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CONGRUENCES ON MAXIMAL PARTIAL CLONES AND STRONG REGULAR

VARIETIES GENERATED BY PREPRIMAL PARTIAL ALGEBRAS II

Primality and preprimality for finite partial algebras may
be defined in a similar way as in the case of total algebras
([7]). A universal primality criterion for partial algebras
reduces to finding the complete 1list of preprimal partial
algebras. All preprimal partial algebras are given in [4]
(51, [6]).

In this paper we consider strong regular varieties gener-
ated by preprimal partial algebras and its " subvarieties.
Similarly as in the total case the subvarieties of the strong
regular variety V(A) generated by a partial algebra A=(A;F)
correspond to arity congruences of the clone (T(A);*,(,t,A,ei)
generated by the set F of partial functions ({1])). If A is a
primal partial algebra, then V(A) has no nontrivial subvar-
ieties ([2]}, [3]). For some classes of preprimal partial
algebras A we determined all congruences of the clones of its
term functions and in this way all nontrivial subvarieties of
the strong regqgular variety V(A) in the first part of this
paper. In the second part we will give a complete survey on
the subvarieties of V(A) for any preprimal partial algebra A.

1. Preliminaries

Let Pgn) be the set of all n-ary partial functions
defined on the finite set A (A={0,1,...,k-1}, k>2) and 1let
oén) be the set of all total n-ary functions on A. We set

= (n) - (n) _ . .
PA U:=1PA and OA Ui=10A . An n-ary function is denoted



106 D. Lau, K. Denecke

by £n, *, {, T, A are symbols for a binary and three unary

operations on P,. For the definition of *, {, T, A see [2].

A
Every subalgebra of the algebra PA = (P ;*,(,t,A,ei) is

dalled a clone. (Remark that e?

denotes the n-ary total
projection on the i-th component). For f,gepin), g is called
a subfunction of f, symbolically gsf, if D(g)sD(f) and if

where D(g) denotes the domain of g. A clone CcsP

f/p(g)=9" A
h

is strong if it is closed under taking subfunctions. Let p<A
be a h-ary relation (hzl). A function £n preserves p if for
every hxn matrix

whose columns
alj
: €ep (j=2,...,n)
ahj
and whose rows (ail,...,ain)eb(t) (i=1,...,h) we have

£( . aln)
: € p.

ahn)

all L] L]
f(ahl . .

The set POL p of all fePA which preserve p is a strong
partial clone.

Let E, bé the set of all equivalence relations on the
se; h={0,1,...,h-1}. For cczh ve set ac = {(xo,...,xh_l)e
eA” | (i,))ec = xi=xj}. p is strongly reflexive if for each
equivalence £ from E, with e*c, (co is the zero equiva-
lence) there exists an equivalence ¢€‘2¢ such that pnsc-sc,,
and if for h=2, pthz and p*{(x,x) | xeA}. The relation p is
said to be areflexive if pn68=¢ for each ceEh with e*e .
In [6]) (see also [4]) all maximal partial clones of functions
on a finite set A, |A|23 were determined. Let M be maximal

partial clone on A. Then we have exactly the following cases:
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(1) If M is not strong, then M = OAu{on | neN}, where o" is

the n-ary partial function with empty domain (D(on)=¢)
and N is the set of all positive integers.

(2) If M is strong, then M=POL p, where p is a relation with
the following property:
(i) a unary relation (h=1)
(ii) a h-ary strongly reflexive relation with hz2.
(iii) a h-ary areflexive relation with h=z2.

K K

Every clone CSPA has at least three congruences « a’ 1

defined by
(f,g)exo : & {f,g}sC A f=gqg,

0'

(f,g)exa : & {f,g}sC A arf=arg
(arf denotes the arity of the function f),
(f,g)ex1 : &= {f,g}sC.

Every congruence k with nSxa is called arity congruence.
If {on | neN}sC, then K, defined by

(f,9)ek, : <= {f,g}sC A (f=g v {f,g}s{on|neN})

is a congruence of C.
Since every maximal clone contains the set {on|new),

every maximal clone has the four congruences k K K K

0’ Ta’ 1’ 2’

In the first part we showed:
Lemma 1.1, Let C be a maximal clone. If C is not strong or
if M=POL p where p is an h-ary strongly reflexive relation

with hz2, then C has exactly the four congruences K K

o’ a’

K K . 8

1’ e
Let p be an h-ary relation on A. Consider the following
relations on POL p:

xl(p) := {(f,g)ex1 | f=g v Vrl,...,r €p : (ry,...

)ED(9)},

max(arf,arqg)

..,rarf)zo(f) A (rl""’rarg

k (P) =k, (p)nK,,

k(p)un(p) with u(p) := {(f,9)ek, | Vr ,...,xr, cep 2 ((ry,...

;..,rarf)zo(f) A (E oD e)9D(Q)) Vv E(Ty,eee T, )

= g(ry,eeeiT, )}
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In [7]) we proved:

Lemma 1.2, Let C be a maximal clone of the form C=POL p
with scpcA. Then C has exactly the follcowing pairwise
different congruences Kor Kar Kqv Ky xl(p), xa(p), xa(p)uu(p).

Con POL p can be given by the following diagram

2. Some properties of maximal partial clones of the form

C=POL p, where p is an h-ary areflexive relation with hz2

In this section let p be an arbitrary h-ary areflexive
relation (i.e. |{a0,...,ah_1}| = h for every (ao,...,ah_l)ep)
with the property that POL p is a maximal partial clone and
hz2. In [5] Haddad proved the following properties:

1.) Without loss of generality we can choose p such that
(0,1,...,h-1)ep.

2.) Let sh be the full symmetric group on {0,1,...,h-1}.
For every permutation mes, , let

(m) ~

2] = {(an(o),-.-,an(h_l)) | (aol'°'lah_1)ep} and

Gp 1= {meS, | pnp(")tz}.

We say that the relation p is symmetric under n if p=p(")

and asymmetric under m if pnp(")=z. '
Then we have

(a) Gp is a subgroup of Sh.

(b) p is symmetric under each ner(Vner : p=p(n)).

(c) p is asymmetric upder each nesh\Gp

(Vnesh\Gp : pnp(")=a).
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3.) Under the model of p we understand the h-ary relation
Vp = {(m(0),...,m{h-1)) | ner}. Note that 1p=p/h. Then
there exists a surjective function ¢ : A —>h, weOAnPOL P,
which is a relational homomorphism from p to 7p' i.e. for

every (ao,...,ah_l)ep we have (w(ao),...,w(ah_l))evp.
Then we obtain the following properties of the relation p:

h
Lemma 2.1. Let «, := {(ag,...,a; j)€A | |{a0,...,ah_1}|s
=<h-1}. Then we have p\Lhtz and for all (ao,...,ah_l)ep

there exists a function haePOL(pnO such that Im has{ao,...

)
A
...,ah_l} (Im ha denotes the image of ha)‘

Proof. For an arbitrary a := (ao,...,ah_l)ep we consider
the function Pt h — {a .,a
all ieh.

We define ha = p,%0, where ¢: A — h is the relational

with wa(i) = a, for

o’ h-1} i

homomorphism considered in 3.). Then we have Im ha = {ag, ...

...,ah_l} and haePOL p since by 3.) for every b := (bo,...

ARE
"'bn-l) = (nb(O),...,nb(h-l)) and therefore we get ha(bo"'

"'lbh_l) = ¢a(¢(b0:---:bh_1)) = wa("b(o)u--,"b(h‘l)) =
= (anb(o)""’anb(h—l))Ep by 2.), (b). =

..,bh_l)ep there exists a permutation nber= with ¢(b

Lemma 2.2. For all h-tuples ri=(rli"°"rhi) (i=1,...,n)

.,h on A with h

there exist unary functions h n grece

ePOL pnoA such that

17" ,hnE

{(hy(3) e Dy (3)) | JeA} = ((ryy,ee 2y | Fe(1,2,.00 000

Proof. We define hi = hri with r, = (rli,...,rhi)

(i=1,...,n) and obtain our result. =

3. Congruences on maximal clones of the form C=POL p,

where p is an areflexive at least binary relation

Consider the following relations: Kor K K K

1’ o' K1(P)s

ka(P)y ki (PYUR(P), K, (PIUM(P), K (P)VMy(P) With

uo(P) 3= {(£,9)ex, | YaeA\U)¥T i £(a)=g(a)} and

al

U := {aeA | V(c,;,...,c )ep : af{c +Cpltl and

17"
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K, (PYury (P) .
(Remark that for

ocpcA we have A\U=p, therefore xa(p)u

v (p) = xa(p)uuo(p) and further in this case we have xl(p)u
UH(P) = xl(p)UUO(P) = Kl(p)')
The main theorem of this section is the following

Theorem 3.1, If p be an areflexive h-ary relation on A
with hz2, then the congruence lattice of the clone C = POL p

is given by

1
K. K, (P)ur(p)
K, (P)vu(p) K, (P)uny(p)
K, (P)uny(p) k,(p)
K, (P) K,
Ko
if U=e and by
k1
Ky K, (P)ur(p)
K, (PYun(p) k,(p)
k,(pP) Kg
Ko
if U=e.

The proof of Theorem 3.1 will be given in the form of five
lemmas:

Lemma 3.2. Let x be a congruence on POL p. Then we have:

a) Kg € K < Ky, = xa(p) <K,
b) k & Ky = Ky S K,
c) K, C K = xl(p) < K.
Proof. a) If Ky € K S Kat then there are functions fn,

g" with (f",q™)ex and elements a := (al,...,an)ehn, a,bel,
a*p, such that f(S) t= a#b := g(s). POL p contains functions
t and h with

a B
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Yy if x=a
ta(x,y) = (aeA) and
not defined otherwise
7 if x=8
hB (x) :=
¥ not defined otherwvise.

If p is areflexive or {Cgre++1Cy_1}SPOL p, where c; is the
constant unary function with value ieA, B and 7 are arbitrary
elements of A, otherwise B¢{a | (a,a,...,a)ép}.
Therefore we get
f(hBal(x),---,hBan(x)) = hga(x)
~ g(h (x),...,h (x) = hgy (%) (k)
Ba, Ba B8b

and further we obtain

t,(hg, (X),¥) = tg(x,¥) = t,(hgy (x),y) = 0(x,¥) (k).

1f u™ is an arbitrary function from POL p with the property:

m
v Fireeo X €p ¢ (rl,...,rm)é D(u ),
then the following function v® is an element of POL p:
o~ B if u(x)eA
vi(x) :=
not defined otherwise.

Then we have

tg(V(R),u(X) = u(X) - oX(v(X),u(X) = (R (x),
i.e. xa(p)sx.

b) If xixa then there are two functions fn, gm, n>m in

POL p with (f,g)ex. Then we get

(T((A"2g) %0ty ) #0t = 0% - (T((aA" 2g)*ol))*ot = o1 (k).
It follows that oz*ei = ot . ol*ei = of (k) for arbitrary

reN. Therefore, we have xzsx.

c) For K CK and KNk *K, wWe have xa(p)sx by a) (since

KNk, = K’ # Kgr K'SKa implies xa(p)sx' and because of «k’sk

we get xa(p)sx).
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From Ka(p)SK and K,SK it follows Kl(p)Sp, since, if
(fn,gm)exl(p) (n#m), then we have (fn,on)ex and (om,gm)ex

because of xa(p)sn and (on,om)ex because of xﬂsn.

Transitivity gives (fn,gm)ex. If k,ck and KOK, = Ko, then
there exist two functions sl, £F (1#r) in POL p with
1.1

(s,t)ex. We can assume that 1>r and that s #20, i.e. there

exists an element a := (ay,..-,3;) with s(a)eA. We consider

the following two cases:

Case 1, For all aieA we have (ai,...,ai)ep. In this case

{ca reee1Cy }<sPOL p. From (s,t)ex and xgsn we get that two
1 n
constant functions of different arity are congruent under «.

It follows that (POL pnOA)x(POL pnoA)sx. This contradicts

nK_= .
KKa KO

Case 2, There is an element a eA with (ai,...,ai)ép.
Without loss of generality we assume that (al,...,a1)¢p. Then
the function h; a belongs to POL p for any ajeA, j=1,...n.

17
Moreover we can assumg that a,*a;_ .- (From a;=a;_.

consider s’ := s*e2 and t’ := t*eg. Then we apply the

operations ¢ and T and obtain functions s, t” with

we

(s”,t")ex, s”(S)eA, (a;,...,a;)ép and aI#aI_r). Then we get

(---(C((C((CS)*halal))*halal_l))*halal_z))*---)*ha a. )~

s

1 ‘ 1%1-r
toi=(...(C((C((Ct)*h )) *h *h_ ))*..)*h ) (x
1 ((eteee) a3 alal-l)) a31-2 ) a2y ()

with sl(xl,...,xl) =

s(x,_ yeeesXq,h (x,),...,h (x,_.))
l-r+l1 1l aa; .1 aja; l-r
and tl(xl,...,xr) =

t(h (x,),+..,h (x_).,h (h
a8y _pyr 20T Aay T Ay Tragay
. 1
since h *h =0 and because of a,=za .
aja; "a,ay . 1 "1-r

From this argumd®ntation and from K, SK it follows that

(x1))) = 0" (%)
r

KNK  *K which contradicts the presumption. Therefore we have
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cC). =

Lemma 3.3. Let POL p be a maximal clone where p is an
h-ary areflexive relation (hz2). Then for every congruence «
on POL p we have

a) x¢xa(p)uu(p) A KSK, = K=K,

b) x¢x1(p)uu(p) A x!na = K=K,.

Proof. a) x!xa(p)uu(p) and xsxa means that there exist

n’ qn with (fn,gn)ex and an n-tuple a=

two functions f
n .
= (rl,...,rn)ep with
asD(f), asD(g), f(a)=g(a) or
asD(f) and agD(g).
The first case can be reduced to the second case. Let ég
be the ternary function from POL p defined by

{ z if x=y

~3
93(X:Y:Z) =
not defined otherwise.

Then we have
e (£(X),£(X),£(X)) = £(X)

- e3(£(X),9(X),E(X) = g (B (k)
with ag¢D(g’).
Therefore, we can assume that EsD(f) and 5¢D(g).

Let (al,...,ah)ep\Lh. Then the functions tl,...,tn with
a
t 5 =T
2h
and ti(x) is not defined if xé{al,...,ah} (i=1,...,n)

belongs to POL p. (f,g)ex implies
£(E (X)) ,eee, (%)) =2 £ (0)=g(t (X),...,t (X))

2 g (x) (k),
where for every rep r¢D(g’) and (f’(al),...,f’(ah))ep. By
Lemma 3.2 we have xa(p)sx and consequently (g',ol)en, and

(f',ol)ex. By Lemma 2.1 there exists a function tleoAnPOL P

with Im(tl)s{al,...,ah}. Using this . function and the fact
that f’’=f’*t we obtain a further function from POL pn0,
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with (f”,0l)ex. Then we get (A(eg*f”),A(eg*ol)) = (e],ol)ex
and K=K, -

b) One can show that from x¢x1(p)uu(p) and x¢xa it
follows KnK 4 xa(p)uu(p). Then from a) and K,SK we obtain

b).s

Lemma 3.4. Let POL p be a maximal clone where p is an
areflexive relation and suppose that there exists an element
aeU := {aehA | V(al,...,ah)ep : aé{al,...,ah}} (Uze). Then for
every congruence x on POL p we have

kK £ xa(p) A KSKa =) xa(p)uuo(p)sx.

Proof., Because of Lemma 3.2, a) we have to show that
MO(P)SK- Let k be a congruence on POL p with KSK, and kg
¢xa(p). Then there are two different n-ary functions f, g with
(f,9)ex and a n-tuple (rl,...,rn)epn such that (rl,...,rn)s
<D(f) or (rl,...,rn)sD(g).

Further we can assume that k2K . By Lemma 3.3 we have
xsxa(p)uu(p), i.e. we have £(ry,...0xy) = g(ry,...,x). Since

f#g there exists an n-tuple a := (al,...,an)eAn with f(a)=
g(a). As shown in the proof of Lemma 3 3 we can assume that a¢
¢D(g) and aeD(f).

Let r := (al,...,ah)ep\ch and aeU. Then the functions
hy,...,h i;
fined otherwise, belong to POL p.

defined by hi(r)=r hi(a)=ai and hi not de-
Then we get

f(hy(x),...,h (%)) =: £ (x) ~ g(hy(x),...,h (x)) =: g’ (x) (x),

where f’ (r) = f(hl(r),...,hn(r)) = f(rl,...,rn) = g(hl(r),...

"‘Ihn(r)) =g (r), f'(a) = f(hl(a),...,hn(a)) = f(all"°lan)

and a¢D(g’). By Lemma 2.1, POL p does contain a function

teoA with Im(t)s{al,...,ah}. Then the function t’ defined by

t(x) for x¢U
a otherwise

belongs to - POL p and we get
fr*t’ =: £ ~ g’ = g’ *t’ (k) -and

e (£7(x),%) = ey(x) ~ &(x) := eS(g"(x),%) (k) with
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x 1if x¢U
xi(x) = {

not defined if xeU.
Let pm be an arbitrary function from POL p and let

{ p(x) if xe(a\n)®

a otherwvise

P, (X) := and

- p(X) if xe(A\D)®
Py (X) 1=

1
From (el,Xi)ex ve get ei*pa =P, ~ Xi*pa = p'(n) and

not defined otherwise.

e2(p, (%) ,p(X)) = P(X) ~ €3 (p,(X),p(X)) = py(¥X) (K).
We obtain that two m-ary functions p, q with p(x) = q(x)

for :‘ie(A\U)’Il are congruent under k, i.e. uo(p)cx. ]

Lemma 3.5. Let POL p be a maximal clone where p is an
areflexive relation. Then for every congruence x on POL p we
have:

xl(p)le(p)uuo(p)<x=x1(p)uu(p) - Kk = ‘I(P)UM(P)-

. Proof, If for the congruence k on POL p we have the
relation uo(p)cx\xl(p)Su(p) then there are two functions
£, q", (", dMex such that for certain h-tuples
(rll,...,rhl),...,(rln,...,rhn)ep, (al,...,ah)ep there exist
an n-tuple (al,...,an)ehn and an element a€l with
f(al,...,an)-a, (al,...,an)db(q) and

: Fyq +++ Xy cee Fyp
£ . ces o cee o .
Tpp *++ Ty ces Tpn

By Lemma 2.2 there exist functions hl,...,hneoAnPOL P such
that {(h,(i),...,h (1)) | ier} = {(rgysTyp0e 0+ 0T3p) | jeq1,2,

««s,h}}. Let t® be an arbitrary function from POL p. Then
for

D, t= { Eea® | 3&,,...,8, ¢ Retdy,.on iy} A
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a, : a,
A * s paAt] T € p },
2h %

the functions ti defined by

hi(t(i)) if ieot
ti(x) := ay if xéDt A XeD(t)
not defined, otherwise

(i=1,2,...,n) belong to POL p and we have:

W(E(E (X),.ee,t (X)) = £(X) ~ £ (X) = u(g(t (X)), ..., t (X)) (k)
with

y if xe{a,,...,a, ,a}
1 h
u(x,y) := .
not defined, otherwise,
and
t(x) if ieDt
t (%) :=
not defined, otherwise.

Now it follows that u(p)sk. =

Lemma 3.6, Let POL p be a maximal clone where p is an
areflexive relation. Then for every congruence Kk on POL p we
have:

a) x,(p) c K S k,(P)vny(p) = Kk = Kk, (P)vn,(p)

b) k (P)uny(p) < k s k (pun(p) = k = k_(p)vn(p)

c) k,(P) < k € Kk, (P) = Kk = Kk, (p) )

K Py (p) ¢ k € Kk (p)ung(p) = Kk = Kk, (P)vng(p)
K (PYur(p) ¢ k € Kk (pun(p) = Kk = x,(p)uu(p).

Proof. a) xl(p) c K S xl(p)uuo(p) implies xl(p)nxa (4

(< KNk < (:cl(p)uuo(p))nxa and further na(p) S KNk, S xa(p)u

uuo(p) because xa(p) = xl(p)nxa and uo(p) < K,
Lemma 3.4 gives uo(p)uxa(p) ( KoKk and therefore KNK, =

a

= xa(p)uuo(p). Kk can be written as K = xl(p)uub(p) with
ub(p) < uo(p). Then we have KNk, = (lcl(p)uu'o(p))mca = xa(p)u
vug(p)nk,) = k (p)uug(p) = k_ (p)ungy(p). Therefore Hy(p) =
= py(p) and k = k,(p)vuy(p).
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b) k can be written in the form K = xa(p)uu’ with
uo(p) c g’'s u(p). Then we have KUK, = xa(p)uu'uxo = xl(p)uu'
by Lemma 3.2 and nl(p)uuo(p) < xl(p)uu' < xl(p)uu(p). By
Lemma 3.5 it follows xl(p)uu’ = xl(p)uu(p) or xl(p)uu’ =
= xl(p)uuo(p). In the first case we get u = u(p), in the

second case u’' = uo(p). It follows «k = xa(p)uuo(p).

c) xa(p)cxsxl(p) implies xdxa and by Lemma 3.2 b)

K, SK. x¢9x5x1(p) implies «k = K, or K = xl(p). The first
case is impossible. In a similar way we obtain the other

propositions. =

4. Subvarieties of the strong reqular varieties generated
by a preprimal partial algebra

Let A=(A;F) be a partial algebra of type T and let W(X)
be the total term algebra of this type. Every term w induces
an n-ary term function wp of A ([2]).

We need the concept of a strong regular identity. Let Wys
wa be two terms which contain the same free variables. Then an
equation W=, is called a strong regular identity of A iff

whenever one of the term functions w

1A’ Yaa induced by Wis
2 is defined, then the other is defined, and, when both are
defined, then they have the same values ([2])). Let Id A be
the set of all strong regular identities of A. In (2] it was
proved:

w

Lemma 4.1. Id A is a fully invariant congruence relation
of W(X). =

We define the concept of a strong regular variety V(A)
defined by A as the class of all algebras B of the same type
as A with TId B 2 Id A.

Then we obtain

Lemma 4.2. If V is a strong regular subvariety of V(A),
then 14 V is a fully invariant congruence relation of
F(X) = W(X) 14 -

*Proof, Id V = nBevId B is a fully invariant congruence
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relation on W(X). By the second isomorphism theorem
W(X)/Id v is a homomorphic image of F(X) = W(X)/Id A and
there exists a congruence relation 6 on F(X) such . that
F()()/8 is isomorphic to W(X)/Id v’ namely 8 = 1d V/Id A
and 8 is fully invariant. =

Further we have

Lemma 4.3 ([2]). To every fully invariant congruence Kp

of F(X) corresponds a congruence KSKa of T(A). m

From Lemma 4.2 and Lemma 4.3 it follows that an arity
congruence of T(A) is assigned to every strong regular
subvariety of V(A). Therefore for a preprimal algebra A, V(&)
has at most three strong regular subvarieties. Considering the
congruences na(p), xa(p)uuo(p), xa(p)uu(p) which 1lead to
three fully invariant congruences Kp of F(X) we see that:
each of these fully invariant congruences corresponds to a
strong regular subvariety of V(A). Therefore we have:

Theorem 4.4. Let A be a preprimal partial algebra and 1let
V(A) be the strong regular variety generated by A. Then we
have exactly the following cases for s bvarieties of V(a):

1. V(A) has no nontrivial strong regular subvariety,

2. V(A) has exactly two nontrivial strong regular

subvarieties,

3. V(A) has exactly three nontrivial strong regular

subvarieties. =
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