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SOME REMARKS ON APPROXIMATION 

1. Introduction 
The notion of information system, which is a starting 

point of the present paper, was introduced by Pawlak (see [1]) 
in 1981, and since then it has been intensively investigated. 
In particular related notions of a nondeterministic infor-
mation system (see [2], [3]) and an approximation space (see 
[4], [5], [6]) were also examined. These notions are used to 
analyse computer and empirical data, being helpful in under-
standing indiscernibility and similarity of objects. 

In sections 2, 3, 4 we recall basic notions and we give 
the short motivation for considering generalized approximation 
space. In section 5 we examine several approximation opera-
tions E^, E^, i=0...4, in view of elementary lattice theory. 
In section 6 we introduce the notion of approximation algebra 
and we use this notion to characterize families of definable 
sets with respect to the operations E^, Ë^ i=0...4. 

Throughout the paper we use the standard mathematical 
notation,in particular P(X) stands for the family of all sub-
sets of the set X. A family ESP(X) such that l̂ J E = X is 
called a cover of X. Frequently we will consider the cover E 
whose elements are nonempty, pairwise disjoint subsets of X. 
In such a case it is called a partition of X. Any relation τ 
on a set U which is reflexive and symmetric is called the to-
lerance relation. A set ESU such that ΕχΕετ and which is 
maximal with respect to inclusion is called a tolerance class 
(see [8]). 
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2. Information system and approximation space 

He recall basic notions from papers [l]-[4]. 

Throughout the paper U will be an arbitrary fixed set, 

traditionally called universe. 

An information system is a quadruple (U, A, ( v
a ) a e A / f) 

where U is a set of objects, A stands for a set of attributes, 

V_ is a set of values of attribute a, and f : U x A — J V. is a a v—\ a aeA 
function (called information function) such that f(x,a)eV for A 
any xeU and aeA. 

For every subset B£A an indiscernibility relation 

Ind(B)CU is defined in the following way: for any x, y e U 

(1) χ Ind(B)y iff f(x, a)=f(y, a) for every a e Β. 

If χ Ind(B)y we say that x, y are indiscernible with respect 

to B. 

Suppose that R is an equivalence relation in U. The pair 

(U,R) is called an approximation space. [x]R will stand for 

the equivalence class of the relation R determined by χ e U. 

Traditionally the equivalence classes of R are called 

R-elementary sets. 

For any set X s U its lower (resp. upper) approximation 

B(X) (resp. R(X)) is defined as follows: 

For brevity, we often write X instead of £(X) and X instead of 

R(X). 

Let us recall that any set X su is called definable iff 

B(X)=R(X). Equivalently, X is definable iff B(X)=X iff R(X)=X 

Def(U,R) of all definable sets is a complete atomic Boolean 

algebra with the usual set operations, having as atoms the 

elementary sets. The family Def(U,R) is topology for U while 

the family of all elementary sets is a base for Def(U,R). B(X) 

(R(X)) is an interior (a closure) of X, respectively. 

(2) 

iff X is a union of some R-elementary sets. Thus, the family 
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3. Nondeterministic information system 

Suppose we are given the information system 

(U,A,(V ) ,,f). It may happen that the information function f β α€Α 
is not determined precisely i.e. the values of f are not set-

tled uniquely.For instance, assume that one has to estimate 

the value of a light stimulus on a given measurement scale; 

then, an estimation is given by the interval in which we 

expect to find the actual value of the stimulus. Then it may 

be reasonable to consider a function F having as values the 

subsets of V. 

Formally we define: The quadruple (U, A, ( v
a) a € Ä#

 F) where 

F is an arbitrary function satisfying 

F:U χ A >P(V) and F(Ux{a}) £ P ( V J forany aeA, is called a α 
nondeterministic information system (see [2]). 

Now let (U, A, (V ) ., F) be the nondeterministic infor-
oL acA 

mation system. For any subset B£A we define a similarity of 

objects with respect to Β in the following way: for any x, yeU 

(3) (x, y) « sim(B) iff b V € ß F(x,b) η F(y,b) * s>. 

The relation sim(B) is called B-similarity relation and, if 

(x*, y) e sim(B) then we say that x, y are B-similar (see 

[12]). Some other tolerances in the system (U, A, (V ) F) 

are worth mentioning: 

(χ, y)€ll iff a V f b € ß (F(x,a)SF(y,a) or F(y,b)SF(x,b) ), 

(x, y)ell' iff b V € ß F ( x , b ) n F ( y , b ) a n d b | ß F(x,b)=F(y,b) . 

Thus it seems to be desirable to examine systems with to-

lerance . 

4. Approximation space 

As was mentioned above, the notion of approximation space 

has been defined by Pawlak as a pair (U,R) where R is an 

equivalence relation in U. Now, suppose that R is an arbitrary 

binary relation in U. Any set E£U satisfying ExESR and maximal 

with respect to inclusion will be called R-elementary. 
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Applying Kuratowski-Zorn lemma we shall prove the fol-
lowing 

Lemma 1. Suppose R is a reflexive relation in U. Then the 
family E of all R-elementary sets is a cover of U. 

Proof. Suppose χ is an arbitrary element of U; we have 
{x}x{x}£ R by reflexivity of R. Now consider any chain 
{Ε :η<λ} of sets such that E x E s R. We have V V V 

U K X U E - S R. 
η<λ ' η<λ ' 

Indeed, if xel^JE·« an(* Y e L J E then x«E- for some δ<λ and yeE 
η<λ η η<λ η 7 

for some 7<λ· Since Ε.ε E or Ε ε Ε. we infer that (χ, y) e ο γ γ ο 
E χΕ or (χ, yJeE-xE- hence finally (x,y)eR. In other words I Ϊ o o 
U E is an upper bound of the chain {Ε :η<λ). Therefore there 
η<λ η η 

exists a maximal set E satisfying ExESR such that xeE, in view 
of Kuratowski-Zorn lemma. Hence χ belongs to some R-elementary 
set, as required. 

As a consequence we obtain the wel1 known 

Corollary 1. Suppose τ is a tolerance in U. Then the fa-
mily Ε(τ) of all tolerance classes of τ is a cover of U. 

This is our motivation to consider in what follows the 
space (U, Ε), where E is a cover of U. The pair (U, E) will be 
called generalized approximation space. 

5. Approximation operations 
Suppose (U, E) is a generalized approximation space. Let 

us recall that the indiscernibility neighbourhood of an ele-
ment xeU is the set 

°x = U i Et : *eEt>· 
For any element xeU, the set 

Ιχ = { yeU : \ 
will be called the kernel of χ in view of its analogy to the 

Ιχ = { yeU : VEt (xeEt o y€Et) } 
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notion used in the theory of tolerance relations. If no confu-
E sion is possible we shall write O and I instead of O and E X X X 

Ιχ, respectively. Let J be the family of all the kernels of 
(U, E): 

J(E) = J = { Ιχ: X€U }. 
It is easy to verify that J is a partition; the equivalence 
relation determined by J will be denoted by I. If xly then we 
say that x, y are E-inseparable. 

Let -X stand for U-X. We say that two operations 
G,G':P(U)->P(U) are conjugated iff for any X U, the following 
condition is satisfied: 

G(X) = -G'(-X). 
Now we apply the introduced notions to define some special 

pairs of conjugated approximation operations in the space 
(U, E). When E is a partition of U, all those operations will 
coincide with the well known lower and upper approximation 
operations of Pawlak. The motivation to consider pairs of con-
jugated operations comes from two sources: first, the opera-
tions G and G' may be used to define operators of necessity 
and possibility in a respective modal logic and second, in 
cases when G, G' are topological operations then in order to 
define the same topology on U, they have to be conjugated. 

Let X be a subset of U. We will define the operations E^, 
as follows: (see [6]) 

E^X) = {x: OxCX} 

^ ( x ) - U í W x * 0 } 

f2<x> - u < v v x > 
Ë2(X) « {z:Vy (z«Oy^OynX * ζ}, 

(4) 
§3(X) - U { E t : E t

S X } 

Ë3(X) - {y:VEt(y€Et*EtnX * a} 

e4(X) = U < V V = X } 

Ë4(X) - υ < ν ν χ * •>· 
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First, let us observe that for i=2, 3, 4 the operations E^, 

are idempotent i.e. for any neu, XSU and for i=2, 3, 4 the 

following conditions are valid: 

(a) (eJ(X)) = E.(X), 

(b) ((iËi)
n(X)) = Ë.(X) . 

The situation is more complicated when we iterate operat-

ion E^ or For any X£U we have the inclusions 

¡Ë 1(X)S(Ë 1)
2(X)S(Ë 1)

3(X)... 

but it may happen that the elements of this sequence are pair-

wise distinct. So, we introduce one more approximation operat-

ion ËQ in the following manner: 

(5) Ë„(X) = U ( Ë , ) 1 ^ ) . 

ί<ω 

We shall call Ë Q the transitive closure operation (by ana-

logy to the terminology used in the theory of tolerance relat-

ions) . The set Ë Q({x}) denoted by 0 χ will be called the compo-

nent of χ in U, 

C x
 d i f Ë 0({x}). 

It is easy to check that È Q(X) = ̂ _j {Cy: cy-i X * 0 } and the 

conjugated operation E Q satisfies 

E 0(X) = {xeX: 0 χ£Χ}, 

since the family C={C x:xeU} of all components in U, is a par-

tition of U. 

Let us also observe that the following inclusions hold: 

-0 S E 3
S ^4 S I d * f 4 S V E 2 £ f l £ V 

Now, to express the algebraic properties of the above 

operations, we recall some notions from lattice theory: 

Let G be a mapping of P(U) into itself. We shall say that 

G is a lower (upper) operation on U iff for any XSU, G(X)SX 

(G(X)2X), respectively. (The upper operation is also called 

extensive) (see [7]). 
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The mapping G is said to be monotonie iff (if X£Y then 
G(X)£G(Y) for any X,Y£U). Any monotonie and lower or monotonie 
and upper operation will be called an approximation operation. 
The most important examples of operations satisfying this de-
finition are the lower £ and upper R approximation operations 
of Pawlak (see [2]). The mapping G is said to be idempotent 
iff for every XSU, G(X) = G(G(X)). If G is an upper, monotonie 
and idempotent mapping then G is called a closure mapping and 
the pair (U, G) is called a closure space (see [7]). 

To summarize this section we recall that a closure 
operator H on the set U is an algebraic (resp. topological) 
closure operator if for every XS U 

H(X) H(X') : X'SX a n d X' is finite } 
(resp. for every X,YS U Η(ΧυΥ) = H(X) υ H(Y)). 

Theorem 1. Assume (U, E) is a generalized approximation 
space and i=0,...,4 are the approximation operations 
defined by (4). Then it holds: 
(a) ËQ,É4 are topological algebraic closure operations; 
(b) É2,Ë3 are closure operations; 
(c) E^ is monotonie, extensive and it satisfies the condition 

Ej^XuY) = Εχ(Χ) υ Ë^(Y), for any X, YS U ; 
(d) Ë^ is a topological closure operation iff {Οχ:χ«ϋ} is a 

partition of U. 
Proof. It is easy to prove (a), (b) and (c). For a little 

bit more dificult (d) see [6]. 

6. Approximation algebra 
In applications it is often considered a family of all 

definable subsets of the universe U. To formulate definitions 
of these families in a unified way, we introduce the following 
approximation algebra: 

An algebra ( P ( U ) , i € l > ) is called an approximation 
algebra on U if, for any X, Y ε U and iel, it satisfies: 
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1) G^:P(U) »P(U), 

2) X S G., 

3) X fi Y implies (^(X) fi G^(Y), 

4) Si(X) = -G.(-X). 

A subset X of U is called a definable subset with respect to 

{G^ìcIQSI} if for every ieIQ it holds G ^ X ) = X. In other 

words X is a fixed point of all G^, i e I
0 · Similary, X is 

definable with respect to {g^ielg} if ¿ V ^ S i(X)=X· The fa-

mily of all definable sets with respect to {£^:ieIQ} will be 

denoted by Def(U, {S^iel }), or in short by ßef (IQ). Def(I0) 

= Def(U,{G^:ieIQ}) denotes the family of all definable sets 

with respect to {G^:ieIQ>. 

Lemma 2. The family Def(IQ) is closed on intersections i.e. 

i f teS X t € t h e n Π x t e D ^ V ' S 

Proof. Assume ieIQ· It holds 

G.( Π x
t>

 s Π Gi( x
t)= Π x t 1 tes tes tes ^ 

in view of the monotonicity of G^ and the hypothesis. On the 

other hand G.((^X.) 2 f^X.*., since G. is extensive. Finally, 
1 tes tes τ 1 

G i ( n * t > - n x f 
-1· teS teS 

Corollary 2. Def(IQ) is a complete lattice with respect to 

set inclusion, and 

inf {Xt:teS > = O x t ' S U P i x
t:teS > = P ) {XeDef (IQ) : X2Xfc VteS> 

Proof. It is a consequence of Lemma 9, p.184 in [7], or 

Theorem 4.2 p.14 in [9]. 

Lemma 3. The family Def(IQ) is closed on arbitrary unions. 

Proof. If XteDef(IQ) for every teS, then 
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U xt - U £i(X) s G.(U Xt) s U X for iel . t«S 1 teS 1 1 teS 1 teS ^ u 

Hence 
Si(U x

t) = U x f f o r ieIo' i-e· U xt€ BS£<I0>· 1 teS τ teS τ υ tes ^ υ 

Corollary 3. Def(IQ) is a complete lattice with respect to 
set inclusion and sup {X. :teS } = l̂ J X̂ . 

^ teS τ 
inf {X^îteS > = ^J {XeDef (I.) : X £ ΓΊχ<->· 

* υ tes Γ 

Applying these lemmas to the approximation algebra 
(P(U),{Ei#Ëifie{0...4}}) we obtain: 

Corollary 4. Assume that i=0,...,4, are approxi-
mation operations in the space (U, E). Then it holds: 

(a) Def(U, E1) = Def(U, = Def(U, | 0) = Def(U, ËQ) and 

Def(U, E4) - Def(U, Ë4) are fields of sets; 
(b) Def(U, Ë2) and Def(U, Ë3) are complete lattices with 

respect to set inclusion and inf Y= Y, sup Y= Ë2 ( Y) 
(sup Y - Ë 3(Uï)), for YSDef(U,Ë2), (Y fi Def (U,Ë3) ), 
respectively; 

(c) Def(U,Ç2), Def(U,E3) are complete lattices with re-
spect to set inclusion and sup Y = ^JY, inf Y = E2((^|Y), 
(inf Υ - Ε3(Π*))' for YS Def (U,E2) , (Y fi Def (U,|3) ) 
respectively. 
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