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SOME REMARKS ON APPROXIMATION

1. Introduction

The notion of information system, which is a starting
point of the present paper, was introduced by Pawlak (see [1}])
in 1981, and since then it has been intensively investigated.
In particular related notions of a nondeterministic infor-
mation system (see [2], [3]) and an approximation space (see
(4], [5]), [6])) were also examined. These notions are used to
analyse computer and empirical data, being helpful in under-
standing indiscernibility and similarity of objects.

In sections 2, 3, 4 we recall basic notions and we give
the short motivation for considering generalized approximation
space. In section 5 we examine several approximation opera-

tions E,, Ei' i=0...4, in view of elementary lattice theory.
In section 6 we introduce the notion of approximation algebra

and we use this notion to characterize families of definable

sets 'with respect to the operations E;, Ei i=0...4.

Throughout the paper we use the standard mathematical
notation, in particular P(X) stands for the family of all sub-
sets of the set X. A family Es<P(X) such that | J E=X |is
called a cover of X. Frequently we will consider the cover E
whose elements are nonempty, pairwise disjoint subsets of X.
In such a case it is called a partition of X. Any relation <t
on a set U which is reflexive and symmetric is called the to-
lerance relation. A set ESU such that ExEst and which is
maximal with respect to inclusion is called a tolerance class
(see [8]).
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2. Information system and approximation space

We recall basic notions from papers [1]-[4].

Throughout the paper U will be an arbitrary fixed set,
traditionally called universe.

An information system is a guadruple (U, A, (Va)aeA’ f)
where U is a set of objects, A stands for a set of attributes,

V, is a set of values of attribute a, and f:UxA—|_) V, is a
a€A
function (called information function) such that f(x,a)eva for

any xeU and aeA.

For every subset BsA an indiscernibility relation
Ind(B):U2 is defined in the following way: for any x, Yy € U
(1) x Ind(B)y iff f(x, a)=f(y, a) for every a € B.

If x Ind(B)y we say that x, y are indiscernible with respect
to B.

Suppose that R is an equivaleuce relation in U. The pair
(U,R) is called an approximation space. (Xl will stand for
the equivalence class of the relation R determined by x e U.

Traditionally the equivalence classes of R are called
R-elementary sets.

For any set X € U its lower (resp. upper) approximation

R(X) (resp. R(X)) is defined as follows:

B(X)={x: [x]Rs X } ’
(2)

§(X)={x: (x]g nX=o } .

For brevity, we often write X instead of R(X) and X instead of

R(X).
Let us recall that any set X <U is called definable iff

R(X)=R(X). Equivalently, X is definable iff R(X)=X iff R(X)=X
iff X is a union of some R-elementary sets. Thus, the family
Def (U,R) of all definable sets is a complete atomic Boolean
algebra with the usual set operations, having as atoms the
elementary sets. The family Def (U,R) is topology for U while
the family of all elementary sets is a base for Def(U,R). R(X)
(R(X)) is an interior (a closure) of X, respectively.
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3. Nondeterministic information system

Suppose we are given the information system
(U'A'(Va)aeA'
is not determined precisely i.e. the values of f are not set-

f). It may happen that the information function f

tled uniquely.For instance, assume that one has to estimate
the value of a light stimulus on a given measurement scale;
then, an estimation is given by the interval in which we
expect to find the actual value of the stimulus. Then it may
be reasonable to consider a function F having as values the
subsets of V.

Formally we define: The quadruple (U, A, (Va) F) where

aeA’
F is an arbitrary function satisfying
F:U x A—P(V) and F(Ux{a}) < P(Va) forany aeA, 1is called a

nondeterministic information system (see [2]).

Now let (U, A, (va)aeA’ F) be the nondeterministic infor-
mation system. For any subset BsSA we define a similarity of
objects with respect to B in the following way: for any x, yeU

Ed

(3) (x, y) € sim(B) iff F(x,b) n F(y,b) * a.

bVeB
The relation sim(B) is called B-similarity relation and, if
(X, y) € sim(B) then we say that x, y are B-similar (see

[(12]). Some other tolerances in the system (U, A, F)

(Va)aeA’
are worth mentioning:

(x, y)ell iff aV (F(x,a)SF(y,a) or F(y,b)sF(x,b)),

,beB

(x, y)ell’ iff bveB F(x,b)nF(y,b)#e and béB F(x,b)=F(y,b).

Thus it seems to be desirable to examine systems with to-
lerance.

4. Approximation space

As was mentioned above, the notion of approximation space
has been defined by Pawlak as a pair (U,R) where R is an
equivalence relation in U. Now, suppose that R is an arbitrary
binary relation in U. Any set ESU satisfying ExESR and maximal
with respect to inclusion will be called R-elementary.
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Applying Kuratowski-Zorn lemma we shall prove the fol-
lowing

Lemma 1. Suppose R is a reflexive relation in U. Then the
family E of all R-elementary sets is a cover of U.

Proof. Suppose x is an arbitrary element of U; we have
{x}x{x}S R by reflexivity of R. Now consider any chain
{En:n<l} of sets such that Eanns R. We have

UEn x UEn S R.

n<A n<A

Indeed, if xe| JE_ and ye|_JE_ then x<E
n<A n n<A n

for some y<A. Since E

5 for some &§<A and yeE7

8; E1 or E1s Ea we infer that (x, y) e

E1xE1 or (x, y)eEaxEs hence finally (x,y)eR. In other words
L~}En is an upper bound of the chain {En:n<h}. Therefore there
N<A

exists a maximal set E satisfying ExESR such that xeE, in view
of Kuratowski-Zorn lemma. Hence x belongs to some R-elementary
set, as required.

As a consequence we obtain the wel’ known

Corollary 1. Suppose T is a tolerance in U, Then the fa-
mily E(t) of all tolerance classes of T is a cover of U.

This is our motivation to consider in what follows the
space (U, E), where E is a cover of U. The pair (U, E) will be
called generalized approximation space.

5. Approximation operations

Suppose (U, E) is a generalized approximation space. Let
us recall that the indiscernibility neighbourhood of an ele-
ment xeU is the set

E _ .
0x = J{ Et' ert}.
For any element xeU, the set

IE

x = { yeU : VEt (x€E, o ye€E.) }

will be called the kernel of x in view of its analogy to the
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notion used in the theory of tolerance relations. If no confu-

sion is possible we shall write o, and I, instead of 05 and

IE, respectively. Let J be the family of all the Kkernels of
(U, E):

J(E) =J = { Ix: xeU }.

It is easy to verify that J is a partition; the equivalence
relation determined by J will be denoted by I. If xIy then we
say that x, y are E-inseparable.

Let =X stand for U-X. We say that two operations
G,G’:P(U)->P(U) are conjugated iff for any X U, the following
condition is satisfied:

G(X) = -G’ (-X).

Now we apply the introduced notions to define some special
pairs of conjugated approximation operations in the space
(U, E). When E is a partition of U, all those operations will
coincide with the well known lower and upper approximation
operations of Pawlak. The motivation to consider pairs of con-
jugated operations comes from two sources: first, the opera-
tions G and G’ may be used to define operators of necessity
and possibility in a respective modal 1logic and second, in
cases when G, G’ are topological operations then in order to
define the same topology on U, they have to be conjugated.

Let X be a subset of U. We will define the operations E;,
as follows: (see [6])

EI(X) = {x: oxSX}

El(X) =\ {E :EnX = o2}

E, (X) = {0,:0,5X}

Ez(X) = {z:Yy (zeOy#Oynx * o},

(4)
E,(X) =\ {E_:E.SX}

Es(X) = {y:VE,(YeE»E.nX * 2}
Ey(X) = {I,:1,5X)

E, (X) =U AT I nX # o).
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First, let us observe that for i=2, 3, 4 the operations Esv

Ei are idempotent i.e. for any new, XsU and for i=2, 3, 4 the
following conditions are valid:

n =
(a)  (E](0) = E;(X),

— n —
(®  (EPx) = Ex).
The situation is more complicated when we iterate operat-

ion E, or El' For any XsU we have the inclusions

= = 2 - 3
E, (0 s(EDSx)s(ED70...

but it may happen that the elements of this sequence are pair-
wise distinct. So, we introduce one more approximation operat-

ion EO in the following manner:

(5) Ey(X) =\ (E)) T (X).
i<w
We shall call EO the transitive closure operation (by ana-
logy to the terminology used in the theory of tolerance relat-
ions). The set EO({X}) denoted by C, will be called the compo-
nent of x in U,

def =
C, = E, ({x}).

It is easy to check that Eo(x)=L_}{cy: Cyn X # 2} and the

conjugated operation go satisfies

EO(X) = {xeX: CXSX},
since the family C={C,:xeU} of all components in U, is a par-
tition of U.
Let us also observe that the following inclusions hold:

E, < E.< E,S E

E, € E,S E, s E,c Id s E,s E.S E,c E,< E

3 4 4 3 2 1 0°

Now, to express the algebraic properties of the above
operations, we recall some notions from lattice theory:

Let G be a mapping of P(U) into itself. We shall say that
G is a lower (upper) operation on U iff for any XsU, G(X)sX
(G(X)2X), respectively. (The upper operation is also called
extensive) (see {7]).
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The mapping G is said to be monotonic iff (if X<Y then
G(X)SG(Y) for any X,YsU). Any monotonic and lower or monotonic
and upper operation will be called an approximation operation.
The most important examples of operations satisfying this de-

finition are the lower R and upper R approximation operations
of Pawlak (see [2]). The mapping G is said to be idempotent
iff for every X<U, G(X) = G(G(X)). If G is an upper, monotonic
and idempotent mapping then G is called a closure mapping and
the pair (U, G) is called a closure space (see [7]).

To summarize this section we recall that a closure
operator H on the set U is an algebraic (resp. topological)
closure operator if for every X< U

H(X) =\_J{ H(X’) : X’sX and X’ is finite }

(resp. for every X,Ys U H(XuY) = H(X) v H(Y)).
Theorem 1. Assume (U, E) is a generalized approximation

space and gi'Ei' i=0,...,4 are the approximation operations
defined by (4). Then it holds:

(a)

(b) Ez,fs are closure operations;

o'E4 are topological algebraic closure operations;

mi|

(c) El is monotonic, extensive and it satisfies the condition
EI(XUY) = EI(X) v EI(Y), for any X, YS U ;

() El is a topological closure operation iff {0, :xeU} is a
partition of U.

Proof. It is easy to prove (a), (b) and (c). For a little
bit more dificult (d) see [6].

6. Approximation algebra

In applications it is often considered a family of all
definable subsets of the universe U. To formulate definitions
of these families in a unified way, we introduce the following
approximation algebra:

An algebra (P(U),{gi,ai:iel}) is called an approximation
algebra on U if, for any X, Y € U and ieI, it satisfies:
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1) Ei:p(U)—m(U),
2) X s Ei,
3) X € Y implies Ei(x) S Ei(Y),
4) §;(X) = -G, (-X).
A subset X of U is called a definable subset with respect to

X. In other

{Ei:ieIosI} if for every ieI, it holds Ei(X)

(o}
words X is a fixed point of ‘all Ei' ieIo. Similary, X is
definable with respect to {gizleIo} if ivelogi(x)=x' The fa-

mily of all definable sets with respect to {gi:ieI will Dbe

o}

denoted by Def (U, {gi:ieIo}), or in short by Def (I Def (I

o) 0’
= Def(U,{Ei:ieIo}) denotes the family of all definable sets
with respect to {Ei:ielo}.

Lemma 2. The family Def(Io) is closed on intersections i.e.

if tzs X, € Def(I)) then {:g X € Def(I

Proof., Assume ieIo. It holds

G. ( X.) s G, (X, )= X

0)°

in view of the monotonicity of Ei and the hypothesis. On the

other hand G, (()X.) 2 (")X,, since G; is extensive. Finally,

tesS tesS
(M%) = (X
1'tes ¥ tes ©

Corollary 2. Def(IO) is a complete lattice with respect to
set inclusion, and

inf {X :tes } =£;lxt , Sup {X :tes } = M {XeDef (I,): XX, Vtes}
Proof. It is a consequence of Lemma 9, p.184 in (7], or
Theorem 4.2 p.14 in [9].
Lemma 3. The family Def(Io) is closed on arbitrary unions.

Proof., If xteDeg(Io) for every teS, then
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X, = \U G.(X) s 6. (UJ X.) s U X,., for ieI,.
tesS t teS 1 1 teS t teS t 0

Hence

G. (U x.) = U X, for ieI_, i.e. |_J X _e Def(I,).
1%¢es ¥ tes ® 0 tes °© 0

Corollary 3. Qef(IO) is a complete lattice with respect to

set inclusion and sup {xt:tes } = ézéxt

inf {X :teS } = |_J{XeDef(I ): X < {;\Sxt}.
Applying these 1lemmas to the approximation algebra
(p(U),{gi,Ei,ie{o...n}) we obtain:

Corollary 4. Assume that Ei'Ei’ i=0,...,4, are approxi-
mation operations in the space (U, E). Then it holds:

(a) Def(U, E;) = Def(U, E.) = Def (U, E,) = Def(U, Eo) and

1)
Def (U, E,) = Def(U, 24) are fields of sets;

(b) Def (U, Ez) and Def (U, E3) are'complete lattices with
respect to set inclusion and inf Y= ()Y, sup Y= Ez(L_}Y)
(sup ¥ = E;,(UY)): for Y¢S Def(U,Ez), (Y s Def(U,Es)),
respectively;

(c) Def(U,gz), Def(U,§3) are complete lattices with re-
speqt to set inclusion and sup Y= | Y, infY-= gz({"\Y),
(inf Y = gs(ﬂv)), for Y s Def(U,E,), (Y < Def(U,E,))

respectively.
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