

Alina Wojtunik

THE GENERALIZED SUM OF AN UPPER SEMILATTICE
ORDERED SYSTEM OF ALGEBRAS

0. Preliminaries

In [10] a construction of algebras was defined called the sum of a direct system of algebras. This construction is called now the Płonka sum in literature. In [5] and [14] a different construction was considered based on the notion of a retraction of an algebra. In this paper this construction will be called the extension of an algebra by a retraction.

Let τ be a type of algebras. An identity $\phi=\psi$ is called regular (see 10) if the sets of variables in ϕ and ψ coincide. Regular varieties i.e. defined by regular identities were considered e.g. in [4], [6]-[11]. In particular, under some assumptions algebras from regular varieties can be represented by Płonka sums (see [11]). An identity $\phi=\psi$ is called non-trivializing if it is of the form $x=x$ or none of ϕ and ψ is a single variable. It was proved in [10] that a nontrivial Płonka sum preserves all regular identities satisfied in every component and does not preserve any other. On the other hand the extension of an algebra U by a retraction preserves all non-trivializing identities of U (see [5]). For a class K of algebras of type τ we denote by $Id(K)$ the set of all identities of type τ satisfied in each member of K . If U is an algebra we shall write $Id(U)$ instead of $Id(\{U\})$.

J.Płonka asked the following question: let K be a variety of algebras and K^* be a variety of the same type defined by some regular and some non-trivializing identities from $Id(K)$. Can algebras from K^* be represented by means of algebras from

K. Note that if K satisfies an identity $f(x,y)=x$ for some term $f(x,y)$ containing x and y and K_R is the variety defined by all regular identities from $Id(K)$, then every algebra from K_R is the Płonka sum of algebras from K (see [11]). In this paper we answer the above question of Płonka for a class K^* defined by some natural choice of regular and non-trivializing identities from $Id(K)$. Namely, we define a construction of algebras, called the generalized sum of an upper $\{F_1, F_2\}$ -semilattice ordered system of algebras that generalizes both the Płonka sum and the extension of an algebra by a retraction. Under some assumption on K and K^* we represent algebras from K^* by means of algebras from K using the above construction. In this way we also obtain some generalizations of theorems from [10], [11], [13] and [5].

1. Definition of the generalized sum of an upper (F_1, F_2) -semilattice ordered system of algebras

Let $\tau: F \rightarrow N$ be a fixed type of algebras.

Definition 1. A quadruple

$$(1.1) \quad \mathcal{A} = \langle (F_1, F_2), (I, \leq), \{u_i\}_{i \in I}, \{h_i^j\}_{i, j \in I, i \leq j} \rangle$$

will be called an upper (F_1, F_2) -semilattice ordered system of algebras, or briefly an upper (F_1, F_2) -system of algebras, if it satisfies the following conditions:

$$(i) \quad F_1 \cup F_2 = F, \quad F_1 \cap F_2 = \emptyset, \quad \{f \in F: \tau(f) = 0\} \subset F_2.$$

(ii) (I, \leq) is a join-semilattice; if $F_2 \neq \emptyset$ then (I, \leq) has the greatest element u .

(iii) u is an algebra of type τ and $u = (A_u; F^u)$; for every $i \in I$, $i \neq u$, u_i is an algebra of type $\tau|_{F_1}$ and $u_i = (A_i; F_1^i)$, where $A_i \cap A_j = \emptyset$ if $i \neq j$.

(iv) The set $\{h_i^j\}_{i, j \in I, i \leq j}$ satisfies the following:

(a₁) for every $i, j \in I$, $i \leq j$, h_i^j is a mapping of A_i into A_j ;

(a₂) for every $i \in I$, h_i^i is the identity map on A_i ;

(a₃) for every $i, j \in I$ such that $i \leq j \neq u$, h_i^j is a homomorphism of U_i into U_j ;

(a₄) for every $i \in I$, $i \neq u$, h_i^u is a homomorphism of U_i into the reduct $(A_u; F_1^u)$ of U_u ;

(a₅) for every $i, j, k \in I$ such that $i \leq j \leq k$ we have $h_j^k \circ h_i^j = h_i^k$.

For an upper (F_1, F_2) -system \mathcal{A} of algebras we define a new algebra $\mathcal{G}(\mathcal{A})$ of type τ putting $\mathcal{G}(\mathcal{A}) = (\bigcup_{i \in I} A_i; F^{\mathcal{G}})$, where for $f \in F$, $a_j \in A_i$, $j = 0, \dots, \tau(f)-1$ the operation $f^{\mathcal{G}}$ is defined by the formula:

$$f^{\mathcal{G}}(a_0, \dots, a_{\tau(f)-1}) = \begin{cases} f^k(h_{i_0}^k(a_0), \dots, h_{i_{\tau(f)-1}}^k(a_{\tau(f)-1})) & \text{for } f \in F_1 \text{ and } k = \sup\{i_0, \dots, i_{\tau(f)-1}\} \\ f^u(h_{i_0}^u(a_0), \dots, h_{i_{\tau(f)-1}}^u(a_{\tau(f)-1})), & \text{for } f \in F_2 \end{cases}$$

The algebra $\mathcal{G}(\mathcal{A})$ will be called the generalized sum of the upper (F_1, F_2) -semilattice ordered system \mathcal{A} of algebras or briefly, the sum of the upper (F_1, F_2) -system \mathcal{A} of algebras.

The following may be checked easily.

(v) U_u is a subalgebra of $\mathcal{G}(\mathcal{A})$.

(vi) If $i \neq u$ then U_i is a subalgebra of the reduct $(\bigcup_{i \in I} A_i; F_1^u)$ of $\mathcal{G}(\mathcal{A})$.

(vii) If $F_2 = \tau^{-1}(\{0\})$ then the definition of $\mathcal{G}(\mathcal{A})$ is equivalent to that of the Płonka sum (see [13]).

(viii) If $F_1 = \emptyset$ then $\mathcal{G}(\mathcal{A})$ is an extension by a retraction of the algebra U_u (see [5]). Conversely, if algebra U is an extension by a retraction r of an algebra U_0 and $A \neq A_0$ then U can be represented as the generalized sum of the upper (\emptyset, F) -system:

$$\mathcal{A} = <(\emptyset, F), (-1, 0), \{U_{-1}, U_0\}, \{h_{-1}^{-1}, h_0^0, h_{-1}^0\}>,$$

where $U_{-1} = (A - A_0; \emptyset)$, h_i^1 is the identity map on A_i , $i \in \{-1, 0\}$ and $h_{-1}^0 = r|_{A - A_0}$.

2. F_0 -regular identities and F_0 -symmetrical identities

In this section we consider identities of some special form which are preserved by the construction defined in section 1.

Let $\tau: F \rightarrow T$ be a type of algebras. If ϕ is a term of type τ we denote by $F(\phi)$ the set of all fundamental operation symbols occurring in ϕ and by $\text{Var}(\phi)$ - the set of all variables occurring in ϕ . Let F_0 be a subset of F .

Definition 2. An identity $\phi=\psi$ of type τ will be called F_0 -regular iff $F(\phi) \subset F_0$, $F(\psi) \subset F_0$ and $\text{Var}(\phi) = \text{Var}(\psi)$.

Every F_0 -regular identity is regular in the sens of [10], [13]. Every regular identity is F -regular.

Definition 3. An identity $\phi=\psi$ of type τ will be called F_0 -symmetrical iff $F(\phi) \cap F_0 \neq \emptyset$ and $F(\psi) \cap F_0 \neq \emptyset$.

Remark 1. Note that an identity $\phi=\psi$ of type τ is non-trivializing (see [12]) iff it is of the form $x=x$ or it is F -symmetrical.

Example 1. Let $F=\{+, \circ, '\}$, $\tau(+)=\tau(\circ)=2$, $\tau(')=1$, $F_1=\{+, \circ\}$ and $F_2=\{'\}$. Then identity $x+y=x \circ y$ is F_1 -regular, the identity $x+(x \circ x')=(x')'$ is F_2 -symmetrical and the identities $x+(x \circ y)=x$, $x=x'$ are neither F_1 -regular nor F_2 -symmetrical.

Let F_1 , F_2 be sets satisfying (i) from section 1. Denote by R_{F1} the set of all F_1 -regular identities of type τ and by S_{F2} the set of all F_2 -symmetrical identities of type τ . Then

(ix) The set $R_{F1} \cup S_{F2}$ is an equational theory in the sense of Tarski (see [16]).

If ϕ is a term of type τ and $\text{Var}(\phi)=\{x_{j_0}, \dots, x_{j_{n-1}}\}$ then we shall write $\phi(x_{j_0}, \dots, x_{j_{n-1}})$ and we shall denote by $\phi^U(a_0, \dots, a_{n-1})$ the realization of ϕ in U obtained by substituting elements a_0, \dots, a_{n-1} of A for $x_{j_0}, \dots, x_{j_{n-1}}$. We shall denote by ϕ^i the realization of ϕ in an algebra U_i and by $\phi^{\mathcal{A}}$ - the realization of ϕ in \mathcal{A} .

Lemma 1. Let \mathcal{A} be the sum of an upper (F_1, F_2) system

\mathcal{A} defined by (1.1), $\phi(x_{j_0}, \dots, x_{j_{n-1}})$ be a term of type τ and $a_m \in A_i$ for $m=0, \dots, n-1$. Then we have:

(b₁) if $F(\phi) \subset F_1$ then

$$\phi^g(a_0, \dots, a_{n-1}) = \phi^k(h_{i_0}^k(a_0), \dots, h_{i_{n-1}}^k(a_{n-1})),$$

where $k = \sup\{i_0, \dots, i_{n-1}\}$;

(b₂) if $F_2 \cap F(\phi) \neq \emptyset$ then

$$\phi^g(a_0, \dots, a_{n-1}) = \phi^u(h_{i_0}^u(a_0), \dots, h_{i_{n-1}}^u(a_{n-1})).$$

Proof. The proof of (b₁) is analogous to that of Theorem 1 in [10]. The proof of (b₂) is by induction on the complexity of ϕ .

Since $F_2 \cap F(\phi) \neq \emptyset$ so ϕ is not a single variable. Hence ϕ is of the form:

$$f(\phi_0(x_0^0, \dots, x_{n_0-1}^0), \phi_1(x_0^1, \dots, x_{n_1-1}^0), \dots, \phi_{r-1}(x_0^{r-1}, \dots, x_{n_{r-1}-1}^{r-1})), \text{ where } r = \tau(f).$$

If ϕ is of the form $f(x_{j_0}, \dots, x_{j_{\tau(f)-1}})$, where $f \in F_2$, then the statement follows from the definition of the operation in $\mathcal{G}(\mathcal{A})$.

Let ϕ be realized in p 'th step, $p > 2$, $F(\phi) \cap F_2 \neq \emptyset$ and let (b₂) be true for each term obtained in q 'th step, for every $2 \leq q < p$. Let:

$$a_0^0 \in A_{i_0}^0, \dots, a_{n_0-1}^0 \in A_{i_{n_0-1}}^0, a_0^1 \in A_{i_0}^1, \dots, a_{n_1-1}^1 \in A_{i_{n_1-1}}^1, \dots, a_0^{r-1} \in A_{i_0}^{r-1}, \dots, a_{n_{r-1}-1}^{r-1} \in A_{i_{n_{r-1}-1}}^{r-1}.$$

Then

$$f^g(\phi_0^g(a_0^0, \dots, a_{n_0-1}^0), \phi_1^g(a_0^1, \dots, a_{n_1-1}^1), \dots,$$

$$\dots, \phi_{r-1}^g(a_0^{r-1}, \dots, a_{n_{r-1}-1}^{r-1})) =$$

$$= f^g(\phi_0^{k_0}(h_{i_0}^{k_0}(a_0^0), \dots, h_{i_{n_0-1}}^{k_0}(a_{n_0-1}^0)), \phi_1^{k_1}(h_{i_0}^{k_1}(a_0^1), \dots,$$

$$\dots, h_{i_{n_1-1}}^{k_1}(a_{n_1-1}^0), \dots, \phi_{r-1}^{k_{r-1}}(h_{i_0}^{k_{r-1}}(a_0^{r-1}), \dots, h_{i_{n_{r-1}-1}}^{k_{r-1}}))),$$

where

$$k_s = \begin{cases} u, & \text{if } F(\phi_s) \cap F_2 \neq \emptyset \\ \sup\{i_0^s, i_1^s, \dots, i_{n_s-1}^s\}, & \text{if } F(\phi_s) \subset F_1, \text{ for } s=0, \dots, r-1. \end{cases}$$

We have two cases to consider:

(c₁) $f \in F_1$ and there exists $s_0 \in \{0, \dots, r-1\}$ such that

$$F(\phi_{s_0}) \cap F_2 \neq \emptyset,$$

(c₂) $f \in F_2$.

In case (c₁) we have $\sup\{k_0, \dots, k_{r-1}\} = u$ so both in case (c₁) and (c₂) it follows that

$$\begin{aligned} & f^s(\phi_0^s(a_0^0, \dots, a_{n_0-1}^0), \phi_1^s(a_0^1, \dots, a_{n_1-1}^1), \dots, \phi_{r-1}^s(a_0^{r-1}, \dots, a_{n_{r-1}-1}^{r-1})) = \\ & = f^u(h_{k_0}^u(\phi_0^{k_0}(h_{i_0}^{k_0}(a_0^0), \dots, h_{i_{n_0-1}}^{k_0}(a_{n_0-1}^0))), h_{k_1}^u(\phi_1^{k_1}(h_{i_0}^{k_1}(a_0^1), \dots \\ & \dots, h_{i_{n_1-1}}^{k_1}(a_{n_1-1}^1))), \dots, h_{k_{r-1}}^u(\phi_{r-1}^{k_{r-1}}(h_{i_0}^{k_{r-1}}(a_0^{r-1}), \dots \\ & \dots, h_{i_{n_{r-1}-1}}^{k_{r-1}}(a_{n_{r-1}-1}^{r-1}))) = f^u(\phi_0^u(h_{k_0}^u(h_{i_0}^{k_0}(a_0^0), \dots \\ & \dots, h_{i_{n_0-1}}^{k_0}(a_{n_0-1}^0))), \phi_1^u(h_{k_1}^u(h_{i_0}^{k_1}(a_0^1)), \dots \\ & \dots, h_{k_1}^u(h_{i_{n_1-1}}^{k_1}(a_{n_1-1}^1))), \dots, \phi_{r-1}^u(h_{k_{r-1}}^u(h_{i_0}^{k_{r-1}}(a_0^{r-1})), \dots \\ & \dots, h_{k_{r-1}}^u(h_{i_{n_{r-1}-1}}^{k_{r-1}}(a_{n_{r-1}-1}^{r-1}))) = f^u(\phi_0^u(h_{i_0}^u(a_0^0), \dots \\ & \dots, h_{i_{n_0-1}}^u(a_{n_0-1}^0)), \phi_1^u(h_{i_0}^u(a_0^1), \dots, h_{i_{n_1-1}}^u(a_{n_1-1}^1)), \dots \\ & \dots, \phi_{r-1}^u(h_{i_0}^u(a_0^{r-1}), \dots, h_{i_{n_{r-1}-1}}^u(a_{n_{r-1}-1}^{r-1}))). \end{aligned}$$

Theorem 1. Let \mathcal{A} be an upper (F_1, F_2) -system defined in (1.1). Then $\mathcal{G}(\mathcal{A})$ satisfies all F_1 -regular identities which are satisfied in every U_i , satisfies all F_2 -symmetrical identities which are satisfied in U_u and does not satisfy any other.

Proof. The proof of the first statement is analogous to the proof of Theorem 1 in [10]. To prove the second, let $\phi(x_{j_0}, \dots, x_{j_{n-1}}) = \psi(x_{k_0}, \dots, x_{k_{m-1}})$ be an F_2 -symmetrical identity satisfied in U_u . Then $F(\phi) \cap F_2 \neq \emptyset$ and $F(\psi) \cap F_2 \neq \emptyset$. Let $a_0 \in A_{i_0}, \dots, a_{n-1} \in A_{i_{n-1}}, b_0 \in A_{t_0}, \dots, b_{m-1} \in A_{t_{m-1}}$. By Lemma 1 we have $\phi^u(a_0, \dots, a_{n-1}) = \phi^u(h_{i_0}^u(a_0), \dots, h_{i_{n-1}}^u(a_{n-1}))$ and $\psi^u(b_0, \dots, b_{m-1}) = \psi^u(h_{t_0}^u(b_0), \dots, h_{t_{m-1}}^u(b_{m-1}))$. Then $\phi^u(h_{i_0}^u(a_0), \dots, h_{i_{n-1}}^u(a_{n-1})) = \psi^u(h_{t_0}^u(b_0), \dots, h_{t_{m-1}}^u(b_{m-1}))$. Hence $\phi^u(a_0, \dots, a_{n-1}) = \psi^u(b_0, \dots, b_{m-1})$.

By (v), $Id(\mathcal{G}(\mathcal{A})) \subset Id(U_u)$, so the second statement holds. Now let $(\phi = \psi) \in Id(U_u)$ be such that $F(\phi) \cap F_2 \neq \emptyset$ and $F(\psi) \subset F_1$. Since $|I| > 1$, there exists $i_0 \in I$ with $i_0 \neq u$. If $a_0 \in A_{i_0}$, then $\phi^u(a_0, \dots, a_0) = \phi^u(h_{i_0}^u(a_0), \dots, h_{i_0}^u(a_0)) = \psi^u(a_0, \dots, a_0) = \psi^u(b_0, \dots, b_0)$. Thus $(\phi = \psi) \notin Id(\mathcal{G}(\mathcal{A}))$.

3. Varieties defined by F_1 -regular and F_2 -symmetrical identities

Let a type $\tau: F \rightarrow N$ be given and let F_1, F_2 satisfy condition (i) of (1.1). In this section we generalize some of results from [7].

Consider an algebra $U(F_1, F_2) = (\{a, b\}; F^U)$ of type τ , where

$$f^U(a_0, \dots, a_{\tau(f)-1}) = \begin{cases} a_0 & \text{if } a_0 = \dots = a_{\tau(f)-1} \\ b & \text{otherwise} \end{cases} \quad \text{for } f \in F_1,$$

$$f^U(a_0, \dots, a_{\tau(f)-1}) = b \quad \text{for } f \in F_2.$$

(x) The algebra $U(F_1, F_2)$ is the sum of an upper (F_1, F_2) -system of 1-element algebras.

Indeed, consider 1-element algebras $U_1 = (\{a\}; F_1^1)$,

$u_2 = (\{b\}; F^2)$ and define a mapping $h_1^2: \{a\} \rightarrow \{b\}$, $h_1^2(a) = b$. Then $u(F_1, F_2) = g(4)$, where

$A = \langle (F_1, F_2), (\{1, 2\}, \leq), \{u_1, u_2\}, \{h_i^j\}_{i, j \in \{1, 2\}} \rangle$, h_i^j are identity maps.

(xi) Algebra $u(F_1, F_2)$ satisfies all F_1 -regular identities, all F_2 -symmetrical identities of type τ and does not satisfy any other.

This follows by (x) and Theorem 1 from the fact that in a 1-element algebra all identities of its type are satisfied,

(xii) For every variety K of type τ we have $Id(K) \subset R_{F_1} \cup S_{F_2}$ iff $u(F_1, F_2) \in K$.

Note that property (xii) was proved in [7] in the case $F_1 = F_2$.

Let E be a set of identities of type τ . Denote by $V(E)$ the variety of type τ defined by E .

We accept the following notation: if an identity $\phi = \psi$ is F_1 -regular we shall write $\phi = \psi$, if $\phi = \psi$ is F_2 -symmetrical

we shall write $\phi =_{F_1}^2 \psi$.

Theorem 2. The variety $V(R_{F_1} \cup S_{F_2})$ is equationally complete.

Proof. $V(R_{F_1} \cup S_{F_2})$ contains $u(F_1, F_2)$ so it is non-degenerated.

Let $(\phi = \psi) \notin Id(V(R_{F_1} \cup S_{F_2}))$, let us add it to $Id(V(R_{F_1} \cup S_{F_2}))$. Without least of generality it is enough to consider two cases:

(1) $F(\phi) \cap F_2 \neq \emptyset$ and $F(\psi) \subset F_1$,

(2) $F(\phi), F(\psi) \subset F_1$ and $x \in (Var(\phi) - Var(\psi))$.

In case (1) the identity $\phi = \psi$ must be of the form:

(3.1) $\phi = \psi(x_{j_1}, \dots, x_{j_m})$

where ϕ is a nullary term or

(3.2) $\phi(x_{i_1}, \dots, x_{i_n}) = \psi(x_{j_1}, \dots, x_{j_m})$.

If we have (3.1) then substituting x for all variables in (3.1) we get

$$(3.3) \quad \phi = \psi(x, \dots, x).$$

$$\text{So } x = \underset{F_1}{\psi}(x, \dots, x) = \phi = \underset{F_1}{\psi}(y, \dots, y) = y.$$

If we have (3.2) then substituting x for all variables in (3.2) we get

$$(3.4) \quad \phi(x, \dots, x) = \psi(x, \dots, x).$$

So we have

$$x = \psi(x, \dots, x) = \phi(x, \dots, x) \underset{F_1}{=} \underset{F_1}{\phi}(y, \dots, y) = y.$$

Now we consider (2). Then $\phi = \psi$ must be of the form:

$$(3.5) \quad \phi(x) = \psi(x_{i_1}, \dots, x_{i_n})$$

or

$$(3.6) \quad \phi(x, x_{i_1}, \dots, x_{i_n}) = \psi(x_{j_1}, \dots, x_{j_m}).$$

If we have (3.5) then substituting y for all variables different from x in (3.5) we get

$$(3.7) \quad \phi(x) = \psi(y, \dots, y).$$

So we have $x = \phi(x) = \psi(y, \dots, y) = y$. If we have (3.6) then

substituting y for all variables different from x in (3.6) we get

$$(3.8) \quad \phi(x, y, \dots, y) = \psi(y, \dots, y).$$

Substituting x for y and y for x in (3.8) we get

$$(3.9) \quad \phi(y, x, \dots, x) = \psi(x, \dots, x).$$

So we have

$$x = \psi(x, \dots, x) = \phi(y, x, \dots, x) = \phi(x, y, \dots, y) = \psi(y, \dots, y) = y.$$

Let K be a variety of algebras of type τ .

Denote by $K_{F_1}^{F_2}$ the variety defined by all F_1 -regular identities and all F -symmetrical identities satisfied in K , denote by K_{F_1} the variety of algebras of type $\tau|F_1$ defined by all identities of type $\tau|F_1$ belonging to $Id(K)$. Let $D(\tau)$ denote the variety of type τ defined by the identity $x=y$. We have:

$$(xiii) \quad V(R_{F_1} \cup S_{F_2}) = D(\tau)_{F_1}^{F_2}$$

$$(xiv) \quad K_{F_1}^{F_2} = K \vee V(R_{F_1} \cup S_{F_2})$$

(xv) K is defined only by F_1 -regular identities and F_2 -symmetrical identities iff K contains every sum of an upper (F_1, F_2) system \mathcal{A} of algebras $\{u_i\}_{i \in I}$, where $u_i \in K$ and $u_i \in K_{F_1}$, for $i \neq u$.

The necessity follows from Theorem 1.

The sufficiency follows from the fact that $u(F_1, F_2)$ belongs to K and from (x), we have $Id(K) \subset R_{F_1} \cup S_{F_2}$.

4. The upper (F_1, F_2) -partition function

In this section we give some generalization of the notion of a partition function defined in [10].

Let us fix a type $\tau: F \rightarrow N$ and sets F_1, F_2 satisfying (i) in (1,1).

Let $u = (A; F^u)$ be an algebra of type τ .

Definition 4. A mapping $\cdot: A^2 \rightarrow A$ will be called an upper (F_1, F_2) -partition function of u if \cdot satisfies the following formulas for all $a, b, c, a_0, \dots, a_{\tau(f)-1} \in A$.

$$(4.1) \quad a \cdot a = a;$$

$$(4.2) \quad (a \cdot b) \cdot c = a \cdot (b \cdot c);$$

$$(4.3) \quad a \cdot (b \cdot c) = a \cdot (c \cdot b);$$

$$(4.4) \quad f^u(a_0, \dots, a_{\tau(f)-1}) \cdot b = f^u(a_0 \cdot b, \dots, a_{\tau(f)-1} \cdot b), \quad \text{for all } f \in F;$$

$$(4.5) \quad f^u(a_0, \dots, a_{\tau(f)-1}) \cdot b = f^u(a_0, \dots, a_{\tau(f)-1}), \quad \text{for all } f \in F_2;$$

$$(4.6) \quad f^u(a_0, \dots, a_{\tau(f)-1}) \cdot a_i = f^u(a_0, \dots, a_{\tau(f)-1}), \quad \text{for all } f \in F_1 \text{ and } i \in \{0, \dots, \tau(f)-1\};$$

$$(4.7) \quad b \cdot f^u(a_0, \dots, a_{\tau(f)-1}) = b \cdot f^u(b \cdot a_0, \dots, b \cdot a_{\tau(f)-1}), \quad \text{for all } f \in F_1;$$

$$(4.8) \quad a \cdot f^u(a, \dots, a) = a, \quad \text{for all } f \in F_1.$$

In [10] J. Płonka defined the notion of partition function by means of which, he decomposed an algebra into the sum of a direct system of subalgebras in the following way:

(1°) A relation R defined by

$$(4.9) \quad aRb \text{ iff } a \cdot b = a \text{ and } b \cdot a = a$$

is an equivalence on A . Let $A/R=\{A_i\}_{i \in I}$

(2^o) A relation \leq defined by

(4.10) $i \leq j$ iff $\forall_{a \in A_i} \forall_{b \in A_j} b \cdot a = b$

is a join-semilattice order in I .

(3^o) Each $U_i = (A_i; \{f^U|A_i\}_{f \in F})$ is a subalgebra of U .

(4^o) Each mapping $h_i^j: A_i \rightarrow A_j$ for $i, j \in I$, $i \leq j$ defined by

(4.11) $h_i^j(x) = x \cdot b$, $b \in A_j$

is a homomorphism of U_i into U_j .

(5^o) $U = \mathcal{F}(A)$, where $\mathcal{F} = \langle (I, \leq), \{U_i\}_{i \in I}, \{h_i^j\}_{i, j \in I, i \leq j} \rangle$.

Theorem 3. Every upper (F_1, F_2) -partition function of $U = (A; F)$ establishes a decomposition of this algebra into the sum of an upper (F_1, F_2) -semilattice ordered system of algebras. More precisely, U is the sum of an upper (F_1, F_2) -system.

(4.12) $\mathcal{F}(\cdot) = \langle (F_1, F_2), (I, \leq), \{U_i\}_{i \in I}, \{h_i^j\}_{i, j \in I, i \leq j} \rangle$,

where $A/R=\{A_i\}_{i \in I}$: R is defined as in (4.9);

$U_i = (A_i; \{f^U|A_i\}_{f \in F_1})$, for $i \in I - \{u\}$, $U_u = (A_u; \{f^U|A_u\}_{f \in F})$; the relation \leq and the mappings h_i^j are defined as in (4.10) and (4.11).

Proof. Analogously as in [10] one proves the following:

(α_1) the relation defined as in (4.9) is an equivalence;

(α_2) the relation \leq defined in (4.10) is a join-semilattice order;

(α_3) $(A_i; \{f^U|A_i\}_{f \in F_1})$ is a subalgebra of $(A; F_1)$ for each $i \in I$;

(α_4) for $i, j \in I$, $i \leq j$, h_i^j defined as in (4.10) is a homomorphism of $(A_i; \{f^U|A_i\}_{f \in F_1})$ into $(A_j; \{f^U|A_j\}_{f \in F_1})$.

each h_i^i is identity map and $h_j^k \cdot h_i^j = h_i^k$ for every $i, j, k \in I$, $i \leq j \leq k$.

We have to prove, that if $F_2 \neq \emptyset$ then there exists the greatest element u in I ; U_u is a subalgebra of U and $U = \varphi(\mathcal{A}(\circ))$.

Let $f \in F_2$ and let $a_0, \dots, a_{\tau(f)-1} \in A$. Then $f^U(a_0, \dots, a_{\tau(f)-1}) \in A_{i_0}$ for some $i_0 \in I$. By (4.5), for every $a \in A$ we have $f^U(a_0, \dots, a_{\tau(f)-1}) \circ a = f^U(a_0, \dots, a_{\tau(f)-1})$. Thus i_0 is the greatest element in I and we can put $u = i_0$. Moreover, the values of all f^U belong to A_u for $f \in F_2$ and consequently, U_u is a subalgebra of U . Let $f \in F$, $a_0 \in A_{i_0}, \dots, a_{\tau(f)-1} \in A_{i_{\tau(f)-1}}$. Analogously as in [10] we show that $f^U(a_0, \dots, a_{\tau(f)-1}) = f^U(a_0, \dots, a_{\tau(f)-1})$ for $f \in F_1$. If $f \in F_2$ then by (4.4), (4.5) we have

$$\begin{aligned} f^U(a_0, \dots, a_{\tau(f)-1}) &= f^U(h_{i_0}^U(a_0), \dots, h_{i_{\tau(f)-1}}^U(a_{\tau(f)-1})) = \\ &= f^U(a_0 \circ z, \dots, a_{\tau(f)-1} \circ z) = f^U(a_0, \dots, a_{\tau(f)-1}) \circ z = \\ &= f^U(a_0, \dots, a_{\tau(f)-1}) \end{aligned}$$

for some $z \in A_u$. Thus the operations in U and $\varphi(\mathcal{A}(\circ))$ coincide.

5. Representation of algebras in the variety $K_{F_1}^{F_2}$.

Let K be a variety of algebras of type τ . Consider the following condition.

(c₁) There exists a term $\phi(x, y)$ of type τ such that, $F(\phi(x, y)) \subset F_1$ and the identity $\phi(x, y) = x$ belongs to $Id(K)$.

Theorem 4. If a variety K of type τ satisfies (c₁), then algebra U belongs to $K_{F_1}^{F_2}$ iff U is the sum of an upper (F_1, F_2) -semilattice ordered system of algebras $\{U_i\}_{i \in I}$, where $U_i \in K_{F_1}$ for $i \neq u$ and $U_u \in K$.

Proof. Let $U \in K_{F_1}^{F_2}$ and let $\phi(x, y)$ be a fixed binary term in (c₁). Define a binary operation $\circ : A^2 \rightarrow A$ by:

$$(5.1) \quad a \circ b = \phi^U(a, b), \quad \text{for } a, b \in A.$$

Then \circ defined by (5.1) satisfies conditions (4.1)-(4.8).

Then by Theorem 3 the function \cdot induces a decomposition of \mathbb{U} into the sum of an upper (F_1, F_2) -semilattice ordered system of algebras \mathbb{U}_i , $i \in I$.

Let $\phi_1 = \phi_2$ be an identity of type $\tau|F_1$ belonging to $\text{Id}(\mathbb{K})$. Then the identity $\phi(\phi_1, \phi_2) = \phi(\phi_2, \phi_1)$ belongs to $\text{Id}(\mathbb{K}_{F_1}^{F_2})$. Moreover, by the definition of A_i , the identities $\phi(\phi_1, \phi_2) = \phi_1$, $\phi(\phi_2, \phi_1) = \phi_2$ are satisfied in \mathbb{U}_i . Hence the identity $\phi_1 = \phi_2$ is satisfied in \mathbb{U}_i .

Let $\phi_1 = \phi_2$ be an identity of type τ but not of type $\tau|F_1$ and $(\phi_1 = \phi_2) \in \text{Id}(\mathbb{K})$. Then the identity $\phi(\phi_1, \phi_2) = \phi(\phi_2, \phi_1)$ belongs to $\text{Id}(\mathbb{K}_{F_1}^{F_2})$, so it is satisfied in \mathbb{U}_u by (v), since the identities $\phi(\phi_1, \phi_2) = \phi_1$, $\phi(\phi_2, \phi_1) = \phi_2$ are satisfied in \mathbb{U}_u . Thus \mathbb{U}_u belongs to \mathbb{K} . The necessity follows from Theorem 1.

Algebras from $\mathbb{K}_{F_1}^{F_2}$ can be represented in another way as it is shown below.

For a variety \mathbb{K} we denote by $\mathbb{K}(F_2)$ the variety defined by all F_1 -regular identities belonging to $\text{Id}(\mathbb{K})$ and all F_2 -symmetrical identities of type τ .

For two varieties \mathbb{K}_1 , \mathbb{K}_2 of type τ we denote by $\mathbb{K}_1 \otimes \mathbb{K}_2$ the class of all algebras \mathbb{U} isomorphic to a subdirect product of algebras \mathbb{U}_1 and \mathbb{U}_2 , where $\mathbb{U}_1 \in \mathbb{K}_1$ and $\mathbb{U}_2 \in \mathbb{K}_2$.

Consider the following condition.

(c₂) There exists a term $\psi(x)$ such that $F(\psi(x)) \cap F_2 \neq \emptyset$ and the identity $\psi(x) = x$ belongs to $\text{Id}(\mathbb{K})$.

Theorem 5. If a variety \mathbb{K} satisfies condition (c₂) then $\mathbb{K}_{F_1}^{F_2} = \mathbb{K} \otimes \mathbb{K}(F_2)$.

Proof. Let a variety \mathbb{K} satisfies condition (c₂) for a fixed term $\psi(x)$. Let $\mathbb{U} = (A; F^{\mathbb{U}})$ and $\mathbb{U} \in \mathbb{K}_{F_1}^{F_2}$. Consider two relations R1, R2 on A defined as follows:

$$(5.2) \quad aR1b \text{ iff } \psi^{\mathbb{U}}(a) = \psi^{\mathbb{U}}(b)$$

$$(5.3) \quad aR2b \text{ iff } a=b \text{ or } \psi^{\mathbb{U}}(a) = a \text{ and } \psi^{\mathbb{U}}(b) = b.$$

Obviously R1, R2 are equivalence relations on A and $R1 \cap R2 = \omega$, where $\omega = \{(a, a) : a \in A\}$. We prove that R1 and R2 are congruences of \mathbb{U} . Let $f \in F$ and $a_0 R1 b_0, \dots, a_{\tau(f)-1} R1 b_{\tau(f)-1}$. Then:

$\psi^{\mathbb{U}}(a_0) = \psi^{\mathbb{U}}(b_0), \dots, \psi^{\mathbb{U}}(a_{\tau(f)-1}) = \psi^{\mathbb{U}}(b_{\tau(f)-1})$. Hence
 $f^{\mathbb{U}}(\psi^{\mathbb{U}}(a_0), \dots, \psi^{\mathbb{U}}(a_{\tau(f)-1})) = f^{\mathbb{U}}(\psi^{\mathbb{U}}(b_0), \dots, \psi^{\mathbb{U}}(b_{\tau(f)-1}))$. But
the identity $\psi(f(x_0, \dots, x_{\tau(f)-1})) = f(\psi(x_0), \dots, \psi(x_{\tau(f)-1}))$ be-
longs to $\text{Id}(\mathbb{K}_{F1}^{F2})$. Hence

$\psi^{\mathbb{U}}(f^{\mathbb{U}}(a_0, \dots, a_{\tau(f)-1})) = f^{\mathbb{U}}(\psi^{\mathbb{U}}(a_0), \dots, \psi^{\mathbb{U}}(a_{\tau(f)-1}))$ and
 $\psi^{\mathbb{U}}(f^{\mathbb{U}}(b_0, \dots, b_{\tau(f)-1})) = f^{\mathbb{U}}(\psi^{\mathbb{U}}(b_0), \dots, \psi^{\mathbb{U}}(b_{\tau(f)-1}))$, thus
 $\psi^{\mathbb{U}}(f^{\mathbb{U}}(a_0, \dots, a_{\tau(f)-1})) = \psi^{\mathbb{U}}(f^{\mathbb{U}}(b_0, \dots, b_{\tau(f)-1}))$ and $R1$ is a
congruence of \mathbb{U} .

Let $a_0 R2 b_0, \dots, a_{\tau(f)-1} R2 b_{\tau(f)-1}$. If for some $i \in \{0, \dots, \tau(f)-1\}$ we have $\psi^{\mathbb{U}}(a_i) = a_i$ and $\psi^{\mathbb{U}}(b_i) = b_i$ then
 $f^{\mathbb{U}}(a_0, \dots, a_i, \dots, a_{\tau(f)-1}) = f^{\mathbb{U}}(a_0, \dots, \psi^{\mathbb{U}}(a_i), \dots, a_{\tau(f)-1})$ and
 $f^{\mathbb{U}}(b_0, \dots, b_i, \dots, b_{\tau(f)-1}) = f^{\mathbb{U}}(b_0, \dots, \psi^{\mathbb{U}}(b_i), \dots, b_{\tau(f)-1})$. But
the identity $\psi(f(x_0, \dots, x_{\tau(f)-1})) = f(x_0, \dots, \psi(x_i), \dots, x_{\tau(f)-1})$
belongs to $\text{Id}(\mathbb{K}_{F1}^{F2})$, so we obtain:

$\psi^{\mathbb{U}}(f^{\mathbb{U}}(a_0, \dots, a_{\tau(f)-1})) = f^{\mathbb{U}}(a_0, \dots, a_{\tau(f)-1})$ and
 $\psi^{\mathbb{U}}(f^{\mathbb{U}}(b_0, \dots, b_{\tau(f)-1})) = f^{\mathbb{U}}(b_0, \dots, b_{\tau(f)-1})$. Thus
 $f^{\mathbb{U}}(a_0, \dots, a_{\tau(f)-1}) R2 f^{\mathbb{U}}(b_0, \dots, b_{\tau(f)-1})$. If $a_0 = b_0, \dots, a_{\tau(f)-1} = b_{\tau(f)-1}$ then $f^{\mathbb{U}}(a_0, \dots, a_{\tau(f)-1}) = f^{\mathbb{U}}(b_0, \dots, b_{\tau(f)-1})$. By
Birkhoff's theorem (see [1]), \mathbb{U} is isomorphic to a subdirect
product of $\mathbb{U}/R1$ and $\mathbb{U}/R2$. We shall show that $\mathbb{U}/R1 \in \mathbb{K}$ and
 $\mathbb{U}/R2 \in \mathbb{K}(F2)$. Let $\phi_1(x_{i_0}, \dots, x_{i_{n-1}}) = \phi_2(x_{j_0}, \dots, x_{j_{m-1}})$ belongs
to $\text{Id}(\mathbb{K})$ and $a_0, \dots, a_{n-1}, \dots, b_0, \dots, b_{m-1} \in A$. Then
 $\phi_1^{\mathbb{U}/R1}([a_0]_{R1}, \dots, [a_{n-1}]_{R1}) = [\phi_1^{\mathbb{U}}(a_1, \dots, a_{n-1})]_{R1} =$
 $= [\phi_2^{\mathbb{U}}(b_0, \dots, b_{m-1})]_{R1} = \phi_2^{\mathbb{U}/R1}([b_0]_{R1}, \dots, [b_{m-1}]_{R1})$ since
 $(\psi(\phi_1(x_{i_0}, \dots, x_{i_{n-1}}))) = \psi(\phi_2(x_{j_0}, \dots, x_{j_{m-1}})) \in \text{Id}(\mathbb{K}_{F1}^{F2})$. Thus
 $\mathbb{U}/R1$ belongs to \mathbb{K} . Let $\phi_1 = \phi_2$ belongs to $\text{Id}(\mathbb{K})$ and $\phi_1 = \phi_2$ be
 F_1 -regular. Hence $\phi_1 = \phi_2$ is of the form $\phi_1(x_{j_1}, \dots, x_{j_n}) =$

$= \phi_2(x_{j_1}, \dots, x_{j_n})$. Let $a_0, \dots, a_n \in A$. Then

$$\phi_1^{\mathbb{U}/R^2}([a_1]_{R^2}, \dots, [a_n]_{R^2}) = [\phi_1^{\mathbb{U}}(a_1, \dots, a_n)]_{R^2} =$$

$$= [\phi_2^{\mathbb{U}}(a_1, \dots, a_n)]_{R^2} = \phi_2^{\mathbb{U}/R^2}([a_1]_{R^2}, \dots, [a_n]_{R^2}).$$

Thus the identity $\phi_1 = \phi_2$ is satisfied in \mathbb{U}/R^2 . Let $\phi_1(x_{i_0}, \dots, x_{i_{n-1}}) = \phi_2(x_{j_0}, \dots, x_{j_{m-1}})$ be an F_2 -symmetrical identity of type τ . Then identities:

$$\psi(\phi_1(x_{i_0}, \dots, x_{i_{n-1}})) = \phi_1(x_{i_0}, \dots, x_{i_{n-1}}),$$

$$\psi(\phi_2(x_{j_0}, \dots, x_{j_{n-1}})) = \phi_2(x_{j_0}, \dots, x_{j_{m-1}}) \text{ belong to } \text{Id}(K_{F_1}^{F_2}).$$

Hence $\phi_1^{\mathbb{U}}(a_0, \dots, a_{n-1})_{R^2} \phi_2^{\mathbb{U}}(b_0, \dots, b_{m-1})$. We have

$$\phi_1^{\mathbb{U}/R^2}([a_0]_{R^2}, \dots, [a_{n-1}]_{R^2}) = [\phi_1^{\mathbb{U}}(a_0, \dots, a_{n-1})]_{R^2} =$$

$$= [\phi_2^{\mathbb{U}}(b_0, \dots, b_{m-1})]_{R^2} = \phi_2^{\mathbb{U}/R^2}([b_0]_{R^2}, \dots, [b_{m-1}]_{R^2}).$$

Thus $\mathbb{U}/R^2 \in K(F_2)$, what completes the proof.

Corollary 1. If a variety K satisfies condition (c_1) and $F_2 \neq \emptyset$ then the variety K satisfies condition (c_2) , as well.

The converse implication need not hold as it shows the following example:

Example 2. Let G be the variety of all groups with the fundamental operations $\circ, -1$. Let $F_1 = \{\circ\}, F_2 = \{-1\}$. Then the term $(x^{-1})^{-1}$ satisfies condition (c_2) , but (c_1) is not satisfied. In fact, if there exists a term $\phi(x, y)$ such that $F(\phi(x, y)) = \{\circ\}$ and $\phi(x, y) = x$ belongs to $\text{Id}(G)$, then we put $y \circ y^{-1}$ for x and we get $y^k = y \circ y^{-1}$. However the last identity is not satisfied in a cyclic group of order $k+1$.

6. Equational bases for varieties $K_{F_1}^{F_2}$.

Theorems 4, 5 gives a method of constructing an equational base of $K_{F_1}^{F_2}$. Let B be an equational base of variety K and B_{F_1} be an equational base of K_{F_1} , let $x \circ y$ be a fixed term in (c_1) . We define a set B' of identities as follows:

(6.1) identities (4.1), ..., (4.8) belong to B' ;

(6.2) if $\phi_1 = \phi_2$ belongs to $B \cup B_{F_1}$ and it is F_1 -regular then it belongs to B' ;

(6.3) if $\phi_1 = \phi_2$ belongs to $B \cup B_{F_1}$ and it is not F_1 -regular then the identity $\phi_1 \cdot \phi_2 = \phi_2 \cdot \phi_1$ belongs to B' ;

(6.4) if $\phi_1 = \phi_2$ belongs to B , $F(\phi_1) \cap F_2 \neq \emptyset$ and $F(\phi_1) \subset F_1$ then the identity $\phi_1 = \phi_2 \cdot \phi_1$ belongs to B' ;

(6.5) if $\phi_1 = \phi_2$ belongs to B and $F(\phi_1) \subset F_1$, $F(\phi_2) \cap F_2 \neq \emptyset$ then the identity $\phi_1 \cdot \phi_2 = \phi_2$ belongs to B' ;

(6.6) if $\phi_1 = \phi_2$ belongs to B and $F(\phi_1) \cap F_2 \neq \emptyset$, $F(\phi_2) \cap F_2 \neq \emptyset$ then the identity $\phi_1 = \phi_2$ belongs to B' ;

(6.7) B' contains only identities defined by (6.1)-(6.6).

Theorem 6. If K satisfies (c_1) then set B' is an equational base of $K_{F_1}^{F_2}$.

Proof. Let $V(B')$ be the variety defined by B' . Since all identities from B' are either F_1 -regular or F_2 -symmetrical and belong to $Id(K)$, so $K_{F_1}^{F_2} \subset V(B')$. Let u belongs to $V(B')$. The function \cdot defined by (5.1) in u satisfies (4.1)-(4.8) by (6.1), so by Theorem 3 u is the sum of an upper system $\mathcal{A}(\cdot)$ of algebras constructed as in (4.12). By (6.2), (6.3), $B_{F_1} \subset Id(u_i)$, for each $i \in I$ and by (6.2)-(6.6), $B \subset Id(u_u)$. So $u_i \in K_{F_1}$ for $i \neq u$ and $u_u \in K$. By Theorem 4, $u \in K_{F_1}^{F_2}$. Thus $V(B') \subset K_{F_1}^{F_2}$, what completes the proof.

Corollary 2. If a variety K of type τ satisfies (c_1) , $|F| < \chi_0$, $|B| < \chi_0$ and $|B_{F_1}| < \chi_0$ then $K_{F_1}^{F_2}$ is finitely based.

Example 3. Consider the variety B of all Boolean algebras of type $\tau: F \rightarrow N$, where $F = \{+, \cdot, '\}$, $\tau(+)=\tau(\cdot)=2$ and $\tau(')=1$. Put $F_1 = \{+, \cdot\}$, $F_2 = \{'\}$. Then B_{F_1} is the variety of distributive lattices. Denote $\phi(x, y) = x + (x \cdot y)$. By Theorem 4, each algebra from $B_{F_1}^{F_2}$ is the sum of an upper (F_1, F_2) -system of algebras, where u_i are distributive lattices for $i \neq u$ and u is Boolean algebra. By Corollary 2. the variety $B_{F_1}^{F_2}$ is finitely based.

Example 4. Consider the variety \mathbb{P} of rings of type $\tau: F \rightarrow N$ where $F = \{+, \circ, -\}$, $\tau(\circ) = \tau(+) = 2$ and $\tau(-) = 1$. Put $F_1 = \{+, -\}$, $F_2 = \{\circ\}$. Then \mathbb{P}_{F_1} is the variety of abelian groups. We can accept $\phi(x, y) = x + (y + (-y))$. So each $u \in \mathbb{P}_{F_1}^{F_2}$ is the sum of an upper (F_1, F_2) -system group and u_u belongs to \mathbb{P} . If \mathbb{P} is finitely based then $\mathbb{P}_{F_1}^{F_2}$ is finitely based.

Let \mathbb{K} be a variety of type τ satisfying (c_2) for a fixed term $\psi(x)$. Let sets B , $B(F_2)$ be equational bases of \mathbb{K} and $\mathbb{K}(F_2)$, respectively. We define a set B'' of identities as follows:

(6.8) the identity $\psi(f(x_0, \dots, x_{\tau(f)-1})) = f(\psi(x_0), \dots, \psi(x_{\tau(f)-1}))$ belongs to B'' for each $f \in F$;

(6.9) the identity $\psi(f(x_0, \dots, x_{\tau(f)-1})) = f(x_0, \dots, \psi(x_i), \dots, x_{\tau(f)-1})$ belongs to B'' , for $f \in F$, $i \in \{0, \dots, \tau(f)-1\}$;

(6.10) if $\phi_1 = \phi_2$ belongs to B then the identity $\psi(\phi_1) = \psi(\phi_2)$ belongs to B'' ;

(6.11) if $\phi_1 = \phi_2$ belongs to $B(F_2)$ and $F(\phi_1), F(\phi_2) \subset F_1$, then $\phi_1 = \phi_2$ belongs to B'' ;

(6.12) if $\phi_1 = \phi_2$ belongs to $B(F_2)$, $F(\phi_1) \cap F_2 \neq \emptyset$, $F(\phi_2) \cap F_2 \neq \emptyset$ then $\psi(\phi_1) = \phi_1$, $\psi(\phi_2) = \phi_2$ belong B'' ;

(6.13) B'' contains only identities defined by (6.8)–(6.12).

Theorem 7. If a variety \mathbb{K} satisfies (c_2) then the set B'' is an equational base of $\mathbb{K}_{F_1}^{F_2}$.

Proof. Let $V(B'')$ be the variety defined by B'' . Since the identities from B'' are either F_1 -regular or F_2 -symmetrical and belong to $Id(\mathbb{K})$, so $\mathbb{K}_{F_1}^{F_2} \subset V(B'')$. Let $u \in V(B'')$. Then the relations R_1, R_2 defined as in (5.2), (5.3) are congruences of u and $R_1 \cap R_2 = \omega$ by (6.8), (6.9). Hence u is isomorphic to a subdirect product of u/R_1 and u/R_2 . By (6.10)–(6.12), $(u/R_1) \in \mathbb{K}$ and $(u/R_2) \in \mathbb{K}(F_2)$, so $u \in \mathbb{K}_{F_1}^{F_2}$ by Theorem 5. Thus $V(B'') = \mathbb{K}_{F_1}^{F_2}$.

Corollary 3. If K satisfies (c_1) , $|F| < \chi_0$, $|B| < \chi_0$, $|B(F_2)| < \chi_0$ then $K_{F_1}^{F_2}$ is finitely based.

Corollary 4. If K satisfies (c_1) then $K_{F_1}^{F_2}$ covers K .

In fact, the variety $V(R_{F_1} \cup S_{F_2})$ defined by all F_1 -regular and all F_2 -symmetrical identities of type τ is equationally complete by Theorem 2. If $U = \mathcal{I}(\mathcal{A}(\cdot))$ belongs to $K_{F_1}^{F_2}$ and $|I|=1$ then $U \in K$. If $|I| \geq 2$ then the relation R from (4.9) satisfies assumptions from [15]. Thus by [15] we get the statement.

REFERENCES

- [1] G. Birkhoff: On the structure of abstract algebras, Proc. Cambr. Soc. 31(1935), 433-454.
- [2] G. Birkhoff: Subdirect unions in universal algebra, Bull. Amer. Math. Soc. 50(1944), 764-765.
- [3] S. Bunis, H.P. Sankappanavar: A course in universal algebra, Springer-Verlag, New York, Heidelberg, Berlin, 1981.
- [4] E. Graczyńska: On regular identities, Algebra Universalis, 17(1983), 369-375.
- [5] K. Halkowska: On some operator defined on equational classes of algebras, Arch. Matech., 4. Scripta Fal. Sci. Nat. Ujeb. Brunensis (1976), 209-212.
- [6] R. John: On classes of algebras definable by regular equations, Colloq. Math. 36(1976), 17-21.
- [7] B. Johnsson, E. Nelson: Relatively free products in regular varieties, Algebra Universalis 4(1974), 14-19.
- [8] H. Lakser, R. Padmanabhan, C.R. Platt: Subdirect decompositions of Płonka Sum, Duke Math. J., vol. 39, 3(1972), 485-488.
- [9] R. Padmanabhan: Regular identities in lattices, Trans. Amer. Math. Soc. 158(1970), 179-188.

- [10] J. Plonka: On a method of construction of abstract algebras, *Fund. Math.* 61(1967), 183-191.
- [11] J. Plonka: On equational classes of abstract algebras defined by regular equations, *Fund. Math.* 64(1969), 241.
- [12] J. Plonka: On the subdirect product of some equational classes of algebras, *Math. Nachri.* 63(1974), 303-305.
- [13] J. Plonka: On the sum of ι -semilattice ordered system of algebras, *Studia Scient. Math., Hungarica* 20(1985), 301-307.
- [14] J. Plonka: On the methods of representation of some algebras, *Colloq. Math.* 16(1976), 249-251.
- [15] J. Plonka, J. Dudek: On covering in lattices of varieties of algebras, *Bull. Acad. Pol. Sci. (Ser. Matech.)*, vol. 31, No 1-2, (1983), 1-4.
- [16] A. Tarski: Equational logic and equational theories of algebras in constructions to mathematical logic, *Coll. Hannover*, 1966, North-Holland, Amsterdam, (1968), 275-288.

INSTITUTE OF MATHEMATICS, PEDAGOGICAL UNIVERSITY,
45-052 OPOLE, POLAND

Received December 12, 1989.

