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THE GENERALIZED SUM OF AN UPPER SEMILATTICE

ORDERED SYSTEM OF ALGEBRAS

0. Preliminaries

In [10] a construction of algebras was defined called the
sum of a direct system of algebras. This construction is
called now the Pionka sum in literature. In (5] and (14] a
different construction was considered based on the notion of a
retraction of an algebra. In this paper this construction will
be called the extension of an algebra by a retraction.

Let T be a type of algebras. An identity o=y is called
reqgular (see 10) if the sets of variables in ¢ and ¥ coincide.
Regular varieties i.e. defined by regular identities were
considered e.g. in (4], [6]-[11]. In particular, under some
assumptions algebras from regular varieties can be represented
by Flonka sums (see [11]). An identity ¢=y is called non~-
trivializing if it is of the form x=x or none of ¢ and ¥y is a
single variable. It was proved in [10] that a nontrivial
Plonka sum preserves all reqgular identities satisfied in every
component and does not preserve any other. On the other hand
the extension of an algebra U by a retraction preserves all
non-trivializing identities of U (see [5]). For a class K of
algebras of type T we denote by Id(K) the set of all
identities of type t satisfied in each member of K. If U is an
algebra we shall write Id(ll) instead of Id({u}).

J.Plonka asked the following question: let K be a variety
of algebras and K* be a variety of the same type defined by
some regular and some non-trivializing identities from Id(K).
Can algebras from K* be represented by means of algebras from
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K. Note that if K satisfies an identity f(x,y)=x for some term

f(x,y) containing x and y and K_, is the variety defined by all

R
regular identities from Id(K), then every algebra from K

is
the Plonka sum of algebras from K (see [11]). In this papzr we
answer the above question of Plonka for a class K* defined by
some natural choice of regular and non-trivializing identities
from Id(K). Namely, we define a construction of algebras,
called the generalized sum of an upper {Fl,Fz}—semilattice
ordered system of algebras that generalizes both the Plonka
sum and the extension of an algebra by a retraction. Under
some assumption on K and K* we represent algebras from K* by
means of algebras from K using the above construction. In this
way we also obtain some generalizations of theorems from [10],

(11], (13} and [5].

1. Definition of the generalized sum of an upper (?I,Fz)-

semilattice ordered system of algebras

Let T:F—N be a fixed type of algebras.

Definition 1. A quadruple
- J
(1.1) ‘4—<(F11F2)r (1,=), {ui}iEI' {hi}i,jEI,iSj>
will be called an upper (Fl,Fz)—semilattice ordered system of
algebras, or briefly an upper (Fl,Fz)-system of algebras, if
it satisfies the following conditions:

(1) 'FluF2=F, FlnF2=D, {feF: t(f)=0}cF2.

(ii) (I,=<) is a join-semilattice; if F,*o then (I,s)

has the greatest element u.
(iii) uu is an algebra of type T and uu=(Au;Fu); for

every ieI, i=u, ui is an algebra of type 1:|F1 and ui=(Ai;Fi),

where AinAj=z if i=3j.

(iv) The set {h?} satisfies the following:

iti,jer, i=j

(a for every i,jeI, i=j, hg is a mapping of Ai .into

1)

(a for every ieI, h; is the identity map on Aj

5)
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(a for every i,jel such that i s j=u, hg is a homomor-

3)
phism of ui into uj;

(a for every ieI, i=u, hg is a homomorphism of ui into

4)

. u -
the reduct (Au,Fl) of uu,

(as) for every 1i,j,keI such that isj=k we have
k .3 .k
hj°hi_hi'

For an upper (Fl,Fz)-system 4 of algebras we define a new
algebra #(«£) of type T putting ?(4)=(L_)Ai;Fy), where for
ieX

feF, ajeAi, 3=0,...,t(f)~-1 the operation fy is defined by the

formula:
k, . k k
£ (hy (a,),«+.,h (a _q)) for
i, 0 'it(f)-} T(f)-1
feFl and k=sup{1o,...,1t(f)_1}
f4mY (a.),...,nY (a
1,70 irce)-1

y
f(a,,...a _1) =
° T(f)-1 t(f)_l))l for

fer

The algebra #(4) will be called the generalized sum of the
upper (Fl,Fz)-semilattice ordered system 4 of algebras or
briefly, the sum of the upper (Fl,Fz)-system 4 of algebras.

The following may be checked easily.

(v) U is a subalgebra of ¥(4).

u
(vi) If i#u then ui is a subalgebra of the reduct

(\UJAiF]) of #(4).
iel
(vii) If F2=t 1({O}) then the definition of ¥(4) is
equivalent to that of the Plonka sum (see [13]).
(viii) If F1
of the algebra uu (see [5]). Conversely, if algebra U is an

=g then ¥(4) is an extension by a retraction

extension by a retraction r of an algebra uo and A#A, then U

can represented as the generalized sum of the upper
(9,F)-system:
- 0,0
4 = <(¢IF)l(-llo)l{u_llno}l{h_ilholh_l}>l

where 1uU_ =(A-Ao;z), hi is the identity map on A, ie{~1,0}

1
0— -
and h_,=r|A-A,.
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2. Fo-regular identities and Fo-symmetrical identities

In this section we consider identities of some special
form which are preserved by the construction defined in
section 1.

Let T:F—ST be a type of algebras. If ¢ is a term of type
T we denote by F(¢) the set of all fundamental operation
symbols occuring in ¢ and by Var(¢) - the set of all variables
occuring in ¢. Let F, be a subset of F.

Definition 2. An identity ¢=¢ of type T will be called
Fo-regular iff F(¢)<F°, F(w)cF0 and Var(¢)=Var(y).

Every Fo-regular identity is regular in the sens of [10],
[13]. Every regular identity is F-regular.

Definition 3. An identity ¢=y of type Tt will be called
Fo-symmetrical iff F(¢)nF°$o and F(w)nFota.

Remark 1. Note that an identity ¢=¢ of type T is non-
trivializing (see [12]) iff it is of the form x=x or it is F-
symmetrical.

Example 1. Let F={+,¢,"}, T(+)=t(<)=2, <T(’')=1, F1={+,o}
and F2={’}. Then identity X+y=Xoy is Fl-regular, the
identity x+(xox')=(x')’ is Fz—symmetrical and the identities

X+(Xey)=Xx, X=X’ are neither F_,-regular nor Fz-symmetrical.

1
Let Fl’ F2 be sets satisfying (i) from section 1. Denote
by Rgp, the set of all Fl-regular identities of type T and by

Spa the set of all F2-symmetrical identities of tyoe T. Then

(ix) The set RFlusF2
sense of Tarski (see [16]).

is an equational theory in the

If ¢ is a term of type T and Var(¢)={xj ,...,xj } then
0 n-1
we shall write ¢(xj ,...,xj ) and we shall denote by
0 n-1
¢u(a0,...,an_1) the realization of ¢ in U obtained by

substituting elements agye-esap 4 of A for xjo,...,xjn_l.

We shall denote by ¢l the realization of ¢ in an algebra ui
and by ¢y - the realization of ¢ in ¥(4).

Lemma 1, Let ¥(4) by the sum of an upper (Fl,Fz)system
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4 defined by (1.1), é(X. ,...,X. ) be a term of type t and
Jo In-1

ameAi for m=0,...,n-1. Then we have:

(b if F(¢)cF1 then

)
1
¢”(ao,.-..an_1)=¢k<h§o(ao),...,hf (a,_4))+

where k=sup{io,...,in_1};

(b if anF(¢)¢z then

)
2
¢Y(a0’...’an_1)=¢u(hgo(ao),...,hg (a 1))

Proof. The proof of (bl) is analogous to that of Theorem 1
in [10]. The proof of (bz) is by induction on the complexity
of ¢.

Since anF(¢)¢¢ so ¢ is not a single variable. Hence ¢
is of the form:

0 0 1 0 r-1
f(¢o(xo,...,xno_l),¢1(x0,...,xnl_l),...,¢r_1(x0 oo

r-1
. _q)), where r=t(f).
nr_1 1
If ¢ is of the form f£(x. ,...,X. ), where feF then

Jo Iz (e)-1 2’
the statement follows from the definition of the operation in

#(d4) .

Let ¢ be realized in p’th step, p>2, F(¢)nF2:z and let
(bz) be true for each term obtained in q’th step, for every
2sg<p. Let:

0 0 1 1
a €A.0 ,...,a  __.€A.0 , aj€A.1,...,a_ _.€A.l , .
U 9 LU D e e 9 n,~1"7i
0 1
r-1 _.r-1 r-1 r-1
...,ao eAi reees@p _leAi .
0 r-1 n__,-1

Then

f’(¢§(ag,...,ago_l),¢{(ag,...,a;1_1),...
L4 -1 r-1
cee,d o {a R | - =
Tr 1( o ' n. 4 1))

k k k

0 0 k 1
L TN 4 0 0 1 1

=t7 (450 (1,0 (a0) ,+++/my0 _ (ap 1)), 017 (hy1(ag) .-
no-l 0 0
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Xy 1 k.1 Kp-1 r-1 Kp-1

-./hj1 (an —1))""'¢r-1 (hir-l(ao sesshyre-1 1)),
nl-l 1 0 n -1
r-1
where
K - {u, if F(¢s)nF2:o
s s .8 . S . .
sup{io,il,...,lns_l}, if F(¢s)cF1, for s=0,...,r-1.

We have two cases to consider:

(cl) feF1 and there exists 8,€{0,...,r-1} such that

F(¢so)nF2:¢,

(cz) fer. _
In case (cl) we have sup{ko,...,kr_l}=u so both in case (c
and (cz) it follows that

1)

e, ¥,.0 4] $e.1 1 ¥ -1 -1
f (¢0(a0,..,ano_l),¢1(ao,..,an1_1),...,¢r_1(ao '..'a;r;l-l))=

k k

x o 0 k
u,u 0 0 0 1,1 1
=f (hko(¢0 (hig(ao),...,n.o -1(3“0'1)))'h;1(¢1 (hiol(ao),...
0
k k

k r-1
1 u r-1 r-1
(a"1'1)))"°"hkr-1(¢r‘* (hig‘l(ao Yoeoo

1

k
-1 0
eehyr-1 (a7t = 22 (h,0(ad)),.-..
£t (an ~ 1)) (9 (h  (r30(20))
(h)-cg (ap -1))) .93 (k¢ (h)-(i (ag))
ko 1, 1" 1 1Yk, VA to
k k
1 r-1
1 u u r-1
R .1 h.1 a_ _ yeees® _4(h h.r-1{a oo
kl( ln _1( nl 1))) r 1( kr-l( 10 ( 0 ))

X .
r-1
r-1 0
by (hyr-1 (3t 1)) = £ (eg(n] o(ag),---
\nr_l-l r-1 o
0 upu 1 u 1
.,hig _l(ano_l)),¢1(hiol(a0),...,hi; _l(anl_l)),...
0 1
cesdu_ (0 r-1(af ™Y, ..l (@t )
0 n__,-1 'r-1
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Theorem 1. Let £ be an upper (Fl,Fz)—system defined in
(1.1). Then ¥(d4) satisfies all Fl-regular identities which
are satisfied in every ui, satisfies all Fz—symmetrical
identities which are satisfied in uu and does not satisfy any
other.

Proof. The proof of the first statement is analogous to
the proof of Theorem 1 in [10]. To prove the second, let

¢(xjo,...,xjn-l

tity satisfied in u Then F(¢)nF #2 and F(W)an#o. Let age

)=w(xk poee Xy ) be an F,-symmetrical iden-
0 m-1

eAi ,...,an_lehi 1 b eAt ,...,bm -1€ t 1. By Lemma 1 we have
s
¢’ (agre--ray_,)=¢ (hio(ao),...,hi . n_1)) and v (bgs---
cees m_l)-w (hto(b ),...,h: 1( n-y)): Then ¢“(hgo(ao),...
mn-
s
...,hi a )= =y (ht (Bg)seees :m-l(bm-l)). Hence ¢ (ag,.--

N S 1) =" (g, .-+, m-l)
. By (v), Id(?(d))cId(nu), so the second statement holds.
Now let (¢=¢)eId(uu) be such that F(¢)nF2¢ej and F(W)cFl.

Since |I|>1, there exists ioeI with io:u. If ager; , then
0

i
¢y(ao,...,ao)=¢“(h?°(ao),...,hgo(ao)):w °(ao,...,a0)=w9(a°,...

ce.,a Thus (¢=y)€Id((4))).

0)°

3. Varieties defined by F, -regular and Fz-symmetrical

1

identities
17 F2 satisfy
condition (i) of (1.1). In this section we generalize some of

Let a type 7T:FHN be given and 1let F

results from [7].
Consider an algebra n(Fl,F2)=({a,b};Fu) of type t, where

~ {ao if a°=...=at(f)_1

u
f (ao,...,a for feFl,

-1} =
T(f)-1 b otherwise

u =
f (ao,...,at(f)_l) = Db for fer.

(x) The algebra u(Fl,FZ) is the sum of an upper (Fl,Fz)-
-system of l-element algebras.
Indeed, consider l-element algebras u1=({a};Fi),
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u2=({b};F2) and define a mapping hi: {a}—{b}, hi(a)=b. Then
u(Fl,F2)=9(4), where

= Jj i X .
““<(F11F2) ’ ({112'}:5) '{nl'uz}'{hi}i,j€{1,2}>' hi are identity
i=j
maps.

(xi) Algebra u(Fl,Fz) satisfies all Fl-regular identi-
ties, all Fz-symmetrical identities of type T and does not
satisfy any other.

This follows by (x) and Theorem 1 from the fact that in a
l-element algebra all identities of its type are sat}sfied,

(xii) For every variety K of type T we have Id(K)c

cRFluSF2 iff n(Fl,Fz)eK.
Note that property (xii) was proved in ([7] in the case
F1=F.

Let E be a set of identities of type t. Denote by V(E) the
variety of type t defined by E.
We accept the following notation: if an identity ¢=¢ |is

Fl-regular we shall write ¢ =y, if ¢=y is Fz-symmetrical
F

1
Fa
we shall write ¢ =“y.
Theorem 2. The variety V(RFlust) is equationally
complete.
Proof. V(RFIUSF2) contains W (F1i,F2) so it is non-
degenerated.

Let (¢=¢)£Id(V(RF1uSF2)), let us add it to Id(V(RFluSFz)).
Without least of generality it 1is enough to consider two

cases:
(1) F(¢)nF2*z and F(w)cFl,
(2) F(¢), F(n//)cF1 and xe(Var(¢)-vVar(y)).

In case (1) the identity ¢=¢y must be of the form:
(3.1) ¢=W(xj gevesXs )
1

J
m
where ¢ is a nullary term or
(3.2) QX oo, X, )=U(AH, ,000,X: ).
11’ ln J1 Jm

If we have (3.1) then substituting x for all variables in
(3.1) we get
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(3.3) =y (x,...,xX).
So X =yY(X,...,X)=0=¢(Y,---,Y) = Y.

F1 Fy
If we have (3.2) then substituting x for all variables in
(3.2) we get
(3.4) P(X, oo, X)=¥(X,...,%X).
So we have

F

X = W(X,een,X) = $(X,00e,X) =20(Y, .00, y) = Y.
Fy Fy
Now we consider (2). Then ¢=y must be of the form:
(3.5) Q(X)=¥(X, ,.0.,%X. )
i, i
or
(3.6) ¢(x,xil,...,xin)=W(xj1,...,xjm).

If we have (3.5) then substituting y for all variables

different from x in (3.5) we get

(3.7) d(X)=¥(y,.--,Y).

So we have x = ¢(xX)=¥(y,...,¥Y) = y. If we have (3.6) then
F1 Fl

substituting y for all variables different from x in (3.6) we

get

(3.8) S(X,Ysee e, YITVW(Y,rererY)

Substituting x for y and y for x in (3.8) we get

(3.9) (Y Xyeee, X)=¥(X,...,%).

So we have

X =¥Y(X,...,X) = ¢(Y,X,...,%X) = ¢(X,¥,---,Y) = ¥(Y,-+.,Y) = Y-

F

Fy F, 1
Let K be a variety of algebras of type T.
Denote by K:i the variety defined by all Fl—regular

identities and all F-symmetrical identities satisfied in K,

denote by Kg the variety of algebras of type r|F1 defined by
1
all identities of type t|F1 belonging to Id(K). Let D(T)

denote the variety of type T defined by the identity x=y. We

have:
( ) 2
(xiii) V(R, us = D(T)
F1 F2 Fl
F

. 2
(xiv) K, = KVW(R, vS_ )
F, F,F,
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(xv) K is defined only by Fl-regular identities and
Fz-symmetrical identities iff K contains every sum of an upper

(Fl'Fz) system 4 of algebras {ui}ieI , where uueK and uieKF '

1
for i=u.
The necessity follows from Theorem 1.
The sufficency follows from the fact that n(Fl,Fz) belongs
to K and from (x), we have Id(K)cRF usF .
1 2

4. The upper (Fl,Fz)-partition function

In this section we give some generalization of the notion
of a partition function defined in [10].
Let us fix a type TtT:F—N and sets F
in (1,1).
Let n=(A;Fu) be an algebra of type T.

1° F2 satisfying (i)

Definition 4. A mapping «:A% A will be called an upper
(Fl,FZ)-partition function of 1 if - satisfies the following
formulas for all a,b,c,ao,...,at(f)_leh.

(4.1) aca=a;
(4.2) (aeb) ecc=ae (bec);
(4.3) ae (bec)=ae (ceb);
u u
(4.4) £ (ao""’at(f)-1)°b = f (ao°b""'at(f)-1°b)' for
all feF;
n u
(4.5) £ (ap,...,at(f)_l)eb = f (ao,...,at(f)_l), for all
feF,;
2 u u
(4.6) f (ao""'at(f)-1)°ai =f (ao,...,at(f)_l), for all
feF1 and ie{0,...,T(f)-1};
u _ u
(4.7) bef (ao,...,at(f)_l) = bof (b°a0""'b°at(f)-1)’ for
feFl;
u
(4.8) a-f (a,...,a) = a, for feFl.

In [10) J.Plonka defined the notion of partition function
by means of which, he decomposed an algebra into the sum of a
direct system of subalgebras in the following way:

(1°) A relation R defined by
(4.9) aRb iff acb=a and beca=a
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is an equivalence on A. Let A/R={A, }1eI

(2 ) A relation = defined by

(4.10) isj iff V v bea=b
aeAi beA.

is a join-semilattice order in I.

u .
(3°) Each ui=(Ai;{f IAi}fEF) is a subalgebra of U.

(4°) Each mapping hngi—ahj for 1i,jeI, i=j defined by

(4.11) hi(x)=x~b, be

is a homomorphism of u. into uj.

(5 ) U=¢(4), where «£=<(I,s), (u }. {h }.

ieT’ i,jeI, 153

Theorem 3, Every upper (Fl,Fz)-partition function of
u=(A;Fn) establishes a decomposition of this algebra into the
sum of an upper (Fl,Fz)-semilattice ordered system of
algebras. More precisely, U is the sum of an upper
(F F )-system
(4. 12) 4(e)=<(Fy,F,),(1,35),{U;}; ¢ ’{hl}l,]GI i3>

where A/R={Ai}. ¢t R is defined as in (4.9);

. 1
u, (Al,{f |A, }fEF ). ieXI-{u}, 1 =(A s {f [Au}feF); the

relation s and the mappings hJ are defined as in (4.10) and
(4.11).

Proof. Analogously as in [10] one proves the following:
(al) the relation defined as in (4.9) is an equivalence;

(az) the relation = defined in (4.10) is a

join-semilattice order;

un . u
(ay) (Ai;{f IAi}feFl) is a subalgebra of (A;Fy) for
each ieI;
(a4) for i,jeIl, isj, hi defined as in (4.10) is a
. un . u
homomorphism of (Ai,{f IAi}feFl) into (Aj,{f IAj}feFl)'

each h; is identity map and h§0h3=h§ for every 1i,j,kel,
isjs=k.
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We have to prove, that if F,*o then there exists the

greatest element u in I; uu is a subalgebra of U and
=p(d()). *

Let .fer and let A. Then fu(a

ao,...,at(f)_le R

t(f)-l)EAio for some 1061. By (4.5), for every aeA wve

have fn(ao,...,a oa=fu(a°,...,a

cee,@

T (£)-1) z(£)-1) - Thus iy is the

greatest element in I and we can put u=i Moreover, the

0"

and consequently, U is

values of all fn belong to Au for feF a

2

a subalgebra of 1uU. Let feF, aoeAio,.--,at(f)_le

Analogously as in [10] we show that fy(a

A, .
lz(£)=-1
0 (g1

=t"(ay,...,a for feF . If feF, then by (4.4), (4.5) we

T(£)-1) 2
have
¢ _ supu u =
f (ao,...,at(f)_l) =f (hio(ao)'...'hit(f)—l(at(f)-l)) =

fu(aooz,...,at(f)_lez) = fn(ao,...,at(f)_l)oz =

u
=f (ao,...,at(f)_l)

for some zeA . Thus the operations in U and ¥(4(¢)) coincide.

5. Representation of algebras in the variety K?i.

Let K be a variety of algebras of type T. Consider the
following condition.

(cl) There exists a term ¢(x,y) of type T such that,
F(¢(x,y))cF1 and the identity ¢(x,y)=x belongs to I4d(K).

Theorem 4. If a variety K of type Tt satisfies (c
F2
F1
(Fl,Fz)-semilattice ordered system of algebras {ni}.EI ., Where

i
u,
leK

1), then

algebra U belongs to K iff # is the sum of an upper

for i#u and ﬂuek.

Fy

Proof. Let uexgi and let ¢(x,y) be a fixed binary term
in (cl). Define a binary operation o:Az—aA by:
(5.1)  aeb = ¢%(a,b), for a,beA.

Then - defined by (5.1) satisfies conditions (4.1)-(4.8).
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Then by Theorem 3 the function + induces a decomposition of
Ut into the sum of an upper (Fl,Fz)-semilattice ordered system
of algebras ui, ielI.

Let ¢1=¢2 be an identity of type r|F1 belonging to
Id(K). Then the identity ¢(¢1,¢2)=¢(¢2,¢1) belongs to
Id(Kgi). Moreover, by the definition of A;, the identities
¢(¢1,¢2)=¢1, ¢(¢2,¢1)=¢2 are satisfied in ui. Hence the
identity ¢1=¢2 is satisfied in ui.

Let ¢1=¢2 be an identity of type T but not of type t|F1

and (¢1=¢2)eId(K). Then the identity ¢(¢1,¢2) =2 ¢(¢2,¢1)
belongs to Id(Kg
identities ¢(¢1,¢2)=¢1, ¢(¢2,¢1)=¢2 are satisfied in uu.
Thus uu belongs to K. The necessity follows from Theorem 1.

F2
F1

]

i), so it is satisfied in uu by (v), since the

Algebras from K can be represented in another way as

it is shown below.

For a variety K we denote by K(Fz) the variety defined
by all Fl-regular identities belonging to Id(K) and all
Fz-symmetrical identities of type T.
of type Tt we denote by K, eK

2 1 72
the class of all algebras U isomorphic to a subdirect product

For two varieties Kl, K

of algebras ul and uz, where uleK1 and uzemz.
Consider the following condition.

(cz) There exists a term ¥ (x) such that F(W(x))an:z and
the identity y¥(x)=x belongs to Id(K).

Theorem 5. If a variety K satisfies condition (c2) then
F2_
Kp=KeK (F,) .

Proof. Let a variety K satisfies condition (c2) for a
fixed term y(x). Let U=(A;FY) and  UeKI.. Consider two
relations R1l, R2 on A defined as follows:

(5.2) ar1b iff y'(a)=y"(b)
(5.3) aR2b iff a=b or wu(a)=a and wu(b)=b.

Obviously R1l, R2 are equivalence relations on A and RinR2=w,
where w={(a,a): aeA}. We prove that Rl and R2 are congruences

of U. Let feF and aoRlbo""’at(f)-lRlbt(f)-l' Then:
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0 (ag) =" (bg) s+ W (ag gy ) = ¥ by gy _y) - Hence

£ W ag) oWy gy ) = £ W B e W by gy ). But
the identity w(f(xo,...,xr(f)_l))=f(W(xo),...W(xt(f)_l)) be-
longs to Id(Kgi). Hence

(e (@gr - crag gy ) = £ (ag) e ¥ (ag gy y)) and

(e (B e iy gy ) = £ B o Wby gy 1)), thus

(e (3 rag gyp)) = WU (E By by gy 1)) and R1 Qs a

congruence of U.
Let aoszo,...

13z (£)-1R2Pr(g)-1- If for some  ie{o,...

...,T(f)-1} we have wu(ai)=ai and y"(b;)=b, then
fn(ao,...,ai,...,at(f)_1)=fu(&0,---,wu(ai):---rat(f)_l) and
u u 1 .

£ (by,eeesby,eensBy gy )= (Bg,eee ¥ (D5),aan by gy g).  But
the identity W(f(xo,...,xt(f)_l))=f(xo,...,W(xi),...,xt(f)_l)
belongs to Id(Kgi , S0 we obtain:

.1 ]

v (f (ao,...,at(f)_l)) = f (ao,...,at(f)_l) and

Ul C (IO = % Thus

0,...,br(f)_1)).
. If a

brigy-1))

u u
£ (ag, .- JR2£ (b, . - b

P igy-q) 0 Pgr- g gy -1
1
= ' (Bgseeibrgy ) BY

A (£)-1

u
=bt(f)-1 then £ (ao,...,at(f)_l)

Birkhoff’s theorem (see [1]), U is isomorphic to a subdirect
product of uU/Rl1 and U/R2. We shall show that U/RleK and

U/R2eK(F2). Let ¢ (x; ,...,x,; ) = b, (% e ,xs belongs
14" 23 Jm-l)

b b €A. Then

to Id(K) and agreecs@y qsecesbgree,bp o

u/R1 it
il (CYS MURPR LIS IY IR {COPRPPL W L PO

¢u/R1

— sl _ .
= [¢,(bg,evibp 1))gy = since

(w(¢1(xio,...,xin_1)) = w(¢2(xjo,...,xjm_l)))exd(mgi . Thus

U/Rl1 belongs to K. Let ¢1=¢2 belongs to Id(K) and ¢1=¢2 be

Fl—regular. Hence ¢1=¢2 is of the form ¢l(xj1,...,xjn) =

((bglpyr=-rPp_y]p,)
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= ¢2(le,...,xjn). Let a,,...,a €A. Then
83 %2 (laylgys---rlaylg,) = [83(a),emra ) g, =

= [¢121(all°"lan)]R2 = ¢2/R2([a1]R2I"'1[an]R2).

Thus the identity $,=9, is satisfied in U/R2. Let ¢1(xi yeee
0
cee, Xy ) = b (X5 seee X ) be an F_-symmetrical identity
i 23, » I 2
of type t. Then identities:

w(¢1(xi0,...,xin—l)) = ¢1(xio,...,xin_l),

F2
w(¢2(xjo,...,xjn_l)) ¢2(xjo,...,x. ) Dbelong to Id(IKF1

Im-1
u u

Hence ¢1(ao,...,an_1)R2¢2(b

u/R2 u

0/%% ((ag)ggr -+ -+ lag 1 1g;) = [93(ag,--12n ) 1g, =

= [85(bg, -, by ) 1py = 8572 ([bglgyr-vr Iy 11p,) -

Thus U/RZEK(Fz), what completes the proof.

0,...,bm_l). We have

Corollary 1. If a variety K satisfies condition (c and

)

1

F,*o then the variety K satisfies condition (cz), as well.
The converse implication need not hold as it shows the

following example:

Example 2, Let G be the variety of all groups with the

fundamental operations -, ~1. Let Fi={}, F2={-1}. Then the

1,-1

term (x ) satisfies condition (cz), but (c is not

)
1
satisfied. In fact, if there exists a term ¢(x,y) such that
F(¢(x,y))={e} and ¢(x,y)=x belongs to Id(G), then we put
yoy ! for x and we get yk=y°y-1. However the last identity is

not satisfied in a cyclic group of order k+1.

6. Equational bases for varieties K?i.
Theorems 4, 5 gives a method of constructing an equational
F2

base of K Let B be an equational base of variety K and B

F1°
be an equational base of K

F1l

F1' let xoy be a fixed term in (c;)-

We define a set B’ of identities as follows:
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(6.1) identities (4.1),...,(4.8) belong to B’ ;

(6.2) if ¢1=¢2 belongs to BuBp, and it is Fl—regular then
it belongs to B’ ;

(6.3) if ¢1=¢2 belongs to BuBFl and it is not Fl-regular
then the identity ¢lo¢2=¢2o¢1 belongs to B’ ;

(6.4) if ¢1=¢2 belongs to B, F(¢1)nF2¢z and F(¢1)cF1
then the identity ¢1=¢2o¢1 belongs to B’ ;

(6.5) if ¢1=¢2 belongs to B and F(¢1)cF1, F(¢2)nF2:a then
the identity ¢1o¢2=¢2 belongs to B’ ;

(6.6) if ¢1=¢2 belongs to B and F(¢1)nF2¢z, F(¢2)nF2=o
then the identity ¢1=¢2 belongs to B’ ;

(6.7) B’ contains only identities defined by (6.1)-(6.6).

Theorem 6, If K satisfies (cl) then set B’ is an equation-

F2
al base of KFl'

Proof. Let V(B’) be the variety defined by B’. Since all

identities from B’ are either F,-regular or Fz—symmetrical and

1
belong to Id(K), so KgicV(B’). Let U belongs to V(B’). The

function - defined by (5.1) in U. satisfies (4.1)-(4.8) by
(6.1), so by Theorem 3 U is the sum of an upper system 4&(¢) of

algebras constructed as in (4.12). By (6.2), (6.3), BFlc
cId(ui), for each ieI and by (6.2)-(6.6), BcId(uu). So uiEKFl
for i*u and nueK. By Theorem 4, uekii. Thus V(B’)cmgi, what

completes the proof.
Corollary 2. If a variety K of type <t satisfies (cl),

then KFz

|Fl<xy, |B|<x, and |Bg,|<x, F1

is finitely based.

Example 3, Consider the variety B of all Boolean algebras
of type T:F—N, where F={+,¢,’}, T(+)=T(°)=2 and T(’ )=1. Put
F1={+l°}: F2={I }. Then BFl
lattices. Denote ¢(x,y)=x+(xcy). By Theorem 4, each algebra

is the variety of distributive

from B:i is the sum of an upper (Fl,Fz)—system of algebras,
where ui are distributive lattices for izu and U is Boolean

F2

algebra. By Corollary 2. the variety Bpy

is finitely based.
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Example 4. Consider the variety P of rings of type TtT:F—N
where F={+,+,-}, T(e)=T(+)=2 and T(-)=1. Put F1={+,—},

F2={o}. Then PF1 is the variety of abelian groups. We can

accept ¢(x,y)=x+(y+(-y)). So each ue9§§ is the sum of an
upper (Fl,Fz)-system group and uu belongs to P. If P is

F2
F1

Let K be a variety of type t satisfying (c2) for a fixed

finitely based then P is finitely based.

term y(x). Let sets B, B(FZ) be egational bases of K and
K(Fz), respectively. We define a set B’ of identities as
follows:

(6.8) the identity W(£(Xg,--iXy gy 1)) =EW(X5) oo ¥ (X gy 4))
belongs to B for each feF;

(6.9) the identity Y(£(Xg, .-, Xp gy_3)) = £(Xg,ees¥ (X)), ...

""xt(f)-l) belongs to B, for feF, ie{0,...,T(f)-1};

(6.10) if ¢1=¢2 belongs to B then the identity W(¢1)=W(¢2)
belongs to B’’;

(6.11) if ¢1=¢2 belongs to B(Fz) and F(¢1),F(¢2)CF1, then
¢1=¢2 belongs to B’;

(6.12) if ¢1=¢2 belongs to B(Fz),F(¢1)nF2:z, F(¢2)nF2:a then
$(¢1)=¢1, W(¢2)=¢2 belong B*;
(6.123) B” contains only identities defined by (6.8)-(6.12).

Theorem 7. If a variety K satisfies (cz) then the set B”
is an equational base of Kgi.

Proof. Let V(B”) be the variety defined by B’. Since the
identities from B’ are either F,-regular or F

1 2
belong to Id(K), so K:icV(B’). Let UeV(B”). Then the

relations R1, R2 defined as in (5.2), (5.3) are congruences of
U and R1lnR2=w by (6.8), (6.9). Hence U is isomorphic to a
subdirect product of U/Rl1 and U/R2. By (6.10)-(6.12), (U/R1l)eK

-symmetrical and

and (U/R2)eK(F,), so UeK > by Theorem 5. Thus V(B")=KI ..
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Corollary 3. If K satisfies (cl), |F|<x0, |B|<x0,

F2

|B(F2)|<xo then KFl

is finitely based.

Corollary 4. If K satisfies (cl) then Kgi covers K.

In fact, the variety V(RFlust) defined by all Fl-regular
and all Fz-symmetrical identities of type T 1is equationally
complete by Theorem 2. If U=¢(4(-)) belongs to K?i and

|I|=1 then UeK. If |I|22 then the relation R from (4.9)
satisfies assumptions from [15]. Thus by ([15] we dget the
statement.
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