

D. Lau, K. Denecke

CONGRUENCES ON MAXIMAL PARTIAL CLONES AND STRONG REGULAR  
VARIETIES GENERATED BY PREPRIMAL PARTIAL ALGEBRAS II

Primality and preprimality for finite partial algebras may be defined in a similar way as in the case of total algebras ([7]). A universal primality criterion for partial algebras reduces to finding the complete list of preprimal partial algebras. All preprimal partial algebras are given in [4] ([5], [6]).

In this paper we consider strong regular varieties generated by preprimal partial algebras and its subvarieties. Similarly as in the total case the subvarieties of the strong regular variety  $V(A)$  generated by a partial algebra  $A=(A;F)$  correspond to arity congruences of the clone  $(T(A);*,\zeta,\tau,\Delta,e_1^2)$  generated by the set  $F$  of partial functions ([1]). If  $A$  is a primal partial algebra, then  $V(A)$  has no nontrivial subvarieties ([2], [3]). For some classes of preprimal partial algebras  $A$  we determined all congruences of the clones of its term functions and in this way all nontrivial subvarieties of the strong regular variety  $V(A)$  in the first part of this paper. In the second part we will give a complete survey on the subvarieties of  $V(A)$  for any preprimal partial algebra  $A$ .

1. Preliminaries

Let  $P_A^{(n)}$  be the set of all  $n$ -ary partial functions defined on the finite set  $A$  ( $A=\{0,1,\dots,k-1\}$ ,  $k>2$ ) and let  $O_A^{(n)}$  be the set of all total  $n$ -ary functions on  $A$ . We set  $P_A = \bigcup_{n=1}^{\infty} P_A^{(n)}$  and  $O_A = \bigcup_{n=1}^{\infty} O_A^{(n)}$ . An  $n$ -ary function is denoted

by  $f^n$ .  $*$ ,  $\zeta$ ,  $\tau$ ,  $\Delta$  are symbols for a binary and three unary operations on  $P_A$ . For the definition of  $*$ ,  $\zeta$ ,  $\tau$ ,  $\Delta$  see [2].

Every subalgebra of the algebra  $P_A = (P_A; *, \zeta, \tau, \Delta, e_1^2)$  is called a clone. (Remark that  $e_i^n$  denotes the  $n$ -ary total projection on the  $i$ -th component). For  $f, g \in P_A^{(n)}$ ,  $g$  is called a subfunction of  $f$ , symbolically  $g \leq f$ , if  $D(g) \subseteq D(f)$  and if  $f|_{D(g)} = g$ , where  $D(g)$  denotes the domain of  $g$ . A clone  $C \subseteq P_A$  is strong if it is closed under taking subfunctions. Let  $\rho \subseteq A^h$  be a  $h$ -ary relation ( $h \geq 1$ ). A function  $f^n$  preserves  $\rho$  if for every  $h \times n$  matrix

$$\begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{h1} & \dots & a_{hn} \end{pmatrix}$$

whose columns

$$\begin{pmatrix} a_{1j} \\ \vdots \\ a_{hj} \end{pmatrix} \in \rho \quad (j=1, \dots, n)$$

and whose rows  $(a_{i1}, \dots, a_{in}) \in D(f)$  ( $i=1, \dots, h$ ) we have

$$\begin{pmatrix} f(a_{11}) & \dots & f(a_{1n}) \\ \vdots & & \vdots \\ f(a_{h1}) & \dots & f(a_{hn}) \end{pmatrix} \in \rho.$$

The set  $POL \rho$  of all  $f \in P_A$  which preserve  $\rho$  is a strong partial clone.

Let  $E_h$  be the set of all equivalence relations on the set  $h = \{0, 1, \dots, h-1\}$ . For  $\epsilon \in E_h$  we set  $\delta_\epsilon = \{(x_0, \dots, x_{h-1}) \in A^h \mid (i, j) \in \epsilon \rightarrow x_i = x_j\}$ .  $\rho$  is strongly reflexive if for each equivalence  $\epsilon$  from  $E_h$  with  $\epsilon \neq \epsilon_0$  ( $\epsilon_0$  is the zero equivalence) there exists an equivalence  $\epsilon' \supseteq \epsilon$  such that  $\rho \cap \delta_\epsilon = \delta_{\epsilon'}$ , and if for  $h=2$ ,  $\rho \neq A^2$  and  $\rho \neq \{(x, x) \mid x \in A\}$ . The relation  $\rho$  is said to be areflexive if  $\rho \cap \delta_\epsilon = \emptyset$  for each  $\epsilon \in E_h$  with  $\epsilon \neq \epsilon_0$ . In [6] (see also [4]) all maximal partial clones of functions on a finite set  $A$ ,  $|A| \geq 3$  were determined. Let  $M$  be maximal partial clone on  $A$ . Then we have exactly the following cases:

(1) If  $M$  is not strong, then  $M = \mathcal{O}_A \cup \{\mathcal{O}^n \mid n \in \mathbb{N}\}$ , where  $\mathcal{O}^n$  is the  $n$ -ary partial function with empty domain  $(D(\mathcal{O}^n) = \emptyset)$  and  $\mathbb{N}$  is the set of all positive integers.

(2) If  $M$  is strong, then  $M = \text{POL } \rho$ , where  $\rho$  is a relation with the following property:

- a unary relation ( $h=1$ )
- a  $h$ -ary strongly reflexive relation with  $h \geq 2$ .
- a  $h$ -ary areflexive relation with  $h \geq 2$ .

Every clone  $C \subseteq \mathcal{P}_A$  has at least three congruences  $\kappa_0$ ,  $\kappa_a$ ,  $\kappa_1$  defined by

$$\begin{aligned} (f, g) \in \kappa_0 &: \iff \{f, g\} \subseteq C \wedge f = g, \\ (f, g) \in \kappa_a &: \iff \{f, g\} \subseteq C \wedge \text{arf} = \text{arg} \\ (\text{arf denotes the arity of the function } f), \\ (f, g) \in \kappa_1 &: \iff \{f, g\} \subseteq C. \end{aligned}$$

Every congruence  $\kappa$  with  $\kappa \subseteq \kappa_a$  is called arity congruence.

If  $\{\mathcal{O}^n \mid n \in \mathbb{N}\} \subseteq C$ , then  $\kappa_\emptyset$  defined by

$$(f, g) \in \kappa_\emptyset : \iff \{f, g\} \subseteq C \wedge (f = g \vee \{f, g\} \subseteq \{\mathcal{O}^n \mid n \in \mathbb{N}\})$$

is a congruence of  $C$ .

Since every maximal clone contains the set  $\{\mathcal{O}^n \mid n \in \mathbb{N}\}$ , every maximal clone has the four congruences  $\kappa_0$ ,  $\kappa_a$ ,  $\kappa_1$ ,  $\kappa_\emptyset$ . In the first part we showed:

**Lemma 1.1.** Let  $C$  be a maximal clone. If  $C$  is not strong or if  $M = \text{POL } \rho$  where  $\rho$  is an  $h$ -ary strongly reflexive relation with  $h \geq 2$ , then  $C$  has exactly the four congruences  $\kappa_0$ ,  $\kappa_a$ ,  $\kappa_1$ ,  $\kappa_\emptyset$ . ■

Let  $\rho$  be an  $h$ -ary relation on  $A$ . Consider the following relations on  $\text{POL } \rho$ :

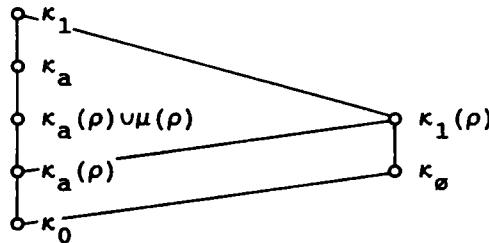
$$\begin{aligned} \kappa_1(\rho) &:= \{(f, g) \in \kappa_1 \mid f = g \vee \forall r_1, \dots, r_{\text{max(arf, arg)}} \in \rho : (r_1, \dots, r_{\text{arf}}) \notin D(f) \wedge (r_1, \dots, r_{\text{arg}}) \notin D(g)\}, \\ \kappa_a(\rho) &:= \kappa_1(\rho) \cap \kappa_a, \end{aligned}$$

$$\begin{aligned} \kappa(\rho) \cup \mu(\rho) \text{ with } \mu(\rho) &:= \{(f, g) \in \kappa_a \mid \forall r_1, \dots, r_{\text{arf}} \in \rho : ((r_1, \dots, r_{\text{arf}}) \notin D(f) \wedge (r_1, \dots, r_{\text{arf}}) \notin D(g)) \vee f(r_1, \dots, r_{\text{arf}}) = \\ &= g(r_1, \dots, r_{\text{arf}})\}. \end{aligned}$$

In [7] we proved:

**Lemma 1.2.** Let  $C$  be a maximal clone of the form  $C = \text{POL } \rho$  with  $\emptyset \subsetneq C \subsetneq A$ . Then  $C$  has exactly the following pairwise different congruences  $\kappa_0, \kappa_a, \kappa_1, \kappa_\emptyset, \kappa_1(\rho), \kappa_a(\rho), \kappa_a(\rho) \cup \mu(\rho)$ .

Con  $\text{POL } \rho$  can be given by the following diagram



## 2. Some properties of maximal partial clones of the form $C = \text{POL } \rho$ , where $\rho$ is an $h$ -ary areflexive relation with $h \geq 2$

In this section let  $\rho$  be an arbitrary  $h$ -ary areflexive relation (i.e.  $|\{a_0, \dots, a_{h-1}\}| = h$  for every  $(a_0, \dots, a_{h-1}) \in \rho$ ) with the property that  $\text{POL } \rho$  is a maximal partial clone and  $h \geq 2$ . In [5] Haddad proved the following properties:

1.) Without loss of generality we can choose  $\rho$  such that  $(0, 1, \dots, h-1) \in \rho$ .

2.) Let  $S_h$  be the full symmetric group on  $\{0, 1, \dots, h-1\}$ . For every permutation  $\pi \in S_h$ , let

$$\begin{aligned} \rho^{(\pi)} &:= \{(a_{\pi(0)}, \dots, a_{\pi(h-1)}) \mid (a_0, \dots, a_{h-1}) \in \rho\} \quad \text{and} \\ G_\rho &:= \{\pi \in S_h \mid \rho \cap \rho^{(\pi)} \neq \emptyset\}. \end{aligned}$$

We say that the relation  $\rho$  is symmetric under  $\pi$  if  $\rho = \rho^{(\pi)}$  and asymmetric under  $\pi$  if  $\rho \cap \rho^{(\pi)} = \emptyset$ .

Then we have

- (a)  $G_\rho$  is a subgroup of  $S_h$ .
- (b)  $\rho$  is symmetric under each  $\pi \in G_\rho$  ( $\forall \pi \in G_\rho : \rho = \rho^{(\pi)}$ ).
- (c)  $\rho$  is asymmetric under each  $\pi \in S_h \setminus G_\rho$   
 $(\forall \pi \in S_h \setminus G_\rho : \rho \cap \rho^{(\pi)} = \emptyset)$ .

3.) Under the model of  $\rho$  we understand the  $h$ -ary relation  $\gamma_\rho := \{(\pi(0), \dots, \pi(h-1)) \mid \pi \in G_\rho\}$ . Note that  $\gamma_\rho = \rho/h$ . Then there exists a surjective function  $\varphi : A \rightarrow h$ ,  $\varphi \in 0_A \cap \text{POL } \rho$ , which is a relational homomorphism from  $\rho$  to  $\gamma_\rho$ , i.e. for every  $(a_0, \dots, a_{h-1}) \in \rho$  we have  $(\varphi(a_0), \dots, \varphi(a_{h-1})) \in \gamma_\rho$ .

Then we obtain the following properties of the relation  $\rho$ :

**Lemma 2.1.** Let  $\iota_h := \{(a_0, \dots, a_{h-1}) \in A^h \mid |\{a_0, \dots, a_{h-1}\}| \leq h-1\}$ . Then we have  $\rho \setminus \iota_h \neq \emptyset$  and for all  $(a_0, \dots, a_{h-1}) \in \rho$  there exists a function  $h_a \in \text{POL}(\rho \cap 0_A)$  such that  $\text{Im } h_a \subseteq \{a_0, \dots, a_{h-1}\}$  ( $\text{Im } h_a$  denotes the image of  $h_a$ ).

**Proof.** For an arbitrary  $a := (a_0, \dots, a_{h-1}) \in \rho$  we consider the function  $\varphi_a : h \rightarrow \{a_0, \dots, a_{h-1}\}$  with  $\varphi_a(i) = a_i$  for all  $i \in h$ .

We define  $h_a := \varphi_a * \varphi$ , where  $\varphi : A \rightarrow h$  is the relational homomorphism considered in 3.). Then we have  $\text{Im } h_a = \{a_0, \dots, a_{h-1}\}$  and  $h_a \in \text{POL } \rho$  since by 3.) for every  $b := (b_0, \dots, b_{h-1}) \in \rho$  there exists a permutation  $\pi_b \in G_\rho$  with  $\varphi(b_0, \dots, b_{h-1}) = (\pi_b(0), \dots, \pi_b(h-1))$  and therefore we get  $h_a(b_0, \dots, b_{h-1}) = \varphi_a(\varphi(b_0, \dots, b_{h-1})) = \varphi_a(\pi_b(0), \dots, \pi_b(h-1)) = = (a_{\pi_b(0)}, \dots, a_{\pi_b(h-1)}) \in \rho$  by 2.), (b). ■

**Lemma 2.2.** For all  $h$ -tuples  $r_i = (r_{1i}, \dots, r_{hi})$  ( $i = 1, \dots, n$ ) there exist unary functions  $h_1, \dots, h_n$  on  $A$  with  $h_1, \dots, h_n \in \text{POL } \rho \cap 0_A$  such that

$$\{(h_1(j), \dots, h_n(j)) \mid j \in A\} = \{(r_{j1}, \dots, r_{jn}) \mid j \in \{1, 2, \dots, h\}\}.$$

**Proof.** We define  $h_i := h_{r_i}$  with  $r_i = (r_{1i}, \dots, r_{hi})$  ( $i = 1, \dots, n$ ) and obtain our result. ■

3. Congruences on maximal clones of the form  $C = \text{POL } \rho$ , where  $\rho$  is an areflexive at least binary relation

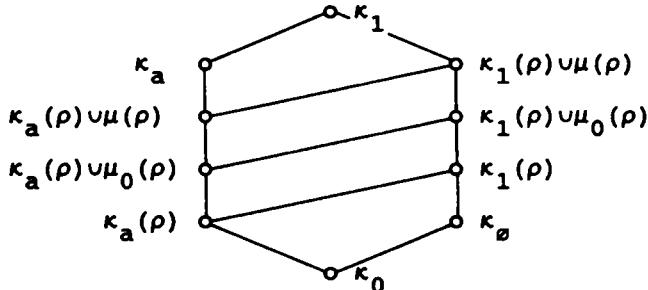
Consider the following relations:  $\kappa_0$ ,  $\kappa_1$ ,  $\kappa_a$ ,  $\kappa_\emptyset$ ,  $\kappa_1(\rho)$ ,  $\kappa_a(\rho)$ ,  $\kappa_1(\rho) \cup \mu(\rho)$ ,  $\kappa_a(\rho) \cup \mu(\rho)$ ,  $\kappa_1(\rho) \cup \mu_0(\rho)$  with  $\mu_0(\rho) := \{(f, g) \in \kappa_a \mid \forall a \in (A \setminus U)^{\text{arf}} : f(a) = g(a)\}$  and  $U := \{\alpha \in A \mid \forall (c_1, \dots, c_h) \in \rho : \alpha \notin \{c_1, \dots, c_h\}\}$  and

$$\kappa_a(\rho) \cup \mu_0(\rho).$$

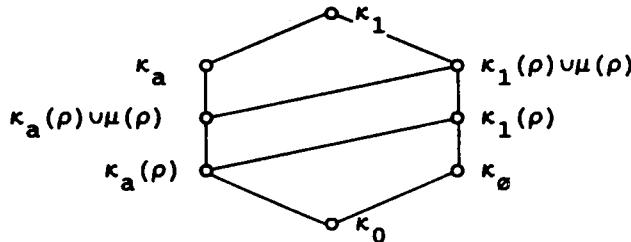
(Remark that for  $\emptyset \subsetneq U \subsetneq A$  we have  $A \setminus U = \rho$ , therefore  $\kappa_a(\rho) \cup \mu(\rho) = \kappa_a(\rho) \cup \mu_0(\rho)$  and further in this case we have  $\kappa_1(\rho) \cup \mu(\rho) = \kappa_1(\rho) \cup \mu_0(\rho) = \kappa_1(\rho)$ .)

The main theorem of this section is the following

**Theorem 3.1.** If  $\rho$  be an areflexive  $h$ -ary relation on  $A$  with  $h \geq 2$ , then the congruence lattice of the clone  $C = \text{POL } \rho$  is given by



if  $U \neq \emptyset$  and by



if  $U = \emptyset$ .

The proof of Theorem 3.1 will be given in the form of five lemmas:

**Lemma 3.2.** Let  $\kappa$  be a congruence on  $\text{POL } \rho$ . Then we have:

- a)  $\kappa_0 \subset \kappa \subseteq \kappa_a \rightarrow \kappa_a(\rho) \subseteq \kappa$ ,
- b)  $\kappa \not\subseteq \kappa_a \rightarrow \kappa_0 \subseteq \kappa$ ,
- c)  $\kappa_0 \subset \kappa \rightarrow \kappa_1(\rho) \subseteq \kappa$ .

**Proof.** a) If  $\kappa_0 \subset \kappa \subseteq \kappa_a$ , then there are functions  $f^n, g^n$  with  $(f^n, g^n) \in \kappa$  and elements  $\tilde{a} := (a_1, \dots, a_n) \in A^n$ ,  $a, b \in A$ ,  $a \neq b$ , such that  $f(\tilde{a}) := a * b := g(\tilde{a})$ .  $\text{POL } \rho$  contains functions  $t_\alpha$  and  $h_{\beta\gamma}$  with

$$t_\alpha(x, y) := \begin{cases} y & \text{if } x = \alpha \\ \text{not defined otherwise} & (\alpha \in A) \text{ and} \end{cases}$$

$$h_{\beta\gamma}(x) := \begin{cases} \gamma & \text{if } x = \beta \\ \text{not defined otherwise.} & \end{cases}$$

If  $\rho$  is a reflexive or  $\{c_0, \dots, c_{k-1}\} \subseteq \text{POL } \rho$ , where  $c_i$  is the constant unary function with value  $i \in A$ ,  $\beta$  and  $\gamma$  are arbitrary elements of  $A$ , otherwise  $\beta \notin \{a \mid (a, a, \dots, a) \in \rho\}$ .

Therefore we get

$$\begin{aligned} f(h_{\beta a_1}(x), \dots, h_{\beta a_n}(x)) &= h_{\beta a}(x) \\ \sim g(h_{\beta a_1}(x), \dots, h_{\beta a_n}(x)) &= h_{\beta b}(x) \quad (\kappa) \end{aligned}$$

and further we obtain

$$t_a(h_{\beta a}(x), y) = t_\beta(x, y) \sim t_a(h_{\beta b}(x), y) = o^2(x, y) \quad (\kappa).$$

If  $u^m$  is an arbitrary function from  $\text{POL } \rho$  with the property:

$$\forall r_1, \dots, r_m \in \rho : (r_1, \dots, r_m) \notin D(u^m),$$

then the following function  $v^m$  is an element of  $\text{POL } \rho$ :

$$v^m(\tilde{x}) := \begin{cases} \beta & \text{if } u(\tilde{x}) \in A \\ \text{not defined otherwise.} & \end{cases}$$

Then we have

$$\begin{aligned} t_\beta(v(\tilde{x}), u(\tilde{x})) &= u(\tilde{x}) \sim o^2(v(\tilde{x}), u(\tilde{x})) = o^m(\tilde{x}) \quad (\kappa), \\ \text{i.e. } \kappa_a(\rho) &\subseteq \kappa. \end{aligned}$$

b) If  $\kappa \not\subseteq \kappa_a$  then there are two functions  $f^n, g^m$ ,  $n > m$  in  $\text{POL } \rho$  with  $(f, g) \in \kappa$ . Then we get

$$(\tau((\Delta^{n-2} f) * o^1)) * o^1 = o^2 \sim (\tau((\Delta^{n-2} g) * o^1)) * o^1 = o^1 \quad (\kappa).$$

It follows that  $o^2 * e_1^r = o^{r+1} \sim o^1 * e_1^r = o^r \quad (\kappa)$  for arbitrary  $r \in \mathbb{N}$ . Therefore, we have  $\kappa_a \subseteq \kappa$ .

c) For  $\kappa_a \subseteq \kappa$  and  $\kappa \cap \kappa_a \neq \kappa_0$  we have  $\kappa_a(\rho) \subseteq \kappa$  by a) (since  $\kappa \cap \kappa_a = \kappa' \neq \kappa_0$ ,  $\kappa' \subseteq \kappa_a$  implies  $\kappa_a(\rho) \subseteq \kappa'$  and because of  $\kappa' \subseteq \kappa$  we get  $\kappa_a(\rho) \subseteq \kappa$ ).

From  $\kappa_a(\rho) \subseteq \kappa$  and  $\kappa_\emptyset \subseteq \kappa$  it follows  $\kappa_1(\rho) \subseteq \rho$ , since, if  $(f^n, g^m) \in \kappa_1(\rho)$  ( $n \neq m$ ), then we have  $(f^n, o^n) \in \kappa$  and  $(o^m, g^m) \in \kappa$  because of  $\kappa_a(\rho) \subseteq \kappa$  and  $(o^n, o^m) \in \kappa$  because of  $\kappa_\emptyset \subseteq \kappa$ .

Transitivity gives  $(f^n, g^m) \in \kappa$ . If  $\kappa_\emptyset \subseteq \kappa$  and  $\kappa \cap \kappa_a = \kappa_0$ , then there exist two functions  $s^l, t^r$  ( $l \neq r$ ) in  $\text{POL } \rho$  with  $(s, t) \in \kappa$ . We can assume that  $l > r$  and that  $s^l \neq o^l$ , i.e. there exists an element  $\tilde{a} := (a_1, \dots, a_l)$  with  $s(\tilde{a}) \in A$ . We consider the following two cases:

**Case 1.** For all  $a_i \in A$  we have  $(a_i, \dots, a_i) \in \rho$ . In this case  $\{c_{a_1}, \dots, c_{a_n}\} \subseteq \text{POL } \rho$ . From  $(s, t) \in \kappa$  and  $\kappa_\emptyset \subseteq \kappa$  we get that two constant functions of different arity are congruent under  $\kappa$ . It follows that  $(\text{POL } \rho \cap O_A) \times (\text{POL } \rho \cap O_A) \subseteq \kappa$ . This contradicts  $\kappa \cap \kappa_a = \kappa_0$ .

**Case 2.** There is an element  $a_i \in A$  with  $(a_i, \dots, a_i) \notin \rho$ . Without loss of generality we assume that  $(a_1, \dots, a_1) \notin \rho$ . Then the function  $h_{a_1 a_j}^1$  belongs to  $\text{POL } \rho$  for any  $a_j \in A$ ,  $j = 1, \dots, n$ .

Moreover we can assume that  $a_1 \neq a_{1-r}$ . (From  $a_1 = a_{1-r}$  we consider  $s' := s * e_2^2$  and  $t' := t * e_2^2$ . Then we apply the operations  $\zeta$  and  $\tau$  and obtain functions  $s'', t''$  with  $(s'', t'') \in \kappa$ ,  $s''(\tilde{a}) \in A$ ,  $(a_1'', \dots, a_1'') \notin \rho$  and  $a_1'' \neq a_{1-r}''$ ). Then we get

$$s_1 := (\dots (\zeta ((\zeta ((\zeta ((\zeta s) * h_{a_1 a_1})) * h_{a_1 a_{1-1}})) * h_{a_1 a_{1-2}}) * \dots) * h_{a_1 a_{1-r}} \sim \\ t_1 := (\dots (\zeta ((\zeta ((\zeta t) * h_{a_1 a_1})) * h_{a_1 a_{1-1}})) * h_{a_1 a_{1-2}}) * \dots) * h_{a_1 a_{1-r}})(\kappa)$$

with  $s_1(x_1, \dots, x_1) =$

$$s(x_{1-r+1}, \dots, x_1, h_{a_1 a_{1-r}}(x_1), \dots, h_{a_1 a_1}(x_{1-r}))$$

and  $t_1(x_1, \dots, x_r) =$

$$t(h_{a_1 a_{1-r+1}}(x_2), \dots, h_{a_1 a_{1-1}}(x_r), h_{a_1 a_1}(h_{a_1 a_{1-r}}(x_1))) = o^r(\tilde{x})$$

since  $h_{a_1 a_1} * h_{a_1 a_{1-r}} = o^1$  and because of  $a_1 \neq a_{1-r}$ .

From this argumentation and from  $\kappa_\emptyset \subseteq \kappa$  it follows that  $\kappa \cap \kappa_a \neq \kappa_0$  which contradicts the presumption. Therefore we have

c). ■

**Lemma 3.3.** Let  $\text{POL } \rho$  be a maximal clone where  $\rho$  is an  $h$ -ary areflexive relation ( $h \geq 2$ ). Then for every congruence  $\kappa$  on  $\text{POL } \rho$  we have

- a)  $\kappa \not\subseteq \kappa_a(\rho) \cup \mu(\rho) \wedge \kappa \subseteq \kappa_a \Rightarrow \kappa = \kappa_a$ ,
- b)  $\kappa \not\subseteq \kappa_1(\rho) \cup \mu(\rho) \wedge \kappa \not\subseteq \kappa_a \Rightarrow \kappa = \kappa_1$ .

**Proof.** a)  $\kappa \not\subseteq \kappa_a(\rho) \cup \mu(\rho)$  and  $\kappa \subseteq \kappa_a$  means that there exist two functions  $f^n, g^n$  with  $(f^n, g^n) \in \kappa$  and an  $n$ -tuple  $\tilde{a} = (r_1, \dots, r_n) \in \rho^n$  with  $\tilde{a} \in D(f)$ ,  $\tilde{a} \in D(g)$ ,  $f(\tilde{a}) \neq g(\tilde{a})$  or  $\tilde{a} \in D(f)$  and  $\tilde{a} \notin D(g)$ .

The first case can be reduced to the second case. Let  $\hat{e}_3^3$  be the ternary function from  $\text{POL } \rho$  defined by

$$\hat{e}_3^3(x, y, z) = \begin{cases} z & \text{if } x=y \\ \text{not defined otherwise.} \end{cases}$$

Then we have

$$\begin{aligned} \hat{e}_3^3(f(\tilde{x}), f(\tilde{x}), f(\tilde{x})) &= f(\tilde{x}) \\ - \hat{e}_3^3(f(\tilde{x}), g(\tilde{x}), f(\tilde{x})) &= g'(\tilde{x}) \quad (\kappa) \end{aligned}$$

with  $\tilde{a} \notin D(g')$ .

Therefore, we can assume that  $\tilde{a} \in D(f)$  and  $\tilde{a} \notin D(g)$ .

Let  $(a_1, \dots, a_h) \in \rho \setminus \iota_h$ . Then the functions  $t_1, \dots, t_n$  with

$$t_i \begin{pmatrix} a_1 \\ \vdots \\ a_h \end{pmatrix} = r_i$$

and  $t_i(x)$  is not defined if  $x \notin \{a_1, \dots, a_h\}$  ( $i = 1, \dots, n$ ) belongs to  $\text{POL } \rho$ .  $(f, g) \in \kappa$  implies

$f(t_1(x), \dots, t_n(x)) =: f'(x) - g(t_1(x), \dots, t_n(x)) =: g'(x) \quad (\kappa)$ , where for every  $r \in \rho$   $r \notin D(g')$  and  $(f'(a_1), \dots, f'(a_h)) \in \rho$ . By Lemma 3.2 we have  $\kappa_a(\rho) \subseteq \kappa$  and consequently  $(g', o^1) \in \kappa$ , and  $(f', o^1) \in \kappa$ . By Lemma 2.1 there exists a function  $t^1 \in \iota_A \cap \text{POL } \rho$  with  $\text{Im}(t^1) \subseteq \{a_1, \dots, a_h\}$ . Using this function and the fact that  $f'' = f' * t$  we obtain a further function from  $\text{POL } \rho \cap \iota_A$

with  $(f'', o^1) \in \kappa$ . Then we get  $(\Delta(e_2^2 * f''), \Delta(e_2^2 * o^1)) = (e_1^1, o^1) \in \kappa$  and  $\kappa = \kappa_a$ .

b) One can show that from  $\kappa \not\subseteq \kappa_1(\rho) \cup \mu(\rho)$  and  $\kappa \not\subseteq \kappa_a$  it follows  $\kappa \cap \kappa_a \not\subseteq \kappa_a(\rho) \cup \mu(\rho)$ . Then from a) and  $\kappa_a \subseteq \kappa$  we obtain b). ■

**Lemma 3.4.** Let  $\text{POL } \rho$  be a maximal clone where  $\rho$  is an areflexive relation and suppose that there exists an element  $a \in U := \{\alpha \in A \mid \forall (a_1, \dots, a_h) \in \rho : \alpha \notin \{a_1, \dots, a_h\}\}$  ( $U \neq \emptyset$ ). Then for every congruence  $\kappa$  on  $\text{POL } \rho$  we have

$$\kappa \not\subseteq \kappa_a(\rho) \wedge \kappa \subseteq \kappa_a \Rightarrow \kappa_a(\rho) \cup \mu_0(\rho) \subseteq \kappa.$$

**Proof.** Because of Lemma 3.2, a) we have to show that  $\mu_0(\rho) \subseteq \kappa$ . Let  $\kappa$  be a congruence on  $\text{POL } \rho$  with  $\kappa \subseteq \kappa_a$  and  $\kappa \not\subseteq \kappa_a(\rho)$ . Then there are two different  $n$ -ary functions  $f, g$  with  $(f, g) \in \kappa$  and a  $n$ -tuple  $(r_1, \dots, r_n) \in \rho^n$  such that  $(r_1, \dots, r_n) \in \text{SD}(f)$  or  $(r_1, \dots, r_n) \in \text{SD}(g)$ .

Further we can assume that  $\kappa \neq \kappa_a$ . By Lemma 3.3 we have  $\kappa \subseteq \kappa_a(\rho) \cup \mu(\rho)$ , i.e. we have  $f(r_1, \dots, r_n) = g(r_1, \dots, r_n)$ . Since  $f \neq g$  there exists an  $n$ -tuple  $\tilde{a} := (a_1, \dots, a_n) \in A^n$  with  $f(\tilde{a}) \neq g(\tilde{a})$ . As shown in the proof of Lemma 3.3 we can assume that  $\tilde{a} \notin D(g)$  and  $\tilde{a} \in D(f)$ .

Let  $r := (a_1, \dots, a_h) \in \rho \setminus \iota_h$  and  $a \in U$ . Then the functions  $h_1, \dots, h_n$  defined by  $h_i(r) = r_i$ ,  $h_i(a) = a_i$  and  $h_i$  not defined otherwise, belong to  $\text{POL } \rho$ .

Then we get

$f(h_1(x), \dots, h_n(x)) =: f'(x) \sim g(h_1(x), \dots, h_n(x)) =: g'(x)$  ( $\kappa$ ), where  $f'(r) = f(h_1(r), \dots, h_n(r)) = f(r_1, \dots, r_n) = g(h_1(r), \dots, h_n(r)) = g'(r)$ ,  $f'(a) = f(h_1(a), \dots, h_n(a)) = f(a_1, \dots, a_n)$  and  $a \notin D(g')$ . By Lemma 2.1,  $\text{POL } \rho$  does contain a function  $t \in O_A$  with  $\text{Im}(t) \subseteq \{a_1, \dots, a_h\}$ . Then the function  $t'$  defined by

$$t'(x) := \begin{cases} t(x) & \text{for } x \notin U \\ a & \text{otherwise} \end{cases}$$

belongs to  $\text{POL } \rho$  and we get

$$f' * t' =: f'' \sim g'' := g' * t' \quad (\kappa) \quad \text{and}$$

$$e_2^2(f''(x), x) = e_1^1(x) \sim e_1^1(x) := e_2^2(g''(x), x) \quad (\kappa) \quad \text{with}$$

$$e_1^1(x) := \begin{cases} x & \text{if } x \notin U \\ \text{not defined} & \text{if } x \in U. \end{cases}$$

Let  $p^m$  be an arbitrary function from  $\text{POL } \rho$  and let

$$p_a(\tilde{x}) := \begin{cases} p(\tilde{x}) & \text{if } \tilde{x} \in (A \setminus U)^m \\ a & \text{otherwise} \end{cases} \quad \text{and}$$

$$p_\kappa(\tilde{x}) := \begin{cases} p(\tilde{x}) & \text{if } \tilde{x} \in (A \setminus U)^m \\ \text{not defined} & \text{otherwise.} \end{cases}$$

From  $(e_1^1, e_1^1) \in \kappa$  we get  $e_1^1 * p_a = p_a = e_1^1 * p_\kappa = p_\kappa(\kappa)$  and

$$e_2^2(p_a(\tilde{x}), p(\tilde{x})) = p(\tilde{x}) = e_2^2(p_\kappa(\tilde{x}), p(\tilde{x})) = p_\kappa(\tilde{x})(\kappa).$$

We obtain that two  $m$ -ary functions  $p, q$  with  $p(\tilde{x}) = q(\tilde{x})$  for  $\tilde{x} \in (A \setminus U)^m$  are congruent under  $\kappa$ , i.e.  $\mu_0(\rho) \subseteq \kappa$ . ■

**Lemma 3.5.** Let  $\text{POL } \rho$  be a maximal clone where  $\rho$  is an areflexive relation. Then for every congruence  $\kappa$  on  $\text{POL } \rho$  we have:

$$\kappa_1(\rho) \subseteq \kappa_1(\rho) \cup \mu_0(\rho) \subseteq \kappa \subseteq \kappa_1(\rho) \cup \mu(\rho) \rightarrow \kappa = \kappa_1(\rho) \cup \mu(\rho).$$

**Proof.** If for the congruence  $\kappa$  on  $\text{POL } \rho$  we have the relation  $\mu_0(\rho) \subseteq \kappa \setminus \kappa_1(\rho) \subseteq \mu(\rho)$  then there are two functions  $f^n, g^n, (f^n, g^n) \in \kappa$  such that for certain  $h$ -tuples  $(r_{11}, \dots, r_{h1}), \dots, (r_{1n}, \dots, r_{hn}) \in \rho, (a_1, \dots, a_h) \in \rho$  there exist an  $n$ -tuple  $(\alpha_1, \dots, \alpha_n) \in A^n$  and an element  $\alpha \in A$  with  $f(\alpha_1, \dots, \alpha_n) = \alpha, (\alpha_1, \dots, \alpha_n) \notin D(g)$  and

$$f \begin{pmatrix} r_{11} & \dots & r_{1n} \\ \vdots & \dots & \vdots \\ r_{h1} & \dots & r_{hn} \end{pmatrix} = \begin{pmatrix} a_1 \\ \vdots \\ a_h \end{pmatrix} = g \begin{pmatrix} r_{11} & \dots & r_{1n} \\ \vdots & \dots & \vdots \\ r_{h1} & \dots & r_{hn} \end{pmatrix}.$$

By Lemma 2.2 there exist functions  $h_1, \dots, h_n \in {}^0 A \cap \text{POL } \rho$  such that  $\{(h_1(i), \dots, h_n(i)) \mid i \in A\} = \{(r_{j1}, r_{j2}, \dots, r_{jn}) \mid j \in \{1, 2, \dots, h\}\}$ . Let  $t^m$  be an arbitrary function from  $\text{POL } \rho$ . Then for

$$D_t := \{ \tilde{x} \in A^m \mid \exists \tilde{a}_1, \dots, \tilde{a}_h : \tilde{x} \in \{\tilde{a}_1, \dots, \tilde{a}_h\} \wedge$$

$$\wedge \begin{pmatrix} \tilde{a}_1 \\ \vdots \\ \tilde{a}_h \end{pmatrix} \in \rho \wedge t \begin{pmatrix} \tilde{a}_1 \\ \vdots \\ \tilde{a}_h \end{pmatrix} \in \rho \Big\},$$

the functions  $t_i$  defined by

$$t_i(\tilde{x}) := \begin{cases} h_i(t(\tilde{x})) & \text{if } \tilde{x} \in D_t \\ \alpha_i & \text{if } \tilde{x} \notin D_t \wedge \tilde{x} \in D(t) \\ \text{not defined, otherwise} \end{cases}$$

( $i=1,2,\dots,n$ ) belong to  $\text{POL } \rho$  and we have:

$$u(f(t_1(\tilde{x}), \dots, t_n(\tilde{x}))) = t(\tilde{x}) \sim t'(\tilde{x}) = u(g(t_1(\tilde{x}), \dots, t_n(\tilde{x}))) \quad (\kappa)$$

with

$$u(x, y) := \begin{cases} y & \text{if } x \in \{a_1, \dots, a_h, \alpha\} \\ \text{not defined, otherwise,} \end{cases}$$

and

$$t'(\tilde{x}) := \begin{cases} t(\tilde{x}) & \text{if } \tilde{x} \in D_t \\ \text{not defined, otherwise.} \end{cases}$$

Now it follows that  $\mu(\rho) \subseteq \kappa$ . ■

**Lemma 3.6.** Let  $\text{POL } \rho$  be a maximal clone where  $\rho$  is an areflexive relation. Then for every congruence  $\kappa$  on  $\text{POL } \rho$  we have:

- a)  $\kappa_1(\rho) \subset \kappa \subseteq \kappa_1(\rho) \cup \mu_0(\rho) \Rightarrow \kappa = \kappa_1(\rho) \cup \mu_0(\rho)$
- b)  $\kappa_a(\rho) \cup \mu_0(\rho) \subset \kappa \subseteq \kappa_a(\rho) \cup \mu(\rho) \Rightarrow \kappa = \kappa_a(\rho) \cup \mu(\rho)$
- c)  $\kappa_a(\rho) \subset \kappa \subseteq \kappa_1(\rho) \Rightarrow \kappa = \kappa_1(\rho)$   
 $\kappa_a(\rho) \cup \mu_0(\rho) \subset \kappa \subseteq \kappa_1(\rho) \cup \mu_0(\rho) \Rightarrow \kappa = \kappa_1(\rho) \cup \mu_0(\rho)$   
 $\kappa_a(\rho) \cup \mu(\rho) \subset \kappa \subseteq \kappa_1(\rho) \cup \mu(\rho) \Rightarrow \kappa = \kappa_1(\rho) \cup \mu(\rho)$ .

**Proof.** a)  $\kappa_1(\rho) \subset \kappa \subseteq \kappa_1(\rho) \cup \mu_0(\rho)$  implies  $\kappa_1(\rho) \cap \kappa_a \subseteq \kappa \cap \kappa_a \subseteq (\kappa_1(\rho) \cup \mu_0(\rho)) \cap \kappa_a$  and further  $\kappa_a(\rho) \subseteq \kappa \cap \kappa_a \subseteq \kappa_a(\rho) \cup \mu_0(\rho)$  because  $\kappa_a(\rho) = \kappa_1(\rho) \cap \kappa_a$  and  $\mu_0(\rho) \subseteq \kappa_a$ .

Lemma 3.4 gives  $\mu_0(\rho) \cup \kappa_a(\rho) \subseteq \kappa \cap \kappa_a$  and therefore  $\kappa \cap \kappa_a = \kappa_a(\rho) \cup \mu_0(\rho)$ .  $\kappa$  can be written as  $\kappa = \kappa_1(\rho) \cup \mu'_0(\rho)$  with  $\mu'_0(\rho) \subseteq \mu_0(\rho)$ . Then we have  $\kappa \cap \kappa_a = (\kappa_1(\rho) \cup \mu'_0(\rho)) \cap \kappa_a = \kappa_a(\rho) \cup (\mu'_0(\rho) \cap \kappa_a) = \kappa_a(\rho) \cup \mu'_0(\rho) = \kappa_a(\rho) \cup \mu_0(\rho)$ . Therefore  $\mu'_0(\rho) = \mu_0(\rho)$  and  $\kappa = \kappa_1(\rho) \cup \mu_0(\rho)$ .

b)  $\kappa$  can be written in the form  $\kappa = \kappa_a(\rho) \cup \mu'$  with  $\mu_0(\rho) \subset \mu' \subseteq \mu(\rho)$ . Then we have  $\kappa \cup \kappa_\theta = \kappa_a(\rho) \cup \mu' \cup \kappa_\theta = \kappa_1(\rho) \cup \mu'$  by Lemma 3.2 and  $\kappa_1(\rho) \cup \mu_0(\rho) \subseteq \kappa_1(\rho) \cup \mu' \subseteq \kappa_1(\rho) \cup \mu(\rho)$ . By Lemma 3.5 it follows  $\kappa_1(\rho) \cup \mu' = \kappa_1(\rho) \cup \mu(\rho)$  or  $\kappa_1(\rho) \cup \mu' = \kappa_1(\rho) \cup \mu_0(\rho)$ . In the first case we get  $\mu' = \mu(\rho)$ , in the second case  $\mu' = \mu_0(\rho)$ . It follows  $\kappa = \kappa_a(\rho) \cup \mu_0(\rho)$ .

c)  $\kappa_a(\rho) \subset \kappa \subseteq \kappa_1(\rho)$  implies  $\kappa \neq \kappa_a$  and by Lemma 3.2 b)  $\kappa_\theta \subseteq \kappa \subseteq \kappa_1(\rho)$  implies  $\kappa = \kappa_\theta$  or  $\kappa = \kappa_1(\rho)$ . The first case is impossible. In a similar way we obtain the other propositions. ■

#### 4. Subvarieties of the strong regular varieties generated by a preprimal partial algebra

Let  $A = (A; F)$  be a partial algebra of type  $\tau$  and let  $W(X)$  be the total term algebra of this type. Every term  $w$  induces an  $n$ -ary term function  $w_A$  of  $A$  ([2]).

We need the concept of a strong regular identity. Let  $w_1, w_2$  be two terms which contain the same free variables. Then an equation  $w_1 = w_2$  is called a strong regular identity of  $A$  iff whenever one of the term functions  $w_{1A}, w_{2A}$  induced by  $w_1, w_2$  is defined, then the other is defined, and, when both are defined, then they have the same values ([2]). Let  $Id A$  be the set of all strong regular identities of  $A$ . In [2] it was proved:

**Lemma 4.1.**  $Id A$  is a fully invariant congruence relation of  $W(X)$ . ■

We define the concept of a strong regular variety  $V(A)$  defined by  $A$  as the class of all algebras  $B$  of the same type as  $A$  with  $Id B \supseteq Id A$ .

Then we obtain

**Lemma 4.2.** If  $V$  is a strong regular subvariety of  $V(A)$ , then  $Id V$  is a fully invariant congruence relation of  $F(X) := W(X) / Id A$ .

• **Proof.**  $Id V = \bigcap_{B \in V} Id B$  is a fully invariant congruence

relation on  $W(X)$ . By the second isomorphism theorem  $W(X)/\text{Id}_V$  is a homomorphic image of  $F(X) = W(X)/\text{Id}_A$  and there exists a congruence relation  $\Theta$  on  $F(X)$  such that  $F(X)/\Theta$  is isomorphic to  $W(X)/\text{Id}_V$ , namely  $\Theta = \text{Id}_V/\text{Id}_A$  and  $\Theta$  is fully invariant. ■

Further we have

**Lemma 4.3** ([2]). To every fully invariant congruence  $\kappa_F$  of  $F(X)$  corresponds a congruence  $\kappa \subseteq \kappa_a$  of  $T(A)$ . ■

From Lemma 4.2 and Lemma 4.3 it follows that an arity congruence of  $T(A)$  is assigned to every strong regular subvariety of  $V(A)$ . Therefore for a preprimal algebra  $A$ ,  $V(A)$  has at most three strong regular subvarieties. Considering the congruences  $\kappa_a(\rho)$ ,  $\kappa_a(\rho) \cup \mu_0(\rho)$ ,  $\kappa_a(\rho) \cup \mu(\rho)$  which lead to three fully invariant congruences  $\kappa_F$  of  $F(X)$  we see that each of these fully invariant congruences corresponds to a strong regular subvariety of  $V(A)$ . Therefore we have:

**Theorem 4.4.** Let  $A$  be a preprimal partial algebra and let  $V(A)$  be the strong regular variety generated by  $A$ . Then we have exactly the following cases for subvarieties of  $V(A)$ :

1.  $V(A)$  has no nontrivial strong regular subvariety,
2.  $V(A)$  has exactly two nontrivial strong regular subvarieties,
3.  $V(A)$  has exactly three nontrivial strong regular subvarieties. ■

#### REFERENCES

- [1] K. Denecke, D. Lau: Kongruenzen auf Klons und vollinvariante Kongruenzen relativ freier Algebren II. Rostock. Math. Kolloq., 29, (1986) 4-20.
- [2] K. Denecke: On primal partial algebras. Preprint (1989)
- [3] H.-J. Hoehnke: Monoidal structure of Mal'cev clones, their theories and completion. Preprint P-Math. -34/87, Akad. Wiss. DDR.

---

- [4] L. Haddad, I.G. Rosenberg: Critere general de completude pour les algebres partielles finies. C.R. Acad. Sc. Paris, t. 304, Serie I, n: 17 (1987), 507-509.
- [5] L. Haddad: Maximal partial clones determined by the areflexive relations. Univ. of Waterloo, Ontario, Preprint (1987).
- [6] L. Haddad: Completeness theory for partial finite algebras. Univ. of Waterloo, Ontario, Preprint (1988).
- [7] D. Lau, K. Denecke: Congruences on maximal partial clones and strong regular varieties generated by preprimal partial algebras I. Preprint (1989).

UNIVERSITÄT ROSTOCK, SEKTION MATHEMATIK,  
ROSTOCK 2500, GERMANY;  
PÄDAGOGISCHE HOCHSCHULE, "KARL LIEBKNECHT" POTSDAM, SEKTION  
MATHEMATIK, POTSDAM 1571, GERMANY

Received November 20, 1989.

