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ORDERED SYSTEM OF ALGEBRAS 

0. Preliminaries 
In [10] a construction of algebras was defined called the 

sum of a direct system of algebras. This construction is 
called now the Plonka sum in literature. In [5] and [14] a 
different construction was considered based on the notion of a 
retraction of an algebra. In this paper this construction will 
be called the extension of an algebra by a retraction. 

Let τ be a type of algebras. An identity φ=φ is called 
regular (see 10) if the sets of variables in φ and φ coincide. 
Regular varieties i.e. defined by regular identities were 
considered e.g. in [4], [6]-[ll]. In particular, under some 
assumptions algebras from regular varieties can be represented 
by Plonka sums (see [11]). An identity φ=φ is called non-
trivializing if it is of the form x=x or none of φ and φ is a 
single variable. It was proved in [10] that a nontrivial 
Plonka sum preserves all regular identities satisfied in every 
component and does not preserve any other. On the other hand 
the extension of an algebra U by a retraction preserves all 
non-trivializing identities of U (see [5]). For a class OC of 
algebras of type τ we denote by Id(K) the set of all 
identities of type τ satisfied in each member of X. If 11 is an 
algebra we shall write Id(U) instead of Id({U>). 

J.Plonka asked the following question: let Κ be a variety 
of algebras and DC* be a variety of the same type defined by 
some regular and some non-trivializijig identities from Id(K). 
Can algebras from Κ be represented by means of algebras from 
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Κ. Note that if Κ satisfies an identity f(x,y)=x for some term 
f(x,y) containing χ and y and KR is the variety defined by all 
regular identities from Id(K), then every algebra from K R is 
the Plonka sum of algebras from Κ (see [11]). In this paper we 
answer the above question of Plonka for a class IK* defined by 
some natural choice of regular and non-trivializing identities 
from Id(K). Namely, we define a construction of algebras, 
called the generalized sum of an upper {F^F^-semilattice 
ordered system of algebras that generalizes both the Plonka 
sum and the extension of an algebra by a retraction. Under 

* * 

some assumption on Κ and DC we represent algebras from DC by 
means of algebras from Κ using the above construction. In this 
way we also obtain some generalizations of theorems from [10], 
[11], [13] and [5]. 

1. Definition of the generalized sum of an upper ( F ^ F ^ -
semilattice ordered system of algebras 

Let τ:F—>N be a fixed type of algebras. 
Definition 1. A quadruple 

(1.1) *x(F l fF 2), (I,-), { V i e l ' {h?>i, j«If i s j> 

will be called an upper (F^F^-semilattice ordered system of 
algebras, or briefly an upper (F1#F2)-system of algebras, if 
it satisfies the following conditions: 

(i) F1uF2=F, F1nF 2 = 0 , {feF: T(f)=0}cF2· 
(ii) (I/-) is a join-semilattice; if F2*0 then (I 

has the greatest element u. 
(iii) Uu is an algebra of type τ and Uu=(Au;Fu); for 

every iel, i*u, tK is an algebra of type t̂ F̂ ^ and , 
where A^nAj=0 if i*j. 

(iv) The set {h·?}. . T . . satisfies the following: v ' 1 l'ijjelfisj ^ 
(a^) for every i,jel, isj, h^ is a mapping of A^ into 

V . i . 1 . . (a_) for every iel, h. is the identity map on Α.; 
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(a3) for every i,j«l such that i s j*u, h? is a homomor-
phism of U^ into ti j ; 

(a4) for every iel, i*u, hV is a homomorphism of U^ into 
the reduct (Au;F^) of Uu; 

(ag) for every i,j,kel such that isjak we have 
hj°hi=hi-

For an upper (F., F-)-system A of algebras we define a nev 1 ¿ φ 
algebra ¡f(ii) of type r putting ?(A) = ([_J A. ;F ), where for 

iel y 
feF, a^eA^, j=0,...,T(f)-l the operation f is defined by the 
formula: 

y f (a0'''•aT(f)-l) 

fk(h£ (a ),...,h* (a_,f, .)) for x0 ° T(f)-1 i 

f€Fx and k=sup{iQ,...,iT(f} 
fu(hV (a ),...,h" ( a

Tm-i>>' f o r 

f€F2 

The algebra ? («Í) will be called the generalized sum of the 
upper (F^F^-semilattice ordered system A of algebras or 
briefly, the sum of the upper (F^Fj)-system A of algebras. 

The following may be checked easily. 
(v) Uu is a subalgebra of it (A). 
(vi) If i*u then tt^ is a subalgebra of the reduct 

(υνρί) off(Λ). 
i € l . . -1 . . . 

(vii) If F2=t ({0}) then the definition of !t(A) is 
equivalent to that of the Plonka sum (see [13]). 

(viii) If Fj=0 then ? (A) is an extension by a retraction 
of the algebra tlu (see [5]). Conversely, if algebra U is an 
extension by a retraction r of an algebra 1lQ and A*AQ then U 
can represented as the generalized sum of the upper 
(0,F)-system: 

Λ = <(0,F) , (-1,0) ,{U_1,U0},{hlj;,h°,h21}>, 
where tt_1=(A-AQ;0), h^ is the identity map on A^, ie{-l,0} 
and h^1=r|A-AQ. 
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2. FQ-regular identities and F0~symmetrical identities 

In this section we consider identities of some special 
form which are preserved by the construction defined in 
section 1. 

Let τ:F—»T be a type of algebras. If φ is a term of type 
τ we denote by F ( φ ) the set of all fundamental operation 
symbols occuring in φ and by Var {φ) — the set of all variables 
occuring in φ. Let FQ be a subset of F. 

Definition 2. An identity φ=φ of type τ will be called 
FQ-regular iff F(0)cFQ, F(^)cF0 and Var(0)=Var{ψ). 

Every Fg-regular identity is regular in the sens of [10], 
[13]. Every regular identity is F-regular. 

Definition 3. An identity φ=ψ of type r will be called 
F0-symmetrical iff F(0)r»FQ*0 and F(0)nFQ*0. 

Remark 1. Note that an identity φ=φ of type τ is non-
trivializing (see [12]) iff it is of the form x=x or it is F-
symmetrical. 

Example 1. Let F={+,·,'}, τ(-κ)=τ(0=2, τ(')=1, F ^ í + ,ο} 
and F2={'}. Then identity x+y=x°y is F^regular, the 
identity x+(x°x' ) = (x' )' is F2-symmetrical and the identities 
x+(xoy)=x, x=x' are neither F^regular nor F2-symmetrical. 

Let F^, F2 be sets satisfying (i) from section 1. Denote 
by R F 1 the set of all F^regular identities of type τ and by 

S__ the set of all F_-symmetrical identities of tyoe τ. Then r2 £ 
(ix) The set Rf1<jSf2 is an equational theory in the 

sense of Tarski (see [16]). 
If φ is a term of type τ and Var(#)={x. ,...,x. } then 

30 3n-l 
we shall write 0(x. ,...,x. ) and we shall denote by 

]0 Dn-1 
^U(aQ,...,3η-1) the realization of φ in U obtained by 
substituting elements a ,...,a . of A for χ. ,.,.,χ. 

u n" 1 J0 Jn-1 
We shall denote by φ1 the realization of φ in an algebra U. 

y •L and by φ - the realization of φ in f(4). 

Lemma 1. Let !f(4) by the sum of an upper (F1,F2) system 
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A de f ined by ( 1 . 1 ) , φ(χ· , . . . , x . ) be a term of type τ and 
D0 -'n-1 

affleA^ f o r m = 0 , . . . , n - l . Then we have: 

( b ^ i f Fi^JcFj^ then 

* y ( a 0 a n - l > = * X < a O > h l <an-l>>' ο η—ι 

where k = s u p { i Q , . . . , ± n _ 1 > ; 

(b2) i f F2oF(0)*0 then 

/ ( a 0
 a n - l ) = ^ U ( h ï < V ' " " h i ( V l » » · 

0 n-1 
Proof . The proof of ( b ^ i s analogous t o t h a t of Theorem 1 

in [10 ] . The proof of (b2) i s by induct ion on the complexity 
of φ. 

Since F2r\F(0)*0 so φ i s not a s i n g l e v a r i a b l e . Hence φ 
i s of the form: 
f * * " , x n - l ^ ' * " , x n -1^'"* * '^r - l^ x 0 *"'· · · 

r - 1 
. . . , x . ) ) , where r = x ( f ) . 

r - 1 
I f φ i s of the form f (x H , . . . , x . ) , where f«F_, then 

Jo χ(f)—1 
the statement f o l l o w s from the d e f i n i t i o n of the operat ion in 

Let φ be r e a l i z e d in p ' t h s t e p , p>2, F(#)nF2*0 and l e t 
(b2) be t rue f o r each term obtained in q ' t h s t e p , for every 
2sq<p. Let: 

a°€A.O , . . . , a ° «Α.0 , ajüjeA. 1 , . . . , a* , e A . l , . . . 
u 0 0 n o _ 1 0 1 n i - 1 

r - 1 . r - 1 r - 1 . r - 1 
* * * 0 € A i n ' • • • ' a n ' 

0 r - 1 r - 1 
Then 

( a 0 ' ' ' " a n 0 - l ^ ' ^ l ( a 0 ' ' ' ' , a n - l ) 

J i»*"1 r - 1 
"""'^r- l ' 0 '"* * n

r _ i - 1 

= f y ( ^ 0 ( h . 0 ( a ° ) h.O ^ C ^ . i ) ) , ^ ( h ^ i a j ) , . . . 
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k k k 1 k r-1 r-1 

where 
rij-1 "1 0 r-1-1 

ks -
u, if F(^s)nF2"0 
sup{i®,i®,...,i® _1>, if F(«s)cFlf for s=0,...,r-l. s 

He have two cases to consider: 
(c^) feFĵ  and there exists sQ€{0,...,r-l} such that 

F(*so)nF2*0' 
<c2) f«F2. 

In case ( c w e have sup{kQ,...,kr_1>=u so both in case (c^ 
and (c2) it follows that 

· • '<0-l) · · •ί-ΐί-Γ1' · · • 
k k 

= f u K ν (-Í-i)))K, 0 0 "o"1 

• • - ν (ai -i))) h£ ( ¿ ^ ( ν ^ ί - Γ 1 ) ' · · · 
i^-l 1 r-1 0 
k k 

( an _ 1 -i)))) - (V(«S)).... 
nr_1~l r-1 0 0 

k0 Λ .. .. ki •••'hï (hi° (an -!))).•;« (V(a5))'··· 
*0 n.-l 0 *1 i0 

k k 
•••'hï ( V (ai-l))) *r-lK (V^^o" 1))'··· 

1 n^-1 1 r-1 A0 
kr-l • ' • Κ ( V 1 ( C 1 -i)))) - * » ï °(ao)'··· r-1 nr_1-l "r-1 

(aS - i ) ) < * M χ(&ο) • (ai -ι))'··· nQ-l 0 0 ni - 1 1 

•··'«?-!(h? ^ ( » Γ 1 ) hïr"1 -ι)))· Γ Α 0 r-1-1 
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Theorem 1. Let A be an upper (F^,F2)-system defined in 
(1.1). Then f(«i) satisfies all F^-regular identities which 
are satisfied in every U^, satisfies all F2-symmetrical 
identities which are satisfied in Uu and does not satisfy any 
other. 

Proof. The proof of the first statement is analogous to 
the proof of Theorem 1 in [10]. To prove the second, let 

,...,x. )=^(xt ί···»*ν ) be an F_-symmetrical iden-
30 ]n-l 0 m-1 

tity satisfied in Uu- Then F($)nF2*e and F(^)nF2^e. Let aQ6 
eA. .....a_ ,eA. ,b.eA. .....b ,eh. . By Lemma 1 we have 

0 n-1 0 m-1 
»n-lî-^i11" <a0> hï <an-l» a n d ^ y( bo"·· 

• ' ' 'bm-l)=*U(ht0<b0> » · · · . ^ O ) · T h e n * > ϊ <«0) ,.. -
••" hï (an-l,)"*U(ht (bo)'---'h? <bB_i>)· H e n c e «y(ao'··· η—1 y 0 m—1 

'an-l)=* (b0 bm-l)· 
By (ν), Id(y(¿))cId(Uu), so the second statement holds. 

Now let (*-*)cId(U ) be such that F(*)nF2*e« and F(0)cFx· 
Since |I|>1, there exists iQ«I with iQ*u. If aQeA^ , then 

i 0 

/ ( a 0 a0)=«u(h^ (aQ),...,hV (aQ))*tf °(aQ a0)-*'(a0,... 
...,a0). Thus (φ-φ)4τά{*{4))). 

3. Varieties defined by F^regular and F2~symmetrical 
identities 

Let a type τ:F—>H be given and let F^, F2 satisfy 
condition (i) of (1.1). In this section we generalize some of 
results from [7]. 

Consider an algebra U(FlfF2)=({a,b};Ftt) of type τ, where 

fU(a0'''''ax(f)-l) " 
a0 i f a0="""=a 

^'i- 1 for f«F.f 
b otherwise 

fU(aQf...,ar(f).1) = b for f«F2· 
(x) The algebra tl(F1/F2) is the sum of an upper ( F ^ F ^ -

-system of 1-element algebras. 
Indeed, consider 1-element algebras U 1 = ( { a > , 
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U2=({b};F2) and define a mapping h2: {a}—Kb}, h^(a)=b. Then 
U(F1/F2)=y(á), where 

i4=<(F1,F2)/({l,2}/s),{U1,U2>,{hj}ifj€{12}>, hj; are identity 

maps. 
(xi) Algebra U(FlfF2) satisfies all F^regular identi-

ties, all F2-symmetrical identities of type τ and does not 
satisfy any other. 

This follows by (x) and Theorem 1 from the fact that in a 
1-element algebra all identities of its type are satisfied, 

(xii) For every variety Κ of type τ we have Id(K)c 
cR_ uS_ iff ll(F. ,F_) eK. F1 F2 1 2 

Note that property (xii) was proved in [7] in the case 
F1=F. 

Let E be a set of identities of type τ. Denote by V(E) the 
variety of type τ defined by E. 

We accept the following notation: if an identity φ=φ is 
F,-regular we shall write φ = φ, if φ=φ is F_-symmetrical 

F1 
F2 

we shall write φ = φ. 

Theorem 2. The variety v(Rf1uSF2) is equationally 
complete. 

Proof. v(RF1uSp2) contains U(F1,F2) so it is non-
degenerated. 
Let (H)^d(V(RF1uSF2)), let us add it to Id(V(RF1^SF2) ) . 
Without least of generality it is enough to consider two 
cases: 
(1) F(0)nF2*0 and Ff^cF^ 
(2) F (φ), FWcFj^ and xe (Var (φ) -Var (φ) ) . 
In case (1) the identity φ=φ must be of the form: 
(3.1) Φ=Ψ(χ, ) 

J1 Jm 
where φ is a miliary term or 
(3.2) ψ(χ. ,...,x. )=φ(χ. , . . . ) . 

A1 η J1 Jm 
If we have (3.1) then substituting χ for all variables in (3.1) we get 
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(3.3) φ=φ(χ,...,x). 
So χ = φ(χ,...,χ)=φ=φ(γ,...,y) = y. 

F F 1 1 
If we have (3.2) then substituting χ for all variables in 

(3.2) we get 

(3.4) φ(χ,... ,χ)=φ(χ, · · · · 
So we have 

F 2 
χ = tfi(x,...,x) = Φ(χ,...,χ) = 0(y,...,y) = y. 

F F 1 1 
Now we consider (2). Then φ=φ must be of the form: 

(3.5) φ(χ)=ψ(χ. ,...,χ. ) 
1 η 

or 

(3.6) Φ(χ,χ· ,...,xi )=Ψ(χΛ ,...,χ. ). 
1 η J 1 J m 

If we have (3.5) then substituting y for all variables 

different from χ in (3.5) we get 

(3.7) Φ(χ)=Φ(Υ,...,Υ). 
So we have χ = φ(χ)=φ{γ,...,y) = y. If we have (3.6) then 

F F 1 1 
substituting y for all variables different from χ in (3.6) we 

get 

(3.8) φ(χ,y,...,y)=tf<(y,...,y). 
Substituting χ for y and y for χ in (3.8) we get 

(3.9) φ(γ,χ,...,χ)=ψ(χ,...,x). 
So we have 

χ = 0(x,...,x) = φ(y,x,...,x) = φ(χ,y,...,y) = Ψ(γ,...,γ) = y. 
F F F 1 1 1 

Let Κ be a variety of algebras of type τ. 
F2 Denote by K F 1 the variety defined by all F^-regular 

identities and all F-symmetrical identities satisfied in DC, 

denote by Κ the variety of algebras of type x|F. defined by 
1 

all identities of type xlF^ belonging to Id(K). Let 0(τ) 

denote the variety of type τ defined by the identity x=y. We 

have: 
F, 

(xiii) V(R us ) = D(-c) / 
1 2 1 

(xiv) κ / = KvV(R uS p ) 
1 1 2 
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(χν) Κ is defined only by F^-regular identities and 

F2-symmetrical identities iff Κ contains every sum of an upper 

(F,,F_) system 4 of algebras {U.}. _ , where U eK and U-eK,, , 1 ¿ 1 1€1 U 1 Γ^ 

for i*u. 

The necessity follows from Theorem 1. 

The sufficency follows from the fact that U(F1,F2) belongs 

to Κ and from (χ), we have Id(K)cR uS„ . 
1 2 

4. The upper (F^Fj)-partition function 

In this section we give some generalization of the notion 

of a partition function defined in [10]. 

Let us fix a type x:F—>N and sets F^, F 2 satisfying (i) 

in (1,1). 

Let U=(A;Ftt) be an algebra of type τ. 

2 

Definition 4. A mapping ·:Α —>A will be called an upper 

(F1,F2)-partition function of tl if » satisfies the following 

formulas for all a , b , c , a 0 , . . . ) - i
e A * 

(4.1) a»a=a; 

(4.2) (a»b)ec=a»(b«c); 

(4.3) a·(b«c)=a·(c«b); 
(4.4) f t ti ao'-"' aT(f)-l ) e b = f U ( a o e b ' •••'ax(f)-l'b) ' f o r 

all feF; 

(4.5) f t t(a 0,...,a T ( f )_ 1).b = f t t(a 0,...,a T ( f )_ 1), for all 

f€F2; 

(4.6) fU(a0» · · · '
a
T(f)-l

) * ai = f U ( a 0 ' * ' ' 'Sífí-l* ' f o r a 1 1 

feFj^ and ie{0,... ,x(f )-1} ; 

(4.7) b.f U(a 0
 a

x ( f ) - i ) = bofU(b.a0 *>·«,;(£,_!>, ^ 

feF ; 
U (4.8) a«f (a,...,a) = a, for f e F ^ 

In [10] J.Plonka defined the notion of partition function 

by means of which, he decomposed an algebra into the sum of a 

direct system of subalgebras in the following way: 

(1°) A relation R defined by 

(4.9) aRb iff a°b=a and b°a=a 



Ordered system of algebras 139 

is an equivalence on A. Let Α/ κ =ί Α£}^ €ι 

(2°) A relation s defined by 
(4.10) isj iff V V b°a=b 

aeA^ beAj 
is a join-semilattice order in I. 

(3°) Each u
i=(Ai;{fU|Ai}feF) is a subalgebra of U. 

(4°) Each mapping —>Aj for i,jel, isj defined by 
(4.11) h?(x)=x®b, bcAj 
is a homomorphism of U^ into IK. 

(5°) U=/M), where *=<(I»S) » < V i e l ' { h i } i , jel, isj*' 

Theorem 3. Every upper (F,,F_)-partition function of 
U . U=(A;F ) establishes a decomposition of this algebra into the 

sum of an upper (F1#F2)-semilattice ordered system of 
algebras. More precisely, 11 is the sum of an upper 
(F1#F2)-system. 
(4.12) ¿ ( O - ^ r j ) . <i.«>.<ν 1 β Ι »{hj}i/j€i;isj>. 
where A/R={A^>^eI: R is defined as in (4.9); 

V( Ai ; { f U| Ai>f6F 1)' f o r i€l-<u>' V ( A u ; { f U | A u > f e F ) ? t h e 

relation s and the mappings h? are defined as in (4.10) and 
(4.11). 

Proof. Analogously as in [10] one proves the following: 
(a^) the relation defined as in (4.9) is an equivalence; 
(o2) the relation s defined in (4.10) is a 

join-semilattice order; 
(cc3) (Ai;{fU|Ai}feFJ is a subalgebra of (A;fJ) for 

each iel; 
(a4) for i,jel, isj, h? defined as in (4.10) is a 

homomorphism of (Ai» ifU| Ai>f€l< ) i n t o (Aj'{fUIAj}feF )' 
i k i k each h^ is identity map and hj»h?=h^ for every i,],kel, 

isjsk. 
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We have to prove, that if F2*e then there exists the 
element u in I; 

U=¥>0<(·)) 
greatest element u in I; is a subalgebra of U and 

fU< 
*0'···'"T(f)-1 "· l"0' 

* * *'ax(f)-l^eAi f o r s o m e (4·5)' f o r every aeA we U 0 U have f (a
0f···»aT(f)_1)oa=f ( a Q , . . . , a T ( f } . Thus iQ is the 

greatest element in I and we can put u=iQ. Moreover, the 

values of all f*1 belong to A u for feF2 and consequently, U u is 
a subalgebra of U. Let feF, a

neA. , ...,a eA. υ iQ τιΐ}-ι ^(fj-i 
Analogously as in [10] we show that f (ao'*··'ax(f)-i^= 

=fU(a0,...,aT(f)_1) for fcF^ If feF2 then by (4.4), (4.5) we 
have 

fy(a0,...,aT(f)_1) = fu(hJo<a0),...,hJ (aT(f)_x)) = 

= fU(a0.z,...,aT(f)_1.z) = ftt(a0,...,aT(f)_1).z = 
= fU(ao'---'ax(f)-l) 

for some zcAu· Thus the operations in U and ?(4(«)) coincide. 

F2 5. Representation of algebras in the variety Κ ρ ι. 
Let Κ be a variety of algebras of type τ. Consider the 

following condition. 

(c^) There exists a term φ(χ,γ) of type τ such that, 
JcFĵ  and the identity $(x,y)=x belongs to Id(K). 

Theorem 4. If a variety Κ of type τ satisfies (e.), then 
F2 algebra 11 belongs to Κ ρ ι iff U is the sum of an upper 

(Fj^Fj)-semilattice ordered system of algebras » where 
tt.€K_ for i*u and He*, ι Fx u 

F2 Proof. Let lleK and let φ(χ,γ) be a fixed binary term 
2 in (c^) . Define a binary operation ·:Α —>A by: 

(5.1) a«b = 0U(a,b), for a,beA. 
Then · defined by (5.1) satisfies conditions (4.1)-(4.8). 
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Then by Theorem 3 the function » induces a decomposition of 
U into the sum of an upper ( F ^ F ^ -semilattice ordered system 
of algebras U^, iel. 

Let Φ^=Φ2
 b e a n identity of type τ|F^ belonging to 

Id(K). Then the identity Φ(Φ,,Φ0)=Φ(Φ?,Φ,) belongs to 
ι F2\ 

Id(KF1J. Moreover, by the definition of A^, the identities 
φ(Φ1,Φ2)=Φίι Φ(Φ2>Φ1)=Φ2 a r e satisfied in U^. Hence the 
identity Φ^=Φ2 satisfied in U^. 

Let ΦΛ=Φ0 be an identity of type τ but not of type t|F 
F2 

and (Φι=Φ2) eld(IK) . Then the identity Φ(Φ1,Φ2) = Φ(Φ2,Φ1) 
belongs to Id(Kp^), so it is satisfied in tt by (ν), since the 
identities Φ{Φχ,Φ2)=Φχ, Φ(Φ2,Φ1)=Φ2 are satisfied in Uu> 

Thus U u belongs to DC. The necessity follows from Theorem 1. 
F2 

Algebras from K F 1 can be represented in another way as 
it is shown below. 

For a variety Κ we denote by K( F
2) variety defined 

by all F^-regular identities belonging to Id(K) and all 
F2"symmetrical identities of type τ. 

For two varieties D^, K2 of type τ we denote by Ki e K2 
the class of all algebras U isomorphic to a subdirect product 
of algebras U^ and ll2, where H and U 2

€ K
2 · 

Consider the following condition. 
(c2) There exists a term ψ(χ) such that F(|/i(x) )r\Y2*e and 

the identity ψ(χ)=χ belongs to Id(K). 
Theorem 5. If a variety IK satisfies condition (c2) then 

K^=DCeDC(F2) . Proof. Let a variety Κ satisfies condition (c ) for a 
U F2 . fixed term 0(x) . Let lt=(A;F ) and UeK**. Consider two 

relations RI, R2 on A defined as follows: 

(5.2) aRlb iff 0U(a)=^U(b) 
(5.3) aR2b iff a=b or 0U(a)=a and 0U(b)=b. 
Obviously RI, R2 are equivalence relations on A and RlnR2=cj, 
where <j={(a,a): aeA}. We prove that R1 and R2 are congruences 
of U. Let feF and aQRlb0,...,a^.f. _ Rib . f . . Then: 
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^ U ( a o ) = 0 U ( b o ) , . . . , ^ U ( a T ( f ) _ 1 ) = ( k > T j . H e n c e 

f t t ( / ( a 0 ) , . . . , / ( a T ( f ) _ 1 ) ) = f U ( / ( b 0 ) , . . . , / ( b T ( f ) _ 1 ) ) . B u t 

t h e i d e n t i t y tf»(f ( x Q , . . . , χ τ ( £ } ) =f ( t f f ( x Q ) , . . . 0 ( χ τ ( f } ) b e -

l o n g s t o I d J · H e n c e 

* U ( f t t ( V - ' a r ( f ) - l ) ) - f t V < a o > ' - - - ' * U < a T ( f ) - l > ) a n d 

/ ( f u ( b 0 ' - - - ' b T ( f ) - i ) ) = f t t ( * t t < V ^ ^ r m - i i ) ' t h u s 

/ ( f U ( a 0 , . . . , a T ( f ) _ 1 ) ) = 0 U ( f U ( b Q , • • • » b i : ( f ) _ 1 ) ) a n d R 1 i s a 

c o n g r u e n c e o f U . 

L e t a Q R 2 b 0 , . . . » a T ( f ) _ i R 2 b r ( f ) _ i · f o r s ome i e { 0 , . . . 

. . . , T ( f ) - l } we h a v e a n d t h e n 

f t t ( a Q / · · · f a ¿ f · · · ' a x ( f ) - i ) = f U í a o ' — t — ' a r ( f ) - l ^ a n d 

f U ( b Q , . . . . . . / b T ( f ) . 1 ) = f U ( b 0 , . . . . ^ ( b p , . . . , b T ( f ) · B u t 

t h e i d e n t i t y ^ ( f ( x Q , . . . ) " f ( * 0 # · · · » ^ ( ^ ¿ Ι # · · · / * T i f 

b e l o n g s t o I d ( K F 1 ) , s o we o b t a i n : 

/ ( f U ( a 0 , . . . , a T ( f ) _ 1 ) ) = f U ( a 0 S i f J - l * a n d 

^ t t ( f U ( b O ' - ' " b T ( f ) - l > ) - f U ( b 0 b r ( f ) - l > ) · T h u s 

f ( a Q f . . . , a T ( f ) _ 1 ) R 2 f ( V · · · » » ^ ) ^ ) . I f a o = b o ' ' · ' ' a T ( f ) - l = 

= b x ( f ) - l t h e n « ν 0 ' · · · ' · τ ( ί ) - 1 ) - ' V o ' · · " ^ ^ ) - ! * · By 

B i r k h o f f ' s t h e o r e m ( s e e [ 1 ] ) , U i s i s o m o r p h i c t o a s u b d i r e c t 

p r o d u c t o f U / R l a n d U/R2 . We s h a l l s h o w t h a t U/RleK a n d 

U / R 2 e K ( F 2 ) . L e t ( x . , ) = « ( x χ . ) b e l o n g s 
A 0 n - 1 Λ 3 0 3 m - l 

t o I d ( K ) a n d a Q , . . . , a j y . . . , b Q , . . . » b ^ ^ Ä . T h e n 

^ n - l W = t * ï < a l a n - l > Í R l = 

F2-» 
Γ ^ T h u s 

= ^ 2 < b 0 V I > ) R 1 * « 2 / R 1 ( C b 0 Í R l E V l W S i n c e 

0 K M X i Q « i ^ ) ) = * ( M X j 0 x j m _ 1 ) ) ) e I d ( K F l ) · 

tt/Rl b e l o n g s t o K. L e t b e l o n g s t o I d ( K ) a n d Φ^=Φ2 b e 

F . - r e g u l a r . H e n c e ΦΛ=Φ~ i s o f t h e f o r m # ι ( χ · » · · · » * • « ) = 

1 1 ¿ 1 3 1 ^n 
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= φ2(χ. ,.,.,χ. ). Let a0,...,an«A. Then 
1 η 

*ï / R 2Û allR2 ^ n W = an>}R2 = 

= ^2( ai a n ^ R 2 = ^ / R 2(t ailR2 r V R 2 ) . 
Thus the identity Φ1=Φ2 satisfied in U/R2. Let (xi >··· 

. ,.,χ. ) = φ (χ. ,.,.,χ. ) be an F -symmetrical identity 
n-1 30 -'m-1 

of type χ. Then identities: 

> ( X i ,.,.,χ. )) = φ (χ. ,.,.,χ. ), 
0 n-1 0 n-1 

0 (χ. ,.,.,χ. )) = φ (χ. , . , . , Χ . ) belong to Id (κ^) . 
2 D0 ]η-1 2 ]0 •'m-1 F 1 

Hence ••wan.1)R2^(b0,...,bji_1). We have 

*ï / R 2U aolR2 ^ n - l W = ^ a 0 V l ) l R 2 = 
= [ ^ 2 ( b 0 " - " V l ) ] R 2 = ^2 / R 2( [ b0 ]R2'"" [ bm-l ]R2)· 
Thus tl/R2eDC(F2) , what completes the proof. 

Corollary 1. If a variety DC satisfies condition (c^) and 
F2*0 then the variety Κ satisfies condition (c2), as well. 

The converse implication need not hold as it shows the 
following example: 

Example 2. Let G be the variety of all groups with the 
fundamental operations . Let F ={«}, F ={ }. Then the 

- 1 - 1 . . . . term (x ) satisfies condition (c2), but (cj_) is not 
satisfied. In fact, if there exists a term Φ(χ,γ) such that 
F(Φ(xry))={°} and φ(χ,y)=x belongs to Id(G), then we put 

-1 k -1 . . . yoy for χ and we get y =yey . However the last identity is 
not satisfied in a cyclic group of order k+1. 

F2 6. Equational bases for varieties . 
r ι 

Theorems 4, 5 gives a method of constructing an equational 
F2 base of Κ ρ ι· Let Β be an equational base of variety Κ and B p i 

be an equational base of Κ,,., let x»y be a fixed term in (c ) . r 1 1 
We define a set B' of identities as follows: 
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(6.1) identities (4.1),...,(4.8) belong to Β'; 
(6.2) if Φ±=Φ2 belongs to BuBpi and it is F^-regular then 
it belongs to B' ; 
(6.3) if Φ^~Φ2 belongs to and it is not F^regular 
then the identity Φ^'Φ2

=Φ2'Φ^ belongs to B' ; 
(6.4) if Φ1=Φ2 belongs to Β, Ρ(^1)λΕ2*β and Έ(φ1)εΤ1 

then the identity Φί~Φ2'Φ^ belongs to B' ; 
(6.5) if Φ·^Φ2 belongs to Β and F f ^ c F ^ F (φ 2) r\F 2*e> then 
the identity Φί'Φ2=Φ2 belongs to B' ; 
(6.6) if Φ ί

=Φ 2 belongs to Β and F(^1)nF2*e> F(#2)nF2*0 
then the identity Φ^~Φ2 belongs to B' ; 
(6.7) B' contains only identities defined by (6.1)-(6.6). 

Theorem 6. If Κ satisfies (c^) then set B' is an equation-
al base of Kp*. 

Proof. Let V(B' ) be the variety defined by B' . Since all 
identities from B' are either F.-regular or F_-symmetrical and 

F2 
belong to Id(K) , so Kp*cV(B' ) . Let U belongs to V(B') . The 
function β defined by (5.1) in tt satisfies (4.1)-(4.8) by 
(6.1), so by Theorem 3 U is the sum of an upper system <4(°) of 
algebras constructed as in (4.12). By (6.2), (6.3), B

F 1
C 

cld(U^) , for each iel and by (6.2)-(6.6), BcId(Uu) . So ^<=Κρι F2 F2 for i*u and U eK. By Theorem 4, ÍUK*,. Thus V(B')cOC,, what M ri ri 
completes the proof. 

Corollary 2. If a variety IK of type τ satisfies (c1) , 
F2 |F|<*0, |B|<*0 and |Bpi|<*0 then K p i is finitely based. 

Example 3. Consider the variety IB of all Boolean algebras 
of type τ : F — w h e r e F={ + ,<>,'}, τ(+) =τ(») =2 and τ(')=1. Put 
F^íh-,®), F2={'}. Then B p i is the variety of distributive 
lattices. Denote 0(x,y)=x+(x«y). By Theorem 4, each algebra 

F2 from xs the sum of an upper (F., F_)-system of algebras, f 1 1 £ 
where U^ are distributive lattices for i*u and U is Boolean 

F2 . . algebra. By Corollary 2. the variety B„1 is finitely based. 
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Example 4. Consider the variety Ρ of rings of type τ:F—>N 
where F={+,·,-}, τ(·)=τ(+)=2 and τ(-)=1. Put F1={+,-}, 
F ={·}. Then is the variety of abelian groups. We can 

F2 accept 0(x,y)=x+(y+(-y) ) . So each tleP_n is the sum of an r ι 
upper (FlfF2)-system group and tlu belongs to P. If Ρ is 
. . F2 . . finitely based then P p i is finitely based. 

Let Κ be a variety of type τ satisfying (c2) for a fixed 
term ψ(χ). Let sets B, B(F2) be egational bases of Κ and 
K(F2), respectively. We define a set B" of identities as 
follows: 

(6.8) the identity 0(f(x Q,..,x T ( f }_ χ))=fW(x 0),··,0(x x ( f )) 
belongs to B" for each feF; 

(6.9) the identity ^(f(xQ,...*T(fj_1)) =f(x„,..(x ¿),·.· 
•••'x

X(f)_l) belongs to B", for f«F, i«{0,...,τ(f)-1}; 

(6.10) if b el° n9 s t o B then the identity φ(φ^)=ψ(Φ2) 
belongs to Β"; 

(6.11) if Φ1=Φ2 belongs to Β(F2) and F ^ ) ,F(02) c F ^ then 
Φ^=Φ2 belongs to B"; 

(6.12) if Φ 1=Φ 2 belongs to B(F2),F(^1)nF2*0, F(02)nF2*e then 
Ψ(Φ1)=Φ1, Ψ(Φ2)

=*2 belon9 B"'· 

(6.13) B" contains only identities defined by (6.8)-(6.12). 

Theorem 7. If a variety Κ satisfies (c2) then the set B" 
F2 is an equational base of K
F 1 · 

Proof. Let V(B") be the variety defined by B". Since the 
identities from B" are either F^-regular or F2-symmetrical and 

belong to Id(K), so Kp^cV(B'). Let UeV(B"). Then the 

relations RI, R2 defined as in (5.2), (5.3) are congruences of 
U and Rlr\R2=<<> by (6.8), (6.9). Hence U is isomorphic to a 
subdirect product of U/Rl and U/R2. By (6.10)-(6.12), (U/Rl)eK 

F2 F2 and (U/R2)eK(F2), so UeK** by Theorem 5. Thus V(B")=Kp^. 
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Corollary 3. If Κ satisfies , |F|<*Q, |B|<*0/ 

ι ι F2 |B(F 2)|<χ 0 then K p i is finitely based. 

F2 

Corollary 4. If Κ satisfies ( c ^ then K F 1 covers K. 

In fact, the variety VCR^.uS,,.) defined by all F.-regular ΓΙ Γ£ 1 and all F 2-symmetrical identities of type τ is equationally 

F2 complete by Theorem 2. If U=y(j4(»)) belongs to and 

r 1 

111=1 then tleK. If |l|*2 then the relation R from (4.9) 

satisfies assumptions from [15]. Thus by [15] we get the 

statement. 
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