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CONGRUENCES ON MAXIMAL PARTIAL CLONES AND STRONG REGULAR 

VARIETIES GENERATED BY PREPRIMAL PARTIAL ALGEBRAS II 

Primality and preprimality for finite partial algebras may 
be defined in a similar way as in the case of total algebras 
([7]). A universal primality criterion for partial algebras 
reduces to finding the complete list of preprimal partial 
algebras. All preprimal partial algebras are given in [4] 
([5], [6]). 

In this paper we consider strong regular varieties gener-
ated by preprimal partial algebras and its subvarieties. 
Similarly as in the total case the subvarieties of the strong 
regular variety V(A) generated by a partial algebra A=(A;F) 

2 
correspond to arity congruences of the clone (T(A);*,ζ,τ,Δ,e^) 
generated by the set F of partial functions ([1]). If A is a 
primal partial algebra, then V(A) has no nontrivial subvar-
ieties ([2], [3]). For some classes of preprimal partial 
algebras A we determined all congruences of the clones of its 
term functions and in this way all nontrivial subvarieties of 
the strong regular variety V(A) in the first part of this 
paper. In the second part we will give a complete survey on 
the subvarieties of V(A) for any preprimal partial algebra A. 

1. Preliminaries 
Let b e t h e s e t o f all n-ary partial functions 

defined on the finite set A (A={0,1,...,k-l}, k>2) and let 
be the set of all total n-ary functions on A. We set 

Ρ = U"_1P^n) and Ο = ΐ/ν,Ο^. An n-ary function is denoted Α Π—1 A A n-1 A 
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by f . *, ζ, τ, Δ are symbols for a binary and three unary 
operations on P^. For the definition of *, ζ, τ, Δ see [2]. 

2 Every subalgebra of the algebra PA = (ΡΑ;*,ζ,τ,Δ,e^ is 
denotes the n-ary total called a clone. (Remark that e. 

projection on the i-th component). For , g is called 
a subfunction of f, symbolically gsf, if D(g)SD(f) and if 
f/D(g)=g, where D(g) denotes the domain of g. A clone C£PA 
is strong if it is closed under taking subfunctions. Let psA*1 
be a h-ary relation (h*l). A function fn preserves ρ 
every hxn matrix 

if for 

11 

hi 

in 

hn 
whose columns 

aij 

"M 
e ρ (j-Ι,...,η) 

and whose rows (ϊ^, ... ,a4n) cD(f ) (i«l,...,h) we have 'in 
f(alx . . . aln) 

f<ahl ' * ' ahn> 
e p. 

The set POL ρ of all f e P
A which preserve ρ is a strong 

partial clone. 
Let E^ bé the set of all equivalence relations on the 

set h « {0,1,... ,h-l>. For cCE^ we set δ « {(xQ,...,x^ ĵ )« 
cAh I (i,j)cc —* x.=x.}. ρ is strongly reflexive if for each 
equivalence ε from E^ with c*cQ (cQ is the zero equiva-
lence) there exists an equivalence ε' 2ε such that ρηδ «δ , , 

2 ε ε and if for h=2, ρ*A and p*{(x,x) | xeA>. The relation ρ is 
said to be areflexive if pn6e=e for each with e*eg· 
In [6] (see also [4]) all maximal partial clones of functions 
on a finite set A, |A|*3 were determined. Let M be maximal 
partial clone on A. Then we have exactly the following cases: 
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(1) If M is not strong, then M = O.u{on I neIN}, where o11 is A 
the n-ary partial function with empty domain (D(o )=0) 
and M is the set of all positive integers. 

(2) If M is strong, then M=POL p, where ρ is a relation with 
the following property: 
(i) a unary relation (h=l) 
(ii) a h-ary strongly reflexive relation with ha2. 
(iii) a h-ary areflexive relation with hs2. 

Every clone C S P
A has at least three congruences Kq, 

defined by 
(f,g)€K0 : {f,g}£C Λ f=g, 
(f,g)e<a : <=-> {f,g}£C Λ arf=arg 
(arf denotes the arity of the function f), 
(f,g)eKl : «=> {f,g}sc. 

Every congruence Κ with KSK is called arity congruence. cl 
If {on I neN}SC, then κ0 defined by 

(f,g)€ic0 : <=» {f,g}SC a (f=g ν {f,g}s{on|n€lN}) 
is a congruence of C. 

Since every maximal clone contains the set {on|nelN>, 
every maximal clone has the four congruences kq/ Ka» K

e· 
In the first part we showed: 

Lemma 1.1. Let C be a maximal clone. If C is not strong or 
if M=POL ρ where ρ is an h-ary strongly reflexive relation 
with h*2, then C has exactly the four congruences κ_, κ , 

U ci 

Ki' <V • 
Let ρ be an h-ary relation on A. Consider the following 

relations on POL p: 
ΚΧ(Ρ) := {(f,®)«! I f=g ν Vrx W ( a r f , a r g ) : (rl"·· 

•••,rarf)¿D(f) λ (r1,...,rarg)ÄD(g)>, 
K
a (P) := »^(P)™^, 
κ(ρ)υμ(ρ) with μ (ρ) := {(f,g)etca | Vr^... ,rarfep : ((r^... 

•··,rarf)*D(f) a (rlf...,rarf)*D(g)) ν f(r1#...,rarf) = 
= g(ri,...,rarf)}. 
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In [7] we proved: 

Lemma 1.2. Let C be a maximal clone of the form C=P0L ρ 

with ecpcA. Then C has exactly the following pairwise 

different congruences k q, Κ&, κ χ, tc0, κχ(ρ), κa(p), *3(ρ)υμ(ρ). 

Con POL ρ can be given by the following diagram 

2. Some properties of maximal partial clones of the, form 

C=P0L p, where ρ is an h-ary areflexive relation with h*2 

In this section let ρ be an arbitrary h-ary areflexive 

relation (i.e. |{aQ,...,ah_x}| = h for every (aQ,... ,ah_x) ep) 

with the property that POL ρ is a maximal partial clone and 

h*2. In [5] Haddad proved the following properties: 

1.) Without loss of generality we can choose ρ such that 

(0,1,...,h-l)ep. 

2.) Let S^ be the full symmetric group on {0,1,...,h-l}. 

For every permutation neS^, let 

Ρ ( π ) : = <<aTT(0) a7r(h-l)> I <a0 ah-l> e<» a n d 

G p : = { " € S h I ρηρ(π)*·>· 

We say that the relation ρ is symmetric under π if p=p^n^ 

and asymmetric under π if 

Then we have 

(a) Gp is a subgroup of S^. 

(b) ρ is symmetric under each neG^(VneG^ : p = p ^ ) . 

(c) ρ is asymmetric upder each ireS^XG^ 

(VTT€Sh\Gp : ρηρ<π)=0). 
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3.) Under the model of ρ we understand the h-ary relation 
Vp '·= {("(O) , . . . ,7T(h-l) ) I TreGp}. Note that rp=p/h' T h e n 

there exists a surjective function φ : A —> h, (peO^POL p, 
which is a relational homomorphism from ρ to i.e. for 
every (aQ, ... ep we have ((p(aQ) ,... ,ΙΡ^^) ) erp. 

Then we obtain the following properties of the relatión ρ: 
Lemma 2.1. Let ih := {(aQ/...,ah_1)eAh | |{aQ,...,ah_1>|s 

sh-1}. Then we have and for all (aQ,. .. ,ali_1)ep 
there exists a function h ePOL(pnO ) such that Im h £{a ,... ά Α α U 
•••»aw ,} (Im h denotes the image of h ). h-1 a a 

Proof. For an arbitrary a := ( a Q , . . . e p we consider 
the function φ : h —» {a„,...,a. ,} with ( i) = a. for a o h-1 a ι 
all ieh. 

We define h := φ *φ, where φ: h —• h is the relational d 3 
homomorphism considered in 3.). Then we have Im h = {an,... cl U 
...,a. > and h ePOL ρ since by 3.) for every b := (bn,... IIe Χ α U 
. .. >bji_1) ep there exists a permutation ÏÏ^sG^' with p(bQ,... 
...b^j^) = (rrb(0),... ,Tib(h-l) ) and therefore we get ha(bQ,.. 
'••'bh-l) = *a(,p(b0' ' ' ' ,bh-l) ) = »>a(Trb(0) ' ' ' · ,7rb(h-1)} = 

= (aTrb(0) anb(h-l))€p 2-}' (b)· " 
Lemma 2.2. For all h-tuples ri =( rü' · · · ,rhi^ (ί=1,···,η) 

there exist unary functions on A with h1,...,hne 
ePOL P^0A such that 
{(h^j) ,... ,hn(j)) I j«A> = {(*j1(...,rjn) I jc{l,2,...,h}}. 

Proof. We define h. := h with r. = (r, .....,r. .) i r^ ι li hi 
(i=l,...,n) and obtain our result. • 

3. Congruences on maximal clones of the form C=P0L p, 
where ρ is an areflexive at least binary relation 

Consider the following relations: kq, k^, <ca, κ0, κ^(ρ), 
K
a(Ρ) ι κχ(Ρ)νμ(Ρ), Ka(p)uu(p), K1(p)<jßQ(p) with 
U0(P) :« {(f/Çf)6Ka I Vae(A\U)arf : f(a)=g(a)} and 
U := {aeA | Vfc^.. .,ch) ep : a^{clf.. .,c^}} and 
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Ka(p)u 
^(Ρΐυ 

<a(p)vv0(p). 
(Remark that for acpcA we have A\U=p, therefore 

υμ(ρ) = κ (ρ)υμ (ρ) and further in this case we have α U 
υμ(ρ) = K^pjuíi^p) = »^(p).) 

The main theorem of this section is the following 
Theorem 3.1. If ρ be an areflexive h-ary relation on A 

with ht2, then the congruence lattice of the clone C = POL ρ 
is given by 

κ&(ρ)υμ(ρ) 
κΛ(ρ)υμ0(ρ) 

Ka(P) 

if U*0 and by 

κβ(Ρ)υμ(ρ) 
Ka(p) 

^(PjuHtP) 
κ1(ρ)υμ0(ρ) 

Kj^ipivuCp) 

K1(P) 

if U=0. 
The proof of Theorem 3.1 will be given in the form of five 

lemmas: 
Lemma 3.2. Let κ be a congruence on POL p. Then we have: 

a) kq c κ s Ka —• Ka(p) s κ, 
b) κ t κ 
c) κ 

Proof, a) If 

a 
c κ 

K0 s K' κχ(ρ) s κ. 

KQ c κ ς Ka< then there are functions en 

gn with (fn,gn)eit and elements â := (a^ ... ,an)«An, a,beA, 
a*b, such that f(a) := a*b := g(a). POL ρ contains functions 

and hßr with 
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t a(x,y) := 
y if x=a 

not defined otherwise 
(aeA) and 

V ( x ) : = 

y if χ=β 

not defined otherwise. 

If ρ is areflexive or {c Q,...,Cj t_ 1}£POL p, where c^ is the 

constant unary function with value icA, β and y are arbitrary 

elements of A, otherwise 0¿{a | (a,a,...,a)¿p}. 

Therefore we get 

f(h p (x) f...,h p a (χ)) = hßa(x) 

- . · · · ih ß a (χ) = hp b(x) (κ) 

and further we obtain 

t a(h ß a(x),y) = tß(x,y) 

.m 

fca(h/3b(x) , y ) = ° ( x , y ) ' 

If u is an arbitrary function from POL ρ with the property: 

V r l f . . . , r m € p : (rlf...,rm)rf D(u m), 

then the following function v m is an element of POL p: 

β if u(x)eA 
v m(£) := 

not defined otherwise. 

Then we have 

tp(v(x),u(x)) = u(x) 

i.e. κ (p)sk. a 

o 2(v(x),u(x)) = ο^ίί) (κ), 

b) If κϊκ. then there are two functions f n, g m , n>m in cl 
POL ρ with (f,g)€K. Then we get 

(τ((Δ η 2 f ) * o 1 ) ) * o 1 = o 2 (T((A n - 2g)*o 1))*o 1 = o 1 
(κ) . 

It follows that o 2*e^ = o r + 1 - o 1*e^ = o r (κ) for arbitrary 

relN. Therefore, we have κ £κ. a 

cl For κ ex and κηκ *κ η we have κ (ρ)sk by a) (since 0 a o a 

κηκ = κ' * κ η , κ' £κ implies κ (p)SK' and because of κ'Sk 
ο U cl 21 

we get κ (ρ)Sic). 
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From Ka(p)SK and it follows K^(p)sp, since, if 
(fn,gm)eic (p) (n*m) , then we have (fn,on)e/c and (om,gm)eic 
because of κ (ρ)£κ and (on,om)eK because of κ s/c. 

a ' 0 
Transitivity gives (fn,gm)eK. If k0ck and κ·ηκ·Ά = then 

1 r there exist two functions s , t (l*r) in POL ρ with 
(s,t)€K. We can assume that l>r and that s^*o\ i.e. there 
exists an element 5 := with s(a)eA. We consider 
the following two cases: 

Case 1. For all a^eA we have (a^,...,a^)ep. In this case 
{c& ,...,c }SP0L p. From (s,t)ejc and we get that two 

1 η 
constant functions of different arity are congruent under κ. 
It follows that (POL pnOA)x(POL pr\Oa)sk. This contradicts 
ΚΛΚ =ic . α u 

Case 2. There is an element a^eA with ip. 

Without loss of generality we assume that (a.,...,a )ip. Then 
1 . the function h belongs to POL ρ for any a.eA, ]=l,...n. 
al aj J 

Moreover we can assume that ai*ai-r' (From ai=ai-r w e 

consider s' := s * ^ and t' := t*e^. Then we apply the 
operations ζ and τ and obtain functions s", t" with 
(s",t")€»c, s"(a)eA, ( a ' ^ , . . . , a a n d aï*aï_r)· Then we get 

1 al al 11—1 11-2 1 1-r 
t : = (...(ζ((ζ((ζί)*1ι ))*h ))*h. ) ) * . . ) ) ( κ ) 
1 ll-i 11-2 1 1-r 

with s^(χ1#..., x^) = 

s(Xl_r+1,.. haiai(xl-r> > 
and ... ,xr) = 

t(h (χ ),...,h (xj,h (h (χ ))) = or(£) 
1 1-r+l 2 11-1 r al al 1 1-r 1 

since h *h = o 1 and because of a„*a, 
al al 1 1-r 1 1~ r 

From this argumentation and from it follows that 
κηκ *κ which contradicts the presumption. Therefore we have 3 U 
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c) . 

Lemma 3.3. Let POL ρ be a maximal clone where ρ is an 
h-ary areflexive relation (h*2). Then for every congruence κ 
on POL ρ we have 

κ=κ a) k*kβ(ρ)υμ(ρ) λ KS,K& 
b) κÉK^pJuuÍp) λ ic¿ica κ=κ 

a' 
1· 

Proof, a) Κ^Κ (ρ)υμ(ρ) and KSK means that there exist 21 cl 
two functions fn, g n with (fn,gn)eK and an η-tuple ä = 

= (Γχ,...,rn)€p with 

SsD(f), aSD(g), f(â)*g(â) or 

âsD(f) and ätfD(g). 

The first case can be reduced to the second case. Let 
be the ternary function from POL ρ defined by 

e3(x,y,z) = 
ζ if x=y 

not defined otherwise. 
Then we have 

e^(f(x),f(x),f(x)) = f(x) 

- ^(f(Z),g(Z),f(ï)) = g' (χ) (κ) 
with atfD(g'). 

Therefore, we can assume that aSD(f) 
Let (a^, ... Then the functions 

and a£D(g) 
t Ί ' · ,tn with 

= ri 

'ah> (i=l,...,n) and t^(x) is not defined if XfÉía^. 
belongs to POL p. (f,g)«K implies 
f (tj^Cx) , . · · ,tn(x) ) =: £' (*)-g(t1(*)f...ftn(x)) 9' (x) (κ), 

where for every rep r£D(g' ) and (£' ( a x ) ( a h ) ) e p . By 

Lemma 3.2 we have κ (ρ)£κ and consequently α 
(f' ,o1)eK. By Lemma 2.1 there exists a function 

(g' ,ο )εκ, and 

t eO^nPOL ρ 

with Im(t ) . . . , a ^ } . Using this .function and the fact 
that f"=f' *t we obtain a further function from POL pn 
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with (f",o1)€K. Then we get (Aie^f") ,Δίβ^ο1) ) = (e*,o 1)eic 
and κ=κ . 

Λ 
b) One can show that from κ$κ (ρ)υμ(ρ) and k¿k it Χ α 

follows KCkK i κ (ρ) υμ(ρ). Then from a) and κ ί κ we obtain α α 0 
b) 

Lemma 3.4. Let POL ρ be a maximal clone where ρ is an 
areflexive relation and suppose that there exists an element 
acU := {α«Α | . . . : a^ía^,...,ah>} (U*e). Then for 
every congruence κ on POL ρ we have 

κ i Ka(P) Λ K£Ka =» κ3(ρ)υμ0(ρ)£κ. 
Proof. Because of Lemma 3.2, a) we have to show that 

μη(ρ)£κ. Let κ be a congruence on POL ρ with KSK and ΚΊ U α 
^K-(P)· Then there are two different n-ary functions f, g with a 
(f,g)€K and a η-tuple (r^,...,rn)€p such that )s 
SD(f) or (r^,...,r^)£D(g). 

Further we can assume that κ*κ . By Lemma 3.3 we have α K£<a(P)W*(P), i.e. we have ffr^...,^) = gfr^ ... ,rn) . Since 
f*g there exists an η-tuple ä := (a^,...,an)eAn with f(i)* 
g(a). As shown in the proof of Lemma 3 3 we can assume that ä4 
*D(g) and äeD(f). 

Let r := (o^,... ,α^) ep\th and aeU. Then the functions 
hlf...,hn defined by h^(r)=r^, h^(a)=a^ and h^ not de-
fined otherwise, belong to POL p. 

Then we get 
f(h1(x)f...fhn(x)) =: f' (χ) - 9(^(χ),...^ η(χ)) =: g' (χ) (κ), 
where f' (r) = f (h^r),... ,hn(r) ) = f (r^ ... ,rn) =g(h1(r),... 
...,hn(r)) - g' (r), f' (a) = f (h^a) ,... ,hn(a) ) = an) 
and a¿D(g' ). By Lemma 2.1, POL ρ does contain a function 
teOA with I m ( t ) s i a ^ , . . . . Then the function t' defined by 

t(x) for x*U 

a otherwise 
belongs to POL ρ and we get 
f' *t' =: f" - g" := g' *t' (κ) and 
e*(f"(x),x) = ej(x) - ¥j(x) := e*(g"(x),x) (κ) with 

t' (χ) : = 
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3Ç(*> I 
χ if x¿U 
not defined if xeU. 

P a ( x ) 

p0(*> 

ir 
Let ρ be an arbitrary function from POL ρ and let 

p(x) if X€(A\U)m 
and 

otherwise 
ρ ( 5 ) if xc(A\U)" 
not defined otherwise. 

From (eJ,Xj)€K we get ej*pa - P a - ^ * P a - Ρ β(Ό a n d 

e2(pa(*)»p(*)) - p(5) - β2(ρβ(;),ρ(;)) - ρβ(χ) (κ). 
We obtain that two m-ary functions p, q with p(x) ~ q(x) 

,m are congruent under κ, i.e. μ0(ρ)£κ. • for X6(A\U) 
Le—w 3.5. Let POL ρ be a maximal clone where ρ is an 

areflexive relation. Then for every congruence κ on POL ρ we 
have: 

Kj/PjSKj^pJuMgipJcicC^ipJuMtp) κ KJ/PNUÍP) . 

Proof. If for the congruence κ on POL ρ we have the 
relation uQ(p)(ρ)£μ(ρ) then there are two functions 
fn, gn, (fn,gn)«κ such that for certain h-tuples 
(rllf...,rhl),...f(rln,...,rhn)€p, (βχ,...,ah)«p there exist 
an n-tuple (aj,...,«n)cA η and an element acA with 
f(a1,...,«n)»a, («Xjy · · · «an)¿D(g) and 

11 

hi 

in 

Lhn 

11 

hi 

In 

hn 
,hn« O^nPOL ρ such By Lemma 2.2 there exist functions t^, 

that I i«A> - i(rjlfrj2,...,rjn) | jc{l,2, 
...,h>}. Let t* be an arbitrary function from POL p. Then 
for 

Dt : » Ί χβΑ* | 3 a^,, rah : Χ€{βχ, ,ah> a 
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s ρ Λ t « Ρ 

the functions t^ defined by 

h±(t(x)) if X€Dt 

A^ if Λ xeD(t) 
not defined, otherwise 

(i=l,2,...,n) belong to POL ρ and we have: 

= t(x) - t' (X) =u(g(t1(x), 
with 

u(x,y) := 
y if x€{a. rah,a} 

and 

t' (χ) : = 

Now it follows that 

not defined, otherwise, 

if xeD. 

,tn(x)) ((C) 

t(x) _ 
not defined, otherwise. 
μ(ρ)£κ. • 

Lemma 3.6. Let POL ρ be a maximal clone where 
areflexive relation. Then for every congruence κ on 
have: 

ρ is an 
POL ρ we 

a) 
b) 
c) 

κχ(ρ) c κ £ κ1(ρ)υμ0(ρ) κ = κχ(Ρ)υμ0(ρ) 
κ3(Ρ)υμ0(Ρ) c κ £ κ3(ρ)υμ(ρ) 
Ka(p) C Κ £ Κ ^ Ρ ) Κ = κχ(Ρ) 
κ
3
( ρ ) υ μ 0 ( ρ ) c κ 2 κ1(ρ)υμ0(ρ) 

κ&(Ρ)υμ(ρ) c κ £ κ1(ρ)υμ(ρ) 
Proof, a) κχ(ρ) c κ £ κ 1(ρ)υμ()(ρ) 

and further 
and 

κ = <&(Ρ)υμ(ρ) 

=> κ = κ1(ρ)υμ0(ρ) 
κ = κ 1 ( ρ ) υ μ ( ρ ) . 

£ κηκ s a 
υμ0(ρ) because 

(κ1(ρ)υμ0(ρ))ηκ3 
K
a(P) = ^ ( Ρ ) ™ ^ 

implies 
£ κηκ 

C (C 
*a(p) a £ K a ( p ) u 

Lemma 3.4 gives μ (ρ)υκ (ρ) £ κηκ U α α 
= κ (ρ)υμ (ρ), κ can be written as d υ 
μ'(ρ) £ μ (ρ). Then we have κηκ. U U c« j. 
υ(μ'0(ρ)ηκ3) = κ &(ρ)υμ'0(ρ) = κ 3(ρ)υμ0(ρ). 

and therefore κηκ = α 
= κ1(ρ)υμ'0(ρ) with 

= (κ1(ρ)υμ'0(ρ) )ηκ& = κ&(ρ)υ 
Therefore μ'0(Ρ) = 

= μ0(Ρ) and κ = κ1(ρ)υμ0(ρ). 
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b) κ can be written in the form κ = κ (ρ)υμ' with A 
μη(ρ) c μ'£ μ(ρ). Then we have kuk = K^fpJuy'uK = κ,(ρ)υμ' U 0 cl 0 X 
by Lemma 3.2 and κ1(ρ)υμ()(ρ) ε κ^ρΐυμ' s κ 1(ρ)υμ(ρ). By 
Lemma 3.5 it follows κ1(ρ)υμ' = κ^(ρ)νμ(ρ) or κ1(ρ)υμ' = 
= (ρ)υμ0(ρ). In the first case we get μ' = μ(ρ), in the 
second case μ' = ßQ(p). It follows κ = κβ(ρ)υμ0(ρ). 

c) (ρ)efesie (ρ) implies κέκ and by Lemma 3.2 b) & 1 cl 
κ0£κ. ic0Sk£(c1(p) implies κ = κ0 or κ = »^(ρ). The first 
case is impossible. In a similar way we obtain the other 
propositions. • 

4. Subvarieties of the strong regular varieties generated 
by a preprimal partial algebra 

Let A=(A;F) be a partial algebra of type τ and let W(X) 
be the total term algebra of this type. Every term w induces 
an n-ary term function w^ of A ([2]). 

We need the concept of a strong regular identity. Let w^, 
w2 be two terms which contain the same free variables. Then an 
equation w

1
= w

2
 c a l l e d a strong regular identity of A iff 

whenever one of the term functions V2A in<*uce<* by w^, 
w2 is defined, then the other is defined, and, when both are 
defined, then they have the same values ([2]). Let Id λ be 
the set of all strong regular identities of A. In [2] it was 
proved: 

Lemma 4.1. Id A is a fully invariant congruence relation 
of W(X). • 

He define the concept of a strong regular variety V(A) 
defined by A as the class of all algebras Β of the same type 
as A with Id Β 2 Id A. 

Then we obtain 
Lemma 4.2. If V is a strong regular subvariety of V(A), 

then Id V is a fully invariant congruence relation of 
F(X) :-W(X) / I d A. 

'Proof. Id V = ngcvId B a fully invariant congruence 
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relation on W(X). By the second Isomorphism theorem 
W(X)/Id v is a homomorphic image of F(X) = W( x)/ I d A and 
there exists a congruence relation θ on F(X) such that 
F ( X ) i s isomorphic to w(x)/id v' n a m ely θ = Id A 

and θ is fully invariant. • 
Further we have 

Lemma 4.3 ([2]). To every fully invariant congruence κ„ γ 
of F(X) corresponds a congruence κ£κ of Τ(A). • 

α 
From Lemma 4.2 and Lemma 4.3 it follows that an arity 

congruence of Τ(A) is assigned to every strong regular 
subvariety of V(A). Therefore for a preprimal algebra A, V(A) 
has at most three strong regular subvarieties. Considering the 
congruences κ_(ρ), κ (ρ)υμ (ρ), κ (ρ)υμ(ρ) which lead to cl 3 U cl 
three fully invariant congruences of F(X) we see that 
each of these fully invariant congruences corresponds to a 
strong regular subvariety of V(A). Therefore we have: 

Theorem 4.4. Let A be a preprimal partial algebra and let 
V(A) be the strong regular variety generated by A. Then we 
have exactly the following cases for s' bvarieties of V(A): 

1. V(A) has no nontrivial strong regular subvariety, 
2. V(A) has exactly two nontrivial strong regular 

subvarieties, 
3. V(A) has exactly three nontrivial strong regular 

subvarieties. • 
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