is a nonempty proper subset of A distinct from the 
singletons {u}, ueU; 

(II) Β is a nontrivial equivalence relation on A such 
that {u} is a singleton block of Β for all U€U; 

(III) Β is a permutation of A of prime order such that U 
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is invariant under Β, Β has at most one fixed point in U and 
no fixed point in A-U; 

(IV) Β = {(a,b,a+b); a,beA} for an elementary Abelian 
A 

2-group A = (A;+,0), and U = {0}; 
(V) Β is a k-ary U-central relation (k*2)! 
(VI) Β is a bounded partial order such that every element 

of U is a bound (consequently |U|*2); 
(VII) Β is a symmetric U-cross. 
The case |U|=1 was proved earlier by D. Lau [5], while 

the case U=A (when Cy=CA is the clone of all idempotent 
operations on A) was solved independently by several 
participants of the Séminaire de Mathématiques Supérieures on 
"Universal algebra and relations" (Montreal, 1984) , among 
others R.W. Quackenbush and the author. In [15] the result is 
derived from a more general theorem on idempotent algebras. An 
interesting feature of this proof is that it works for 
infinite base sets as well, thus yielding a description for 
the so-called maximal locally closed subclones of C^. Keeping 
this in mind, we give a proof for Theorem 1 (and hence for 
Corollary 2) which can be modified with some effort to yield 
the infinite analogues as well, provided |U|a2 (see the Re-
mark at the end of Section 2). 

(B) We call an algebra surjective if all its fundamental 
operations are surjective. For example, every strictly simple 
groupoid (or, more generally, every strictly simple algebra 
with a single fundamental operation) is surjective, unless its 
operation is constant. 

Corollary 3. Let λ be a finite, surjective, strictly sim-
ple algebra having at least one trivial subalgebra, and let U 
be the set of all elements u of A for which {u} is a trivial 
subalgebra of A. Then A generates a congruence permutable 
variety if and only if none of the following relations Β 

2 
occurs among the subuniverses of A : 

(α) Β is a U-cross; 
(β) Β is a binary U-central relation with centre U, |U|=1; 
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(y) Β is a bounded partial order such that U is the 2-
-element set consisting of the bounds. 

This shows that for an algebra λ satisfying the 
assumptions of Corollary 3, λ generates a congruence permuta-2 ble variety if and only if A has no subuniverse Β with |A|< 

2 
<|B|<|A| . We note that none of the relations (a)-(r) can be 
omitted in Corollary 3, as is shown by the following 
proposition. 

Proposition 4. Let λ be a finite set and U a nonvoid 
subset of A. For each of the binary relations Β in (a)-(y), 
there exists an algebra λ of finite type such that 

(i) A is strictly simple and the trivial subalgebras of 
A are exactly the singletons {u}, ueU; 

(ii) A is surjective; and 
(iii) Δ and Β (and in case (r) also B-1) are the only sub-2 

universes of A that are not direct products of subuniverses 
of A . 

Remarles. 1. If Β is of type (a) or (β) , then the algebra A 
satisfying the requirements of Proposition 4 can be chosen to 
be term equivalent to (A/C^Pp) . 

2. If Β is of type (r), then the analogous claim is not 
true in general. In fact, if |A|=8 and Β is the partial 
order 

then G. Tardos's proof [18] for the fact that Ρβ is not 
finitely generated yields also that j^Pg is not 
finitely generated; hence (A/'C^Pg) is not term equivalent 
to any algebra of finite type. 

(C) Recall that an algebra A is said to be functionally 
complete if it is finite and every operation on A is a polyno-
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miai operation of A. Recently K. Kaarli [4] proved that every 
functionally complete algebra having no proper subalgebras is 
quasiprimal. If the algebra has trivial subalgebras, then the 
conclusion is no longer true; namely we have the following 

Proposition 5. Let λ be a finite set and U a nonvoid 
subset of A. For an arbitrary U-cross Β on A, A= (A;CITr>P_) is U D 

functionally complete algebra whose subalgebras are exactly 
the singletons {u>,ueU, and A is not quasiprimal. 

It follows from Theorem 1 that every nonquasiprimal, 
functionally complete algebra having trivial subalgebras is a 
reduct of these algebras. 

Corollary 6. Let A be a functionally complete algebra 
having no nontrivial proper subalgebras. Assume A has a 
trivial subalgebra, and let U be the set of all elements u of 
A for which {u} is a trivial subalgebra of A. Then A is Quasi-
primal if and only if there is no symmetric U-cross among the 

2 subuniverses of A . 

In a forthcoming paper we will apply Theorem 1 to the 
investigation of strictly simple Abelian algebras (i.e. 
strictly simple algebras satisfying the Term Condition). 

2. Proof of Theorem 1 
The cardinality of a set A is denoted by |A|. For 

convenience we identify every natural number η with the set 
n={0,...,n-l}. The full symmetric group on η is denoted by Sn· 

We introduce some operators on relations that will be 
needed in the sequel. For B£An and for iQ, . .., i^^en, 

pr,. . .Β = {(χ. ,...,x. ): (x,...,x )eB} 
' o'* *'' k-1 0 k-1 0 n 1 

is the projection of Β onto its components i Q , . . . , I n 
particular, if I = {iQ,...,ik_1> is a subset of η with 
i <...<i. then we write prT Β instead of pr.. . B. υ κ—1 ί ( , . .., ) 

Furthermore, for any neS , we set Β π = pr.Λ . ,, ,B, ' •* η' ^ (Ott, . . . , (n-1) π) ' 
i.e. B71 arises from Β by permuting its components according to 
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π. In particular, if n=2 and π is the transposition, then we 
write B - 1 instead of Bn. 

For B£An and for an equivalence relation c on n, we set 

Bc = { ( x0 Xn-1 ) 6 B : xi = xj w h e n e v e r (i,j)€C}. 
Let I e denote the subset of η consisting of the least elements 
of the blocks of c, and put 

eqcB = prT Bc 
c 

In the subscript, instead of c, it will often be more 
convenient to write the list of nonsingleton blocks of c; e.g. 

e q01 B = { ( X0 , X1'··· , Xn-2 ) € A n _ 1 : ( X0' X0' X1'··· , Xn-2 ) e B }' 

For B£An, lsKn, and a^,...,a^^eA, we define the 1-ary 
relation arising from Β by "fixing the jth component at a^ for 
j=l,...,n-l" as follows: 

B(Xg'"'',xl-i'al'"*"'a
n_i)= 

= { ( X q , . . · , € A : ( X Q , . . . , , a ^ , . . . , ) e B } . 

It is straightforward to check that if for some algebra A, 
Β is a subuniverse of A n , then the relations pr.j. Β, Βε, eqe Β 
described above are also subuniverses of the corresponding 
powers of A , provided they are nonempty. If, in addition, {a^} 
(lsjün-l) are singleton subalgebras of A, then B(xQ,... 

.. . ,x1_1,a^, ... ,a n - 1) is a subuniverse of Â ", provided it is 
nonempty. 

With the foregoing notations, an n-ary relation Β on A is 
totally reflexive if and only if e(Iij Β = A n 1 for all i,jem, 
i<j, and totally symmetric if and only if Βπ£Β for all 
TieS . An n-ary relation Β will be called reflexive if η 
eq„ , Β = A. It will be convenient to consider the o...η—ι 
permutations σ of A as binary relations {(χ,χσ): xeA}, and 
conversely, to call every relation of this form a permutation. 
The identity permutation, considered as a binary relation 2 
(i.e. the diagonal of A ) will be denoted by Δ. 

In what follows, we will need a concept generalizing the 
automorphisms of algebras. Before the definition we prove a 



Strictly simple algebras 157 

lemma. 
Lemma 7. Let A be a finite set. For a k-ary relation C on 

A (ks2), the following conditions are equivalent: 
(i) |C|=|A|k_1, and prk_{i}C = A k _ 1 for all iek; 
(ii) for all iek, the projection mapping of C omitting 

k-1 
the ith component is one-to-one and onto A ; 

(iii) for every jek there exists a (k-l)-ary operation 
Γ^ on A such that _ j (1) C — { ( X q < · · · · · · ' * j - i ' * j + x ' ' ' ' , x j + l ' 1 ' ' 

k-1 • · · » · (Xq t ' ' · > * j—ι » * j+i ' ' ' ' ' *k—1 ̂  } » 
(2) " " * 'ai—1 'X'ai+l' * " " ,aj—l'aj+l' * * * ' ak— a 

permutation of A for all iek, i*j, and for all elements 
a0'"""'ai-l'ai+l'*""'aj—l'aj+l'"* *ak-leA' 
(3) the identities 
rc*x0'""',xi-l'xi+l'""''xj-l'rc*xO'""",xi-l'xi'xi+l''"''xj-l' 

xj+l'·'',xk-l),xj+l''""'xk-l} = xi 
hold for arbitrary distinct indices i,jek. 

Proof. The equivalence (i)«(ii) and the implication 
(iii)=»(ii) are obvious, so assume (ii) holds for C. By symme-
try it suffices to prove (1), (2) for j=k-l. Since the 

k-1 . . . . projection mapping C —> Prk-ic = A 1 S b lj e c t l v e/ there is 
k-1 

a uniquely determined operation satisfying (1) (for 
j=k-l). Also, for arbitrary index ie(k-l) and for arbitrary 
fixed elements a Q , . . . . . . , a ^ _ 2 e A the mapping 

C(aQ,... ,ai_1,x,ai+1,... ,ak_2,y) —»A, (x,y) h-> y 
is bijective. Here 

c< a0 ai-l'X'ai+l'---'ak-2'y)= k-1 = { (Χ/Γζ, (ao' · · · ,ai-i'x,ai+i' ' ' ' ,ak-2^ ̂  : ' 
k-1 

implying that the unary operation T c (aQ,...,a^_1,x,a^+1,... 
•••»ajc-2^ a P e r m u t a ti°n of A. This proves (2). To show (3) let, say, i<j, and consider the permutations 
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- r
c(a

0f·'''ai-l'ai+l'''',aj-l'x,aj+l'·'',ak-l*' 
σ(χ) = r^,(a0, . . . « » ^ » Υ » 3 ^ ! » · · · 'aj-i'aj+i' · · · 'ak-l) ' 

Clearly, 

C(a0, ... · · · 'aj-i'x'aj+i' · · · 'ak-l* = 

= { (τι(χ) ,x) :x€A> = { (γ,σ(γ) ) :yeA} . 
Thus π and σ are Inverses of each other, proving the equality 
in (3) for 

( x q / · • · ' ' ' " " " ' x k — = 

= (aQ,... · · · 'aj-i'aj+i' · · · 'ak-l* * 
The latter is an arbitrary (k-2)-tuple, hence (3) follows. 

Definition. Let λ be a finite algebra. For k^2 a auto-
morph ism (or, if k is clear from the context, a multi-auto-

k 
morphism) of λ is a subuniverse C of λ satisfying the 
equivalent conditions of Lemma 7. 

Note that the 2-automorphisms of λ are just the automor-
phisms of λ. Further, the quaternary relation Q^ occuring in 
the definition of an affine algebra λ is a 4-automorphism of 
λ. 

Lemma 8. Let Β be a subuniverse of Am. If pr^B is a 
multi-automorphism of A for some ism, 11112, then there 
exists iem such that lBl=|Pr

n_{ijBl* 

Proof. For simplicity, assume I=k, 2sksm. Then 
Β —» prm_{0jB, (x0,xlf... fXjç.j/Xfcf · · · ' x

m_i) (Xjy··· 

•. · 'χκ_ΐ'χ]ζ' · · · 'xm-i^ 
is bijective, since the component x Q of Β is uniquely deter-
mined by x1,...,xk_1. 

Lemma 9. Let A be a finite algebra, and let mt2. Assume 
that every subuniverse of A® - 1 has cardinality a power of 
IAI. If Β is a subuniverse of A m whose cardinality is not 
a power of |A|, then 
(4) Prm-{i}B = aB,~1 f o r a 1 1 i*®· 

Proof. Note first that for every l<m, every subuniverse 
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C of A^ has cardinality a power of |A|, since A m ^ 1xC is 
a subuniverse of A m 1 and its cardinality |A|m ^ 1|C| is a 
power of |A|. In particular, the only subuniverses of A 
are A and singletons (if any). 

We prove that prIB=AlIl for all proper subsets I of m. 
First let, say, I={i>. If pr^^B is distinct from A, then 
it is a singleton, implying that 

Β = (ρΓ{.}Β)χ(ρΓιη_{.}Β). 
By assumption both factors have cardinality a power of |A j, 
hence so is B, a contradiction. Thus pr^^B=A for all iem. 

Suppose our claim is false and let, say, k be a minimal ν proper subset of m such that pr^B^A . By the foregoing 
observation we have k^2. So by the minimality of k, 

k-1 prv . B=A for all lek. Since k<m, the subuniverse 
^ k-1 pr^B has cardinality a power of |A|. Thus |prkB|=|A| , 

whence pr^B is a k-automorphism of A. By Lemma 8 we 
conclude that | B | = | p r m _ ^ j f o r some jem. However, by 
assumption the right hand side is a power of |A|, while the 
left hand side is not. This contradiction completes the proof. 

Lemma 10. Let A be a finite algebra having a trivial 
subalgebra {0}, and assume that for some ma3 every subu-
niverse of A m 1 has cardinality a power of |A|. Let Β be 
a subuniverse of A m such that |B| is not a power of |A|, 
and let 

B' = B(x0,...,xm_2,0), 

Β = { (xQ,.. . ,x¡n_1) eAm : there is a yeA such that 
(^-2' χ1'···' χ

Μ-3' γ ) ε Β' a n d <x0'---'xm-3'y'xm-l)6B}· 
If B'*A m - 1, then 

(i) B' is an (m-1)-automorphism of A; 
(ii) Β is a subuniverse of Am, 

B = { (Xq, · . . ' x
m _ 1 ) e A : (χο' · · · 'xm-3'rB' ( Xm-2' X1'"' 

•••'xm-3>'xm-l>eB}' 
and we have 

(xQ,...,xm_2,0)eB if and only if x 0=x m_ 2; 
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(iii) the mapping 
φ: Β —> Β, 

m-2 
(χ

0,·.·'X
m_x) *-* (χ0'···'xm-3'rB' *xm-2'xl'···,xm-3*,xm-l* 

is bijective, and hence |B|=|B|. 
Proof, (i) By Lemma 9 (4) holds, and therefore 

(5) Pr(m-l)-{i}B' = A™"2 forali Ì€(m-1). 
Since Β' is obviously a subuniverse of A®-1, |B' | is a power 
of |A|, implying |B' | = |A|m~2 (as B'fA1™"1) . This proves (i) . 

(ii) It is straightforward to check that Β is a subuni-
verse of Am, and in view of (i), the equality for Β holds. For 
x 0 " - " x m - 2 6 A w e h a v e (*Q» · · · »xu-2'®^e® a n d o n ly 

(XQ,...,xm_3,Γβ/
 2(xm_2,χχ,-·',Xm_3))«Β' , 

or equivalently, 
Xq = Γβ/ (Xj^,... (χη-2'χ1' ' ' * ' xm-3^ ' 

However, by Lemma 7 the right hand side is x
m_2» proving the 

last claim in (ii). 
(iii) Fixing xq'···'xm-3'xm-l arbitrarily, we know that 

the mapping x_ , ι-* Γ?72(χ„ ο»χ·ι # · · · - , ) of the remaining m ¿ β ι ω* J 
component is a permutation of A, hence φ is one-to-one. For 
arbitrary m-tuple (xft,...,x ,,y,x ,)«Β there exists χ ,eA ν id J iii j> ra—¿ 
such that y = Γ^Γ2(x

m_2>xi»···»x
m_3)» s o t h a t (xQ,···,x

m_3 » 
*m_2'*B-j.)€®' Proving that φ is onto. 

Lemma 11. Let A be a finite algebra having a trivial 
subalgebra {0}, and assume that for some m&3 every subuni-
verse of A n _ 1 has cardinality a power of |A|. If Β is a sub-
universe of A m whose cardinality is not a power of |A|, then 

(i) B(xQ,...fxi_lf0,xi+1,...#Xm_1)=A™"1 forall iem, and 
(ii) Β is totally reflexive. 
Proof. We use the notations of the previous lemma. 
(i) By symmetry it suffices to show that B'=Am-1. Suppose 

B' *A . Consider the subuniverse C=pr.„ _ ,,B of A . {o,m-2,m-i} 
Using (4), (5) one can easily see that 
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pr{0,1}C = pr{0,2>C =_pr<l,2>C = a 2· 
Furthermore, by the property of Β established in Lemma 10 
(ii) , (a,b,0)eC if and only if a=b. Thus C*A3. If 3Sm-l, 
then by the assumption on the subuniverses of Am 1 we get that 
|c|=|A| , and hence C is a 3-automorphism of λ. Now it follows 
from the bijectivity of φ in Lemma 10 (iii) that the 
projection 

B —* p r m - { 0 } B ' ( xo'xl''"*,xm-l) ^ <*i'···.**-!> 

is bijective. By Lemma 9 we have prm-{0}B = A m _ 1' implying 
|B|=|A|m-1, which contradicts the assumptions of the lemma. 

It remains to settle the case m=3. Replacing Β with Β 
(which is now equal to C) we may assume without loss of 
generality that B(x,y,0)=A, in other words, 
(6) (x,y,0)«B «• x=y. 

2 Then, clearly, B(0,x,y)*A , which implies by Lemma 10 (ι) 
(with the components interchanged) that B(0,x,y) is a per-

2 mutation. Hence the subuniverse e<30iB A contains only 
one pair with first component 0 (namely (0,0)), yielding that 

2 
eqQ1B*A . However, Ax{0}£eq01B, therefore by the assumption on 
the subuniverses of A 2 we conclude that equality holds here, 
that is, 
(7) (x,x,y)«B · y=0. 

Now let 2 R = ; (c,d,x),(c,d,y)eB for some c,deA>. 
2 Clearly, R is a subuniverse of A , A£R since pr._.B = A, and 

2 
R*A since (0,y)eR holds only if y=0. Indeed, if (0,y)eR, 
then (c,d,0),(c,d,y)eB for some c,d€A, hence applying (6) 
and (7) we get c=d and y=0. Thus R=A, which means that the 
projection 

Β —» p r { 0 1 } B , (x,y,z) ^ (x,y) . . . 2 is bijective. By Lemma 9 we have Pr/n -ι iB = A » yielding \ o, 1} 2 
|B|=|A| , which contradicts the assumptions of the lemma. This 
completes the proof of (i). 
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(ii) Let icjem. By (i) the subuniverse j B o f λ 

contains every (m-1)-tuple with one component 0, whence 
|A|m 2<Ieq^jBI a IA|m 1. The assumption on the cardinalities of 

subuniverses of A m _ 1 yields that eq^jB=Am_1. Hence Β is 
totally reflexive, as claimed. 

2 Now we look at the subuniverses of λ . 

Lemma 12. Let λ be a finite, strictly simple algebra 
having at least one trivial subalgebra. If Β is a subuniverse 
of A such that pr^^B = pr^^B = A and |A|<|B|, then there 
exists an element OeA such that {0} is a trivial subalgebra of 
A and Β(x,0) = A or B(0,x) = A. 

Proof. Let U be the set of all elements ueA such that {u} 
is a trivial subalgebra of A. For arbitrary ueU, B(x,u) and 
B(u,x) are subuniverses of A, hence each of them is A or a 
singleton contained in U. Assume that, in contrary to our 
claim, B(x,u) and B(u,x) are singletons for all ueU. Then 

2 BnU is a permutation of U. Hence 
2 C = {(χ,y)eA : (x, z) ,(y,ζ)«Β for some zeA} 

2 
is a reflexive, symmetric subuniverse c.' A such that C(x,u) = 
=C(u,x)={u} for all ueU. Further, Ο Δ , since equality here 
together with pr^^B = pr^^B = A would imply that Β is a 
permutation of A, contradicting |B|>|A|. Therefore the 
transitive closure of C is a congruence of A distinct from Δ, 
in which every element of U forms a singleton block. However, 
this is impossible, as A is simple. 

Lemma 13. Let A be a finite algebra such that every proper 
subalgebra of A is trivial, and let {0} be a fixed trivial 

2 
subalgebra. If A has a subuniverse Β such that pr^0^B = 
= pr^jB = A, |A|<|B|, B(X,0)={0}, then either some finite 

k power A of A has a totally reflexive, totally symmetric k 
subuniverse distinct from A and Δ (if k=2), or there exists 
an element eeA-{0> such that B(x,e)=A. ν 

Proof. For k*l let R^ = { ( x Q , — ' x k - l ^ e A : t h e r e e x i s t s a n 

aeA with (xi,a)«B for all iek}. Clearly, R^=A and ASR2 as 
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pr^0jB=A; moreover, since otherwise pr^^B = pr^^B = A 
would imply that Β is a permutation of A, contradicting |B|> 
>|A|. 

Let |A|=n, A={aQ,... · If Κη=ΑΠ' t h e n t h e r e exists 
an element eeA such that (a^,e)eB for all ien, that is, 
B(x,e)=A. Otherwise, let k*2 be the least integer such that ν k-1 Rj^A . Since » therefore R^ is totally reflexive. 
Clearly, R. is totally symmetric. Furthermore, it is easily 

. k 
seen to be a subuniverse of A . As we have seen before, R2*A, 
so the proof is complete. 

Lemma 14. Let A be a finite, strictly simple algebra 
having at least one trivial subalgebra, and let U be the set 
of all elements ueA such that {u> is a trivial subalgebra of 

. . k A. Assume no finite power A (k&2) of A has a totally 
k 

reflexive, totally symmetric subuniverse distinct from A and 
Δ (if k=2). 2 

(l) If Β is a non-reflexive subuniverse of A such that 
pr^Q^B = pr^jB = A and |A|<|B|, then Β is a U-cross. 

2 
(ii) If Β is a reflexive subuniverse of A with |A|<|B|< 
2 

<|A| , then its transitive closure is a bounded partial order 
on A such that every element of U is a bound. 

Proof, (i) By Lemma 12, there exists an element OeU such 
that, say, B(0,x)=A. Since Β is not reflexive, the subuniverse 
eqQ1B of A is a singleton, namely {0}, as (0,0) eB. Thus 
B(x,0)2{0}. Supposing equality holds here we would get from 
Lemma 13 that there exists an element eeA with B(x,e)=A. Then 
(e,e)eB, implying e=0, whence B(x,0)=A. 

Thus XQ£B. For arbitrary element ueU-{0>, the subuni-
verses B(u,x) and B(x,u) of A contain 0 and do not contain 
u, hence B(u,x)=B(x,u)={0}. Therefore the relation Y=B-XQ 
is contained in (A-U)2. Since eq01B={0>, Y is irreflexive on 
A-U. Thus Β is a U-cross. (ii) Again by Lemma 12, there exists an element OeU such 
that, say, B(0,x)=A. Since BnB-1 is a reflexive, symmetric 

2 —1 subuniverse of A , we have ΒπΒ =Δ, that is, Β is antisymmet-
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ric. Hence B(x,0)={0}. Let Β be the transitive closure of B. 
Α η Λ, 

It is easy to check that Β is a subuniverse of A , B£B, and 
A A A. 

Β(0,χ)=A, Β(x,0)={0}. By the same reason as above, Β is anti-
A 

symmetric. Thus Β is a partial order with least element 0. 
A 

Applying Lemma 13 for Β we get that it has a greatest element 
e as well. If there existed an element ueU such that u*0,e A 

then B(x,u) would be a proper, nontrivial subuniverse of A, 
as it contains 0, u, and fails to contain e. This completes 
the proof. 

Lemma 15. Let A be a finite, strictly simple algebra 
having at least one trivial subalgebra, and let U be the set 
of all elements ueA such that {u} is a trivial subalgebra of 
A. Assume some finite power A m (m*2) of A contains a totally 
reflexive, totally symmetric subuniverse distinct from A m and 
Δ (if m=2). If m is chosen minimal with this property and Β is 
a totally reflexive, totally symmetric subuniverse of A m 

distinct from A m and Δ (if m=2), then Β is U-central. 

Proof. For arbitrary ueU, B(xQ,... ,xm_2,u) •= is a totally 

reflexive, totally symmetric subuniverse of A*"1. If m=2, then 
Lemma 12 combined with the symmetry of Β implies XQSB for 
some OeU. Thus B(xQ,u)=A is obvious if u=0, and in view of 
0,ueB(xQ,u) it follows also if u*0. If ms3, then the mini-
mality of m yields that B(xQ,... ,xm_2,u)=Am Hence in 
either case Β is central and u belongs to the centre of B. 
Thus Β is U-central. 

Now we are in a position to conclude the proof of 
Theorem 1. Let A be a finite strictly simple algebra having at 
least one trivial subalgebra , and let U be the set of all 
elements u of A for which {u} is a trivial subalgebra of A. If 
each subuniverse of each finite power of A has cardinality a 
power of A, then, by a result of R.W. Quackenbush [9] A 
generates a congruence permutable variety, and hence by a 
theorem of R. McKenzie [6] (cf. also [13], [2]) one of 
conditions (a), (b) holds for A. If some finite power A m (ma2) 
of A contains a totally reflexive, totally symmetric 
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subuniverse distinct from A and Δ (if m=2), then by Lemma 15, 
. . k 

(c) holds for A . So assume no finite power A (k^2) of A has a 
totally reflexive, totally symmetric subuniverse distinct from 
A^ and Δ (if k=2), and some power Am of A has a subuniverse Β 
with IΒ j not a power of |A| . Suppose m is chosen minimal with 
respect to the existence of such B. We have m*2, as A has no 
nontrivial proper subalgebras. Were m*3, we would get from 
Lemma 11 (ii) that Β is totally reflexive, and hence the 
subuniverse η ί 0 ^ o f totally reflexive and 
totally symmetric, which is impossible. Thus m=2. Now by 
Lemma 9 the hypotheses of Lemma 14 (i) or (ii) are satisfied. 
Hence applying the lemma, and in case (i) taking BaB , we 
see that (d) or (e) holds for A . 

Remark. Observe that the role of Lemma 13, where we made 
essential use of the finiteness of A, is restricted merely to 
the proof of Lemma 14. However, if |U|a2, then both of the 
claims (i), (ii) in Lemma 14 can be proved directly, without 
any assumption on the totally reflexive, totally symmetric 
subuniverses of finite powers of A . (It suffices to look at 
the subuniverses B(x,u), B(u,x) (ueU) of A). 

Apart from this, finiteness is apparently crucial through-
out the section because of the arguments using the cardinali-
ties of subuniverses of finite powers of A . However, applying 
multi-automorphisms, one can modify these arguments so that 
they work for infinite algebras as well. Namely, for not 
necessarily finite algebras, multiautomorphisms can be defined 
by the equivalent conditions (ii) and (iii) in Lemma 7. 
Lemmas 9-10, 12, 14 (for |U|s=2) go through, with occasional 
slight changes in the proofs, for all algebras having no non-
trivial proper subalgebras, if one takes for m the least 
positive integer for which Am has a subuniverse Β such that 

(*) B*Am, pr^jB=A for all iem, and pr^-B is not a multi-
-automorphism of A for any subset I£m, |X|= 2. 

For Lemma 11 we have to assume, in addition, that none of the 
projection mappings Β —• p rm-{i} B = ' ïem/ i s bijective. 
The following claim shows that should this fail for the Β we 
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started with, we can always replace it with another 
subuniverse of A m having the required property. 

Claim. Let Β be a subuniverse of A m (ms2) such that 
prm-{i}B = 1 f o r a 1 1 iem, and the projection mapping Β —• 
—> pr(m-l)B = αΠ1 1 bijective, while the projection mapping 
Β —» P r

m_{ 0j B = A m - 1 is not bijective. Then for the sub-
universe 

B* = { ( X Q J X Q J X J ^ , ... ,xm_2) «Am: there is a yeA such that 
(x0,xlf... ,xm_2,y) , (x'0,x1 xm_2,y)eB} 

of Am, none of the projection mappings B*—» pr _ . B* = A m _ 1, 
* m m 

iem, is bijective, and Β *A . 
Lemma 8 becomes superfluous, and Lemma 15 remains valid 

without change. Finally, if no finite power A m of A has a sub-
universe Β satisfying (*), then, instead of Quackenbush's 
theorem [9], one can apply the results of [14] on locally 
paraprimal algebras, and hence conclude that A is either 
locally quasiprimal, or locally affine. 

In this manner, if |U|a2, then Theorem 1 can be extended 
to infinite algebras as well. 

3. Proofs of the corollaries 
(A) First we prove that every proper subclone of Cy is 

contained in P D or equivalently, for every algebra A with 
D 

CloAcCy, Β is a subuniverse of the corresponding power of A, 
for at least one of the relations Β in (I)-(VII). So assume A 
is an algebra such that CloAcCy. If A has a proper subalgebra 
distinct from the singletons {u}, ueU, then its universe Β 
clearly satisfies (I). If A is not simple, say Β is nontrivial 
congruence of A, then either (II) holds for B, or for some 
ueU, the block B(x,u) of Β containing u is a subuniverse of A 
as described in (I). 

From now on we assume that A is strictly simple and the 
trivial subalgebras of A are exactly {u}, ueU. So we can apply 
Theorem 1. If (a) holds, then A has a nontrivial automorphism 
(as it has no nontrivial proper subalgebras), and hence it has 
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an automorphism σ of prime order. Clearly, σ carries trivial 
subalgebras into trivial subalgebras, hence U is invariant 
under σ. Furthermore, since the fixed points of σ form a 
subalgebra in A, it follows that σ has at most one fixed 
point, and the fixed point (if any) belongs to U. Thus σ is as 
described in (III). 

Now suppose (b) holds for A. It is well known that for an 
affine algebra A and for arbitrary element OeA there exists an 

A (unique) Abelian group A with neutral element 0 such that A is 
A A 

affine with respect to A; namely, the operation + of A is 
defined by x+y=p(x,0,y) where ρ is the unique term operation 
of A satisfying Mal'tsev's identities Ρ(Χ»Υ/Υ)=Ρ(Υ»Υ/Χ)· 
Therefore there is no loss of generality in assuming that A is 
affine with respect to an elementary Abelian p-group (p prime) 
A A=(A;+,0) such that OeU. Since {0} is a subalgebra of A, A is 

A 

a reduct of the module (EndÂ)A' Hence every fundamental 
operation of A is of the form 

y rixi (r^eEnd Â, iem). 
i«m 

Now it is easy to verify that U is a subgroup of A. Further, 
if |U|>1 and ueU-{0>, then the mapping A —• Α, Χ H-» X+U 
is an automorphism of A satisfying the requirements in (III). 
If U={0} and p>2, then selecting an integer c>l that is of 
prime order modulo p, we get that the mapping A —> Α, χ H ex 
is an automorphism of A satisfying the requirements in (III). 
In the remaining case U={0>, p=2, the subuniverse 

3 . . QA(x,0,y,z) of A is as described in (IV). 
A 

Finally, if (c), (d), or (e) holds for A, then we have 
nothing to prove: the same relations are listed in (V), (VI), 
(VII), respectively. 

It is easy to see that for every relation Β in (I)-(VII), 
CUnPB a ProPer subclone in Cy. To prove their maximality 
in Cjj, it suffices now to verify that there are no proper 
inclusions between any two of them. In fact, the argument 
shows also that equality can hold only in the "obvious" cases, 
namely when either both relations are of type (III) and are 
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powers of each other, or both relations are of type (VI) and 
are inverses of each other. 

So let Β, B' be two distinct relations in (I)-(VII). We 
intend to prove that, except for the cases just mentioned, 
(8) C unP B tf CunPB/ . 
Consider the algebras A = A;CITnPD) and A' = (A;CTtnP_( U D U 13 . 

First let Β be as described in (I) or (III). Then A is 
quasiprimal, and (8) holds for every B' which is not of type 
(I) or (III). So assume Β' , too, is as described in (I) or 
(III), and hence A' is also quasiprimal. Observe that in case 
(I) the algebras have no nontrivial automorphisms, and the 
proper subalgebras are exactly Β [resp. B'] and {u}, ueU; in 
case (III) the automorphisms are exactly the powers of Β 
[resp. B' ], and the algebras have no proper subalgebras other 
than {u}, ueU. Thus (8) holds unless Β, B' are both of type 
(III) and are powers of each other. 

Now let Β be of type (IV). Then A is term equivalent to A 
the module hence A is simple and Has no proper 
subalgebras other than {0}. Moreover, as A is a 2-group, A has 
no nontrivial automorphisms. This impl ®.s (8) unless B' is 
also of type (IV). In that case (8) follows by checking that 
the term operation + of A does not preserve B' if B' *B. 

The remaining cases can be handled in a uniform way. We 
illustrate the method on the case when Β is of type (VII). So 
let Β be a U-cross such that xq S B / 0 e U· W e consider nxt 
matrices M with entries in A such that 
(9) the rows are pairwise distinct, and none 

of the vectors (u,...,u),u«U, occurs among the rows. 
The rows of M will be denoted by M^, ien. If (9) holds for M, 
then for arbitrary η-tuple a=(aQ,... ,β^.^) , we can define a 
t-ary operation on A as follows: 

It is easy to see that if 

a.̂  if (xQ,... ,xt_1)=M^ for some ien, 
u if (xQ,...,xt_1)=(u,—,u) for some ueU, 
0 otherwise. 
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(10) (ai,aj)eB whenever (M i,Mj)€B
t
> i,j€n, i*j, 

then f M €CTTnPD. (For t-tuples v,weAfc, (VjWÎeB^ denotes that n, a υ ο 
ν and w are componentwise in relation B). 

Now let B' be one of the relations in (I)-(VII) distinct 

from B, say B' is n-ary, and select a matrix M such that the 

set of columns of M is exactly B' . Clearly, (9) and (10) are 

now equivalent to requiring that 

(9')n
 p r(i,j) B' f o r 3 1 1 i,t:>' 

p r ^ j B ' *{u} for all ien, ueU, 

and 

(10' ) n (a i #aj)eB whenever p r ( i ^ B ' £ B , i,jen, i*j, 

respectively. Thus (9) holds, and (8) follows by verifying 

that we can always select an η-tuple a^B' with (10), implying 

f M , a e C U n P B a n d £ M f a *
P B " 

À similar argument works also if Β belongs to the families 

(11), (V) or (VI). We note that if Β is of type (VI), then the 

existence of the required monotone operations g„ „ such that n, a 
g„ (u,...,u) = u for ueU and m , a 

g M = a i f o r a 1 1 ϊ=0»···»η-1 

follows from the fact that the rows of the matrices M corre-

sponding to the relations B' in (I)-(VII) are pairwise 

incomparable under Β (componentwise) unless Β' , too, is of 

type (VI) and B' SB. The details are left to the reader. 

(B) The necessity in Corollary 3 is obvious. For the suf-

ficiency we apply Theorem 1. Let λ be a strictly simple 

algebra such that the trivial subalgebras are exactly {u},ueU, 

and λ does not generate a congruence permutable variety. By 

Theorem 1 one of conditions (c)-(e) holds for λ. If, in 

addition, A is surjective, then we can apply the following 

well-known and easy lemma (cf. [11], [12]). 

Lemma 16. Let λ be a finite surjective algebra. If Β is a 
ν 

subuniverse of λ (k*2), then for arbitrary 1 (lslsn-1), 

( B ) ^ { (xQ, . . . ,x 1_ 1JeA
1: (xQ, .. . » X j ^ J e B for all . . . ,x]c_1eA> 
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is a subuniverse of A provided it is not empty. 
k Thus, if Β is a U-central subuniverse of A , then (B)^ 

the centre of B, is a proper subuniverse of A containing U. 
Hence U is the centre of Β and |U|—1. Now (B) is a U-central 

.2 * subuniverse of A with the same centre as B. If Β is a bounded 
partial order, then (Β)^ and (B ^ are the two singletons 
containing the bounds, hence |U|=2. This completes the proof 
of Corollary 3. 

For the proof of Proposition 4 we slightly modify the 
construction used at the end of the proof of Corollary 2. 
First let Β be a U-cross with xq S B' °€U> o r a binary U-
-central relation with centre U={0}. Let B' be a binary 
relation on A satisfying (9')2· W e show that for n=max(|A|,3)+ 
+2 and for some ta|Β' |, there exists an nxt matrix M such 
that the set of columns of the submatrix of M consisting of 
the first two rows equals Β' , and 

(11) (M^HjXB* for all i,jen, i*j, {i, j}*{0,1}. 
By the assumption on B' there exist (b,b' ),(c,c' )eB' such 
that b*0, c'*0. Hence there exist elements d,d' eA such that 
d*b, d'*c' and one of the pairs (b,b), (d,b) and one of the 
pairs (c' ,c' ) (d' ,c' ) fails to belong to B. Thus any matrix 
M whose first 2(n-2) columns are as shown below, and is such 
that the columns of the submatrix consisting of the first two 
rows equals Β' , otherwise arbitrary, satisfies the require-
ments . 

b b' b' b' b b b 
c c c 
d b b 
b d b 

b b b 

c 
b 
b 

c' 
d' 

c' 
c' 

c' d' 

c' 
c' 
c' 

c' c' c' 

c' 
c' 
c' 

d' 

In view of (11), for arbitrary η-tuple a=(aQ,...,a ^ with 
(a.,a.)eB provided B' SB, the operation f„ , belongs ο ι λ , a to 
CTIr\P_. Hence to each B' satisfying (9')_ and distinct from Β υ o ¿ 
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2 . . and A , there exists a suriective operation f u such that m, a 
f„ eCTTnP_ and f„ ¿Pn/ · Thus the algebra λ whose operations m, a υ d m, a a 
are these f„ while B' runs over ri/ a 

(i) all binary relations SxA with ls|s|<|A|, s*{u} 

for all ueU, 

(ii) all nontrivial equivalencies on A, and 

(iii) all relations in (a)-(r) distinct from B, 

has the properties stated in the proposition. 

A similar idea works also if Β is a bounded partial order 

with bounds 0, 1. Now the last η rows of M are to be 

constructed so that they be incomparable (by the componentwise 

order) to the first two rows and to one another as well. They 

can always be chosen so that they consist of 0's and l's. The 

role of f„ is to be taken by monotone operations g„ n, a M,a 
such that 

g M a(o,..., 0)=0, g M (1,... ,1)=1, 

and 
g„ (M.)=a. for all i=0,...,n-l. m , a ι ι 

It can be shown that such a g M exists if for the n-tuple rl f d 
a=(a Q,... we have ( a ^ a ^ e B provided B'SB, and 

(aQja^JeB 1 provided B'SB - 1. The details are left to the 

reader. 

To see the claim in the first remark, observe that for Β a 

U-cross with XQ£B, OeU, or a binary U-central relation with 

centre U={0-}, CrTnP_ contains a majority operation, e.g. the υ o 
one defined below: 

χ if x=y or x=z, 

m(x,y,z) = y if y=z 

0 otherwise. 

Adding this operation to A, we get an algebra A' , which 

inherits properties (i)-(iii) in Proposition 4, and has a 

majority operation as well. Hence by a theorem of K.A. Baker 

and A.F. Pixley [1] A' is term equivalent to (A;CTTnPn) . U D 

(C) The only nontrivial statement in Proposition 5 is 

that the algebra A=(A;CTTnP_) is functionally complete. U D 
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However, as we have seen in part (Β), A has a majority 
2 operation, and the only reflexive subuniverses of A are Δ and 

2 
A . Thus it follows from the theorem of K.A. Baker and 
A.F. Pixley [1] that A is functionally complete. 

In Corollary 6 the necessity is obvious, while the suffi-
ciency follows from Theorem 1 by observing that conditions 
(b)-(d) cannot hold for a functionally complete algebra. 
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