

Janusz A. Pomykala

SOME REMARKS ON APPROXIMATION

1. Introduction

The notion of information system, which is a starting point of the present paper, was introduced by Pawlak (see [1]) in 1981, and since then it has been intensively investigated. In particular related notions of a nondeterministic information system (see [2], [3]) and an approximation space (see [4], [5], [6]) were also examined. These notions are used to analyse computer and empirical data, being helpful in understanding indiscernibility and similarity of objects.

In sections 2, 3, 4 we recall basic notions and we give the short motivation for considering generalized approximation space. In section 5 we examine several approximation operations E_i , \bar{E}_i , $i=0\dots 4$, in view of elementary lattice theory. In section 6 we introduce the notion of approximation algebra and we use this notion to characterize families of definable sets with respect to the operations E_i , \bar{E}_i $i=0\dots 4$.

Throughout the paper we use the standard mathematical notation, in particular $P(X)$ stands for the family of all subsets of the set X . A family $\mathbb{E} \subseteq P(X)$ such that $\bigcup \mathbb{E} = X$ is called a cover of X . Frequently we will consider the cover \mathbb{E} whose elements are nonempty, pairwise disjoint subsets of X . In such a case it is called a partition of X . Any relation τ on a set U which is reflexive and symmetric is called the tolerance relation. A set $E \subseteq U$ such that $E \times E \subseteq \tau$ and which is maximal with respect to inclusion is called a tolerance class (see [8]).

2. Information system and approximation space

We recall basic notions from papers [1]-[4].

Throughout the paper U will be an arbitrary fixed set, traditionally called universe.

An information system is a quadruple $(U, A, (V_a)_{a \in A}, f)$ where U is a set of objects, A stands for a set of attributes, V_a is a set of values of attribute a , and $f: U \times A \rightarrow \bigcup_{a \in A} V_a$ is a function (called information function) such that $f(x, a) \in V_a$ for any $x \in U$ and $a \in A$.

For every subset $B \subseteq A$ an indiscernibility relation $Ind(B) \subseteq U^2$ is defined in the following way: for any $x, y \in U$

(1) $x \text{ Ind}(B)y$ iff $f(x, a) = f(y, a)$ for every $a \in B$.

If $x \text{ Ind}(B)y$ we say that x, y are indiscernible with respect to B .

Suppose that R is an equivalence relation in U . The pair (U, R) is called an approximation space. $[x]_R$ will stand for the equivalence class of the relation R determined by $x \in U$.

Traditionally the equivalence classes of R are called R -elementary sets.

For any set $X \subseteq U$ its lower (resp. upper) approximation $R(X)$ (resp. $\bar{R}(X)$) is defined as follows:

$$(2) \quad R(X) = \left\{ x: [x]_R \subseteq X \right\},$$

$$\bar{R}(X) = \left\{ x: [x]_R \cap X \neq \emptyset \right\}.$$

For brevity, we often write X instead of $R(X)$ and \bar{X} instead of $\bar{R}(X)$.

Let us recall that any set $X \subseteq U$ is called definable iff $R(X) = \bar{R}(X)$. Equivalently, X is definable iff $R(X) = X$ iff $\bar{R}(X) = X$ iff X is a union of some R -elementary sets. Thus, the family $Def(U, R)$ of all definable sets is a complete atomic Boolean algebra with the usual set operations, having as atoms the elementary sets. The family $Def(U, R)$ is topology for U while the family of all elementary sets is a base for $Def(U, R)$. $R(X)$ ($\bar{R}(X)$) is an interior (a closure) of X , respectively.

3. Nondeterministic information system

Suppose we are given the information system $(U, A, (V_a)_{a \in A}, f)$. It may happen that the information function f is not determined precisely i.e. the values of f are not settled uniquely. For instance, assume that one has to estimate the value of a light stimulus on a given measurement scale; then, an estimation is given by the interval in which we expect to find the actual value of the stimulus. Then it may be reasonable to consider a function F having as values the subsets of V .

Formally we define: The quadruple $(U, A, (V_a)_{a \in A}, F)$ where F is an arbitrary function satisfying $F: U \times A \rightarrow P(V)$ and $F(U \times \{a\}) \subseteq P(V_a)$ for any $a \in A$, is called a nondeterministic information system (see [2]).

Now let $(U, A, (V_a)_{a \in A}, F)$ be the nondeterministic information system. For any subset $B \subseteq A$ we define a similarity of objects with respect to B in the following way: for any $x, y \in U$

$$(3) \quad (x, y) \in \text{sim}(B) \text{ iff } \bigvee_{b \in B} F(x, b) \cap F(y, b) \neq \emptyset.$$

The relation $\text{sim}(B)$ is called B -similarity relation and, if $(x, y) \in \text{sim}(B)$ then we say that x, y are B -similar (see [12]). Some other tolerances in the system $(U, A, (V_a)_{a \in A}, F)$ are worth mentioning:

$$(x, y) \in \Pi \text{ iff } \bigvee_{a, b \in B} (F(x, a) \subseteq F(y, a) \text{ or } F(y, b) \subseteq F(x, b)),$$

$$(x, y) \in \Pi' \text{ iff } \bigvee_{b \in B} F(x, b) \cap F(y, b) \neq \emptyset \text{ and } \bigvee_{b \in B} F(x, b) = F(y, b).$$

Thus it seems to be desirable to examine systems with tolerance.

4. Approximation space

As was mentioned above, the notion of approximation space has been defined by Pawlak as a pair (U, R) where R is an equivalence relation in U . Now, suppose that R is an arbitrary binary relation in U . Any set $E \subseteq U$ satisfying $E \times E \subseteq R$ and maximal with respect to inclusion will be called R -elementary.

Applying Kuratowski-Zorn lemma we shall prove the following

Lemma 1. Suppose R is a reflexive relation in U . Then the family E of all R -elementary sets is a cover of U .

Proof. Suppose x is an arbitrary element of U ; we have $\{x\} \times \{x\} \subseteq R$ by reflexivity of R . Now consider any chain $\{E_\eta : \eta < \lambda\}$ of sets such that $E_\eta \times E_\eta \subseteq R$. We have

$$\bigcup_{\eta < \lambda} E_\eta \times \bigcup_{\eta < \lambda} E_\eta \subseteq R.$$

Indeed, if $x \in \bigcup_{\eta < \lambda} E_\eta$ and $y \in \bigcup_{\eta < \lambda} E_\eta$ then $x \in E_\delta$ for some $\delta < \lambda$ and $y \in E_\gamma$ for some $\gamma < \lambda$. Since $E_\delta \subseteq E_\gamma$ or $E_\gamma \subseteq E_\delta$ we infer that $(x, y) \in E_\gamma \times E_\gamma$ or $(x, y) \in E_\delta \times E_\delta$ hence finally $(x, y) \in R$. In other words $\bigcup_{\eta < \lambda} E_\eta$ is an upper bound of the chain $\{E_\eta : \eta < \lambda\}$. Therefore there exists a maximal set E satisfying $E \times E \subseteq R$ such that $x \in E$, in view of Kuratowski-Zorn lemma. Hence x belongs to some R -elementary set, as required.

As a consequence we obtain the well known

Corollary 1. Suppose τ is a tolerance in U . Then the family $E(\tau)$ of all tolerance classes of τ is a cover of U .

This is our motivation to consider in what follows the space (U, E) , where E is a cover of U . The pair (U, E) will be called generalized approximation space.

5. Approximation operations

Suppose (U, E) is a generalized approximation space. Let us recall that the indiscernibility neighbourhood of an element $x \in U$ is the set

$$O_x^E = \bigcup \{ E_t : x \in E_t \}.$$

For any element $x \in U$, the set

$$I_x^E = \{ y \in U : \forall E_t (x \in E_t \Leftrightarrow y \in E_t) \}$$

will be called the kernel of x in view of its analogy to the

notion used in the theory of tolerance relations. If no confusion is possible we shall write O_x and I_x instead of O_x^E and I_x^E , respectively. Let J be the family of all the kernels of (U, E) :

$$J(E) = J = \{ I_x : x \in U \}.$$

It is easy to verify that J is a partition; the equivalence relation determined by J will be denoted by I . If xIy then we say that x, y are E -inseparable.

Let $-X$ stand for $U-X$. We say that two operations $G, G' : P(U) \rightarrow P(U)$ are conjugated iff for any $X \in U$, the following condition is satisfied:

$$G(X) = -G'(-X).$$

Now we apply the introduced notions to define some special pairs of conjugated approximation operations in the space (U, E) . When E is a partition of U , all those operations will coincide with the well known lower and upper approximation operations of Pawlak. The motivation to consider pairs of conjugated operations comes from two sources: first, the operations G and G' may be used to define operators of necessity and possibility in a respective modal logic and second, in cases when G, G' are topological operations then in order to define the same topology on U , they have to be conjugated.

Let X be a subset of U . We will define the operations E_i , as follows: (see [6])

$$\begin{aligned}
 E_1(X) &= \{x : O_x \subseteq X\} \\
 \bar{E}_1(X) &= \bigcup \{E_t : E_t \cap X \neq \emptyset\} \\
 E_2(X) &= \bigcup \{O_x : O_x \subseteq X\} \\
 \bar{E}_2(X) &= \{z : \forall y (z \in O_y \Rightarrow O_y \cap X \neq \emptyset\}, \\
 (4) \quad E_3(X) &= \bigcup \{E_t : E_t \subseteq X\} \\
 \bar{E}_3(X) &= \{y : \forall E_t (y \in E_t \Rightarrow E_t \cap X \neq \emptyset\} \\
 E_4(X) &= \bigcup \{I_y : I_y \subseteq X\} \\
 \bar{E}_4(X) &= \bigcup \{I_y : I_y \cap X \neq \emptyset\}.
 \end{aligned}$$

First, let us observe that for $i=2, 3, 4$ the operations \underline{E}_i , \bar{E}_i are idempotent i.e. for any new, $X \subseteq U$ and for $i=2, 3, 4$ the following conditions are valid:

(a) $(\underline{E}_i^n(X)) = \underline{E}_i(X)$,
 (b) $((\bar{E}_i)^n(X)) = \bar{E}_i(X)$.

The situation is more complicated when we iterate operation \underline{E}_1 or \bar{E}_1 . For any $X \subseteq U$ we have the inclusions

$$\bar{E}_1(X) \subseteq (\bar{E}_1)^2(X) \subseteq (\bar{E}_1)^3(X) \dots$$

but it may happen that the elements of this sequence are pairwise distinct. So, we introduce one more approximation operation \bar{E}_0 in the following manner:

$$(5) \quad \bar{E}_0(X) = \bigcup_{i<\omega} (\bar{E}_1)^i(X).$$

We shall call \bar{E}_0 the transitive closure operation (by analogy to the terminology used in the theory of tolerance relations). The set $\bar{E}_0(\{x\})$ denoted by C_x will be called the component of x in U ,

$$C_x \stackrel{\text{def}}{=} \bar{E}_0(\{x\}).$$

It is easy to check that $\bar{E}_0(X) = \bigcup \{C_y : C_y \cap X \neq \emptyset\}$ and the conjugated operation \underline{E}_0 satisfies

$$\underline{E}_0(X) = \{x \in X : C_x \subseteq X\},$$

since the family $C = \{C_x : x \in U\}$ of all components in U , is a partition of U .

Let us also observe that the following inclusions hold:

$$\underline{E}_0 \subseteq \underline{E}_1 \subseteq \underline{E}_2 \subseteq \underline{E}_3 \subseteq \underline{E}_4 \subseteq \text{Id} \subseteq \bar{E}_4 \subseteq \bar{E}_3 \subseteq \bar{E}_2 \subseteq \bar{E}_1 \subseteq \bar{E}_0.$$

Now, to express the algebraic properties of the above operations, we recall some notions from lattice theory:

Let G be a mapping of $P(U)$ into itself. We shall say that G is a lower (upper) operation on U iff for any $X \subseteq U$, $G(X) \subseteq X$ ($G(X) \supseteq X$), respectively. (The upper operation is also called extensive) (see [7]).

The mapping G is said to be monotonic iff (if $X \subseteq Y$ then $G(X) \subseteq G(Y)$ for any $X, Y \subseteq U$). Any monotonic and lower or monotonic and upper operation will be called an approximation operation. The most important examples of operations satisfying this definition are the lower \underline{R} and upper \bar{R} approximation operations of Pawlak (see [2]). The mapping G is said to be idempotent iff for every $X \subseteq U$, $G(X) = G(G(X))$. If G is an upper, monotonic and idempotent mapping then G is called a closure mapping and the pair (U, G) is called a closure space (see [7]).

To summarize this section we recall that a closure operator H on the set U is an algebraic (resp. topological) closure operator if for every $X \subseteq U$

$$H(X) = \bigcup \{ H(X') : X' \subseteq X \text{ and } X' \text{ is finite} \}$$

(resp. for every $X, Y \subseteq U$ $H(X \cup Y) = H(X) \cup H(Y)$).

Theorem 1. Assume (U, E) is a generalized approximation space and E_1, \bar{E}_i , $i=0, \dots, 4$ are the approximation operations defined by (4). Then it holds:

- (a) \bar{E}_0, \bar{E}_4 are topological algebraic closure operations;
- (b) \bar{E}_2, \bar{E}_3 are closure operations;
- (c) \bar{E}_1 is monotonic, extensive and it satisfies the condition

$$\bar{E}_1(X \cup Y) = \bar{E}_1(X) \cup \bar{E}_1(Y), \text{ for any } X, Y \subseteq U;$$

- (d) \bar{E}_1 is a topological closure operation iff $\{O_x : x \in U\}$ is a partition of U .

Proof. It is easy to prove (a), (b) and (c). For a little bit more difficult (d) see [6].

6. Approximation algebra

In applications it is often considered a family of all definable subsets of the universe U . To formulate definitions of these families in a unified way, we introduce the following approximation algebra:

An algebra $(P(U), \{G_i, \bar{G}_i : i \in I\})$ is called an approximation algebra on U if, for any $X, Y \subseteq U$ and $i \in I$, it satisfies:

- 1) $\bar{G}_i : P(U) \rightarrow P(U)$,
- 2) $X \subseteq \bar{G}_i$,
- 3) $X \subseteq Y$ implies $\bar{G}_i(X) \subseteq \bar{G}_i(Y)$,
- 4) $G_i(X) = -\bar{G}_i(-X)$.

A subset X of U is called a **definable subset** with respect to $\{\bar{G}_i : i \in I_0 \subseteq I\}$ if for every $i \in I_0$ it holds $\bar{G}_i(X) = X$. In other words X is a fixed point of all \bar{G}_i , $i \in I_0$. Similarly, X is definable with respect to $\{G_i : i \in I_0\}$ if $\bigvee_{i \in I_0} G_i(X) = X$. The family of all definable sets with respect to $\{G_i : i \in I_0\}$ will be denoted by $\text{Def}(U, \{G_i : i \in I_0\})$, or in short by $\text{Def}(I_0)$. $\text{Def}(I_0) = \text{Def}(U, \{\bar{G}_i : i \in I_0\})$ denotes the family of all definable sets with respect to $\{\bar{G}_i : i \in I_0\}$.

Lemma 2. The family $\text{Def}(I_0)$ is closed on intersections i.e. if $\bigcap_{t \in S} X_t \in \text{Def}(I_0)$ then $\bigcap_{t \in S} X_t \in \text{Def}(I_0)$.

Proof. Assume $i \in I_0$. It holds

$$\bar{G}_i\left(\bigcap_{t \in S} X_t\right) \subseteq \bigcap_{t \in S} \bar{G}_i(X_t) = \bigcap_{t \in S} X_t$$

in view of the monotonicity of \bar{G}_i and the hypothesis. On the other hand $\bar{G}_i\left(\bigcap_{t \in S} X_t\right) \supseteq \bigcap_{t \in S} X_t$, since \bar{G}_i is extensive. Finally,

$$\bar{G}_i\left(\bigcap_{t \in S} X_t\right) = \bigcap_{t \in S} X_t.$$

Corollary 2. $\text{Def}(I_0)$ is a complete lattice with respect to set inclusion, and

$$\inf \{X_t : t \in S\} = \bigcap_{t \in S} X_t, \quad \sup \{X_t : t \in S\} = \bigcap \{X \in \text{Def}(I_0) : X \supseteq X_t \ \forall t \in S\}$$

Proof. It is a consequence of Lemma 9, p.184 in [7], or Theorem 4.2 p.14 in [9].

Lemma 3. The family $\text{Def}(I_0)$ is closed on arbitrary unions.

Proof. If $X_t \in \text{Def}(I_0)$ for every $t \in S$, then

$$\bigcup_{t \in S} x_t = \bigcup_{t \in S} g_i(x) \leq g_i(\bigcup_{t \in S} x_t) \leq \bigcup_{t \in S} x_t, \text{ for } i \in I_0.$$

Hence

$$g_i(\bigcup_{t \in S} x_t) = \bigcup_{t \in S} x_t, \text{ for } i \in I_0, \text{ i.e. } \bigcup_{t \in S} x_t \in \text{Def}(I_0).$$

Corollary 3. $\text{Def}(I_0)$ is a complete lattice with respect to set inclusion and $\sup \{x_t : t \in S\} = \bigcup_{t \in S} x_t$

$$\inf \{x_t : t \in S\} = \bigcup \{x \in \text{Def}(I_0) : x \leq \bigcap_{t \in S} x_t\}.$$

Applying these lemmas to the approximation algebra $(P(U), \{\underline{E}_i, \bar{E}_i, i \in \{0 \dots 4\}\})$ we obtain:

Corollary 4. Assume that $\underline{E}_i, \bar{E}_i$, $i = 0, \dots, 4$, are approximation operations in the space (U, E) . Then it holds:

(a) $\text{Def}(U, \underline{E}_1) = \text{Def}(U, \bar{E}_1) = \text{Def}(U, \underline{E}_0) = \text{Def}(U, \bar{E}_0)$ and $\text{Def}(U, \underline{E}_4) = \text{Def}(U, \bar{E}_4)$ are fields of sets;

(b) $\text{Def}(U, \bar{E}_2)$ and $\text{Def}(U, \bar{E}_3)$ are complete lattices with respect to set inclusion and $\inf Y = \bigcap Y$, $\sup Y = \bar{E}_2(\bigcup Y)$ ($\sup Y = \bar{E}_3(\bigcup Y)$), for $Y \subseteq \text{Def}(U, \bar{E}_2)$, $(Y \subseteq \text{Def}(U, \bar{E}_3))$, respectively;

(c) $\text{Def}(U, \underline{E}_2)$, $\text{Def}(U, \underline{E}_3)$ are complete lattices with respect to set inclusion and $\sup Y = \bigcup Y$, $\inf Y = \underline{E}_2(\bigcap Y)$, ($\inf Y = \underline{E}_3(\bigcap Y)$), for $Y \subseteq \text{Def}(U, \underline{E}_2)$, $(Y \subseteq \text{Def}(U, \underline{E}_3))$ respectively.

REFERENCES

- [1] Z. Pawlak: Information systems, theoretical foundations, *Information Systems* 6, (1981) 205-218.
- [2] Z. Pawlak: Information systems, theoretical foundations (in Polish) Warsaw (1983).

- [3] E. Orłowska, Z. Pawlak: Logical foundations of knowledge representation, ICS PAS Rep. 537 Warsaw (1984).
- [4] Z. Pawlak: Rough sets, Int.J.Inf.Comp.Sci. 11(5), (1982), 341-356.
- [5] W. Zająkowski: Approximations in the space (U, Π) , Demonstratio Math. 14 (1983) 761-769.
- [6] J.A. Pomykala: Approximation operations in approximation space, Bull.Acad.Polon.Sci.Ser.Sci.Math. 35, (1987), 654-662.
- [7] G. Gratzer: General Lattice Theory. Academic Press Inc, 1978.
- [8] E.O. Zeeman: Topology of the Brain.(in M.K.Fort,Topology on 3-Manifolds, 1962).
- [9] H.P. Sankappanavar, S. Burris: A Course in Universal Algebra, Springer, New York, 1981.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF AGRICULTURE AND PEDAGOGICS, 08-110 SIEDLCE, POLAND

Received November 8, 1989.