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SOME RECENT RESULTS ON QUASIGROUP DETERMINANTS

1. Introduction

In two previous papers the determinant of a 1latin square
was discussed. This 1is a generalisation of the group
determinant which led Frobenius to introduce group characters.
To each latin square there 1is naturally associated a
quasigroup and where this is a groun the factorisation of the
determinant is equivalent to the decomposition of the regular
representation of the group into irreducible components. A
theory of quasigroup characters has been discussed in (5]-[9]
and thus a natural question to consider is that of whether the
factors of the quasigroup determinant give rise to a
"representation theory" which ties in with the characters, and
which can provide a tool in quasigroup theory. However one may
also view the determinant in a more combinatorial light, and
in [4] results are given on the determinant associated to pair
of latin squares.

Here some recent results are described. Questions which
were raised in [3] brought some comments at the conference,
and these comments are discussed along with other work in
progress. Whereas in the group case the pattern of
factorisation of the determinant is rigidly determined by the
character degrees, this no longer remains true for a general
quasigroup. It is therefore of interest to give a family of
examples where the factorisation pattern while different from
that in the group case is completely determined by the
character theory. Such a family is given here, suggested by
some of the results in Frobenius’ original paper ([2]). It is
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also shown how the knowledge of the factorisation of the
determinant can provide help in calculating the character
table for a quasigroup.

In (2] Frobenius gives a method to construct explicitly an
irreducible factor of a group determinant, starting from the
corresponding irreducible character. It would be very
interesting to construct the irreducible factors of a 1latin
square determinant directly, but such a goal appears to be
very difficult to achieve. Here a construction is given which
produces the canonical factor of the determinant of a 1latin
square which corresponds to a basic character of the
corresponding loop, starting from the Xknowledge of the
corresponding representation of the its mapping group.

Throughout the work quasigroup determinant and 1latin
square determinant are used interchangeably and the choice
used is related to the context. Explicitly, if L is a 1latin
square on the set Q = {1,...,n} there corresponds a quasigroup
(QL,.) on the set Q = (ql,...,qn} defined by qi-qj = q where
k = L(i,j) and conversely given a quasigroup (Q,.) of order n
an ordering of the underlying set as . bove can be used to
define a latin square LQ by L(i,j) = k where qi°qj =qy.
Different choices of the ordering of @ give different
quasigroups or latin squares which lie 1in the same isotopy
class, and which have equivalent determinants. It may be noted
here that the determinant is an invariant of the corresponding
3-web.

2. Definitions, Problems and Examples

First some definitions in [3] and (4] are recalled for the
convenience of the reader. Let L be a latin square of order n.

The latin square matrix X, is defined to be the n x n matrix

L
with (i, j)th entry Xy where k = L(i,j), and the latin square

determinant eL is defined to be det(xL). It will also be
convenient to refer to matrices YL’ ZL obtained by replacing
Xy by Yy (resp.) Zp in XL. If f and g are two elements of
Clxy,-..x,] define (=) by f = g if and only if f(xl,...,xn) =



Quasigroup determinants 85

=t g(xa(l)""xv(n)) where o is an element of Sn, the symme-
tric group on {1,...,n}. The square Lt s defined by

Lt(i,j) = L(j,i). Then the relation R is defined on the set of

latin squares of order n by L, R L2 if and only if L, is

either isotopic to L2 or to Lg. In an analogous manner R can
be defined on the class of loops of order n or the class of

quasigroups of order n.

The following problem is raised in [3] in the form of a
question.

Problem 1. Find a pair (Ll’ L2) of nxn latin squares

which are not R-related such that 6, = 8, .
Ll L2

A suggestion was made at the conference that a generic way
to produce examples of such pairs might be achieved as
follows. Let L and M be latin squares such that L and M are

t t

not isotopic to L® and M~ respectively. Define Q, to be the

direct product QL x QH and 02 to be QL x Q§. Then a reasonable

conjecture is that is equal © to under the obvious

8011 Qz
identification of the underlying sets. However a computation
was carried out for the smallest example where L and M have

order 6 and it was found that 6, = @

Ql 02. It remains unknown

= .
whether 801 802
Further searches have been made on squares of small orders
in an attempt to produce a suitable pair of squares. OQ was
calculated for a representative from each R-class of loops of
order n which have the cyclic group C4 as a homomorhic image
but it was found that all such determinants were inequivalent
"under (=). '

It was also pointed out at the conference that Problem 1
is intimately connected to the theory of normed algebras. The
author is indebted to Professor Hoenhke for this insight,
which opens up an interesting line of research.
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For a loop Q the 1loop matrix XQ is defined by

XQ(i,j) = ¥ _ where qi(qu) =q and gqp is the right inverse

e
of q, i.e. q(gp) = e. When Q is a group
(2.1) XY, = 2,
where
(2.2) zq =h£ XYy

k=q
It is shown in [3] that (2.1) 1is equivalent to the
associativity condition for Q. However the results of
Frobenius use only the identity

(2.3) det (X)) det (Y )=det(Z,) .
The following problem was introduced in {3].

Problem 2. Find a non-associative loop Q@ such that (2.3)
holds. This may be difficult. One may formulate the weaker
version:

Problem 3. Find a loop Q such that

= { .
det (X)) det (¥,) =det(Z,)
3. Frobenius Extensions

let G = {e,gz,..,gn} be a finite group. Define the
quasigroup (Q,.) on the set G x {0,1} by
(3.1) (9.0).(h,0) = (gh,0) - (g,1).(h,1) (g,h)eG,
(3.2) (g,1).(h,0) = (hg,1) - (g,0).(h,1) (g,h)eG.
Then (e,0) is an identity element and Q is a 1loop, the

Frobenius extension of G. It will be denoted by GF. Note that

if G is commutative GFz G x Cz. Also note that the inverse of

(g,€) in Q is (g-l,e) where € = 0,1. Now consider xQ the 1loop

matrix of Q, with rows and columns indexed by the elements of
Q in the the order (e,0), (9,,0),...,(9,,0), (e,1),(g95,1),---,

(gn,l). The (i,j)th entry of XQ is X, where k is as follows:

k

(g;,0) (gj,o)'1= (gig}l,O) i,j s n,

(gilo) (gj_nrl)—l= (g;ingill) i=n,j>n,
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1 (g;lgi_n,l) i>n,jsn,

-1
j-n’o) i,J > n.
To simplify the discussion yg and zg will be used to
denote the elements x respectively. The matrix
(g,0) (g.1)
X, can then be written in the form

k= (gj_n 1) (95,07
k= (gi_nll) (gj_nll)-1= (gi-ng

and x

Q *

(3.3) x, = [g* z ]

where Y(i,j) = y(‘-’ig}l) and 2% (i,j) = z(gglgi).
Lemma 3.1. 8, = det (Y+2")det (Y-2").

Proof. This follows from (3.3) and the elementary result

from determinant theory that det[;i] = det (A+B)det (A~-B),
where 4 and B are square matrices.s

There is an oblique proof of the following propositioh in
{2), § 10. The proof given here is much more direct.

Proposition 3.2, Let F(a) be the matrix Y + az*, where «a
is constant. Then det(F(a)) factors into distinct irreducible
factors which are in 1:1 correspondence with the irreducible
characters of G. If ¥ is an irreducible character of G, the

corresponding factor ¢x is of degree (x(e))2 and

det (F(a)) = IIz wx.

Proof. Let B be basis {e,g;l,...,ggl} for CG. Let R(g) and
L(g) be the respective matrices of R(g) and L(g) with respect
to 8. Then

Y = T R(9)y,
geG
and
* -
Z =73 L(g)zg.
geG
It is a well-known result that if M(G) is the mapping group of
G i.e.
M(G) = gp < L(g), R(g): geG >

the irreducible constituents of the permutation matrix



88 K.W. Johnson

representation w:R(g)-R(g), L(g)-L(qg) are in 1:1
correspondence with the irreducible representations of G (see
{1], 2.7.). Moreover if p is an irreducible representation of
G and p* is the corresponding representation of M(G)
deg(p*) = (deg(p))z. Thus if the matrices L(g) and R(g) are
decomposed into block diagonal matrices according to the
splitting = ep*, F(a) is decomposed into a block diagonal
matrix and this produces a factorisation of det(F(a)) into
factors p* in 1:1 correspondence with the p* and with deg(¢*)
= deg(p*). The proposition follows if it can be shown that
each factor ¢* is irreducible and that the w* are all
distinct. From results which are in Frobenius’ initial papers
the spec1allsation of w* obtained by inserting 0 for z , geG,
in p produces w where ¢ is the factor of 8 correspondlng to
p (with suitable replacement of xg by yg) and f = deg(p). Now
Frobenius’ results imply that inequivalent representations of
G give distinct factors of 9 and thus the w* are all
dlstlnct. It remains to show that for p a matrix realisation
of p

—
o =aet (7" (R(N)yg + @ p (L(9))Z,)
geG geG
is irreducible. Suppose that ¢*=¢1(x,z)¢2(x,z)is a non-trivial

factorisation. It follows that det(} p (R(g))y ) and

geG
det (T p (L(g))z ) factorise- as wl(z,g)wz(z,g) and
geG
¢1(g,§)p2(0 Zz) respectively. Thus
det(} p (R(g))Y ) det[(E (L(g))zg) =

geG
= det((L p" (R(9))Yg) (E (L(g))zg)]
geG geG

has a non-trivial factorisation. But

(3.4) (L P (RGYN(E P (L(9))zy) = (L B (R(GIL(D))Y 2y
geG geG g,heG
Moreover if y zy is replaced by Xy where k=R(g)L(h) the matrix

(X R(g)L(h)y zy becomes |Z(G) X
ge

M(G)" This follows from the
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exact sequence

0 — Z2(G) — G x G — M(G) — {e}.

Thus we have shown that the factor of X corresponding to

M(G)
p* has a non-trivial factorisation, which 1leads to a
contradiction since by Frobenius’ theory it must be
irreducible. Hence p* itself is irreducible and the

proposition follows.m

It is now possible to give a complete description of the
character table of Q. The conjugacy classes of Q are the
orbits of the inner mapping group of Q. This is generated by
the elements R(x,y), L(x,y), T(x) of the mapping group of Q
defined as follows:

R(x)R(y)R(xy) 1,

L(x)L(y)L(yx) "1,

T(x) = L(x) ‘R(x).

R(x,y)

L(x,y)

Direct calculations shows that the image of an element of
Q of the from (g,0) under any of the above generators 1is an
element of the form (h-lgh,O). Thus the subset of Q of
elements (g,0) splits into conjugacy classes Cio where
ci°={(g,0), gecC;, ci a conjugacy class of G. If z is an
element of Q of the form (g,1) the following describes the

action of the above generators on z.

x Yy ZR(x,y) zL(x,y)
-1,-1 -1,-1
(h,0) (k,0) k Yn"lkng,1) (ghkh"k71,1)
(h,0)  (k,1) (hgkh  k71,1) Kk 1n"lkgn,1)
(h,1)  (k,0) h Y lghk,1) (khgk~1n71,1)
1

(h,1)  (k,1) Kk n"kgh,1) (hgkh~lk71,1).
Under the action of T(x) the image of z is always of the
form (h~lgh,1).

Thus the subset of Q of elements of the form (g,1) splits
into classes each having |G| elements and descibed by
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Cga{(gg’,l): g’ €G’ }. Hence the total number of classes of Q is

t + |G/G' | where t is the class number of G.

Theorem 3.3. Let G be any finite group, 1let Q = cF. The

basic characters of Q are described as follows.
(a) Linear characters. Each linear character is obtained

via the homomorphism GF—» (G/G’)F by the "pullback" operation
described in (7].

(b) Non-linear characters. To each non-linear character Y

of G there corresponds a basic x* of Q with x*(g,O) = zllzx(g)
and x*(g,l) = 0., All the non-linear characters of { are
obtained in this way.

Proof. The number of basic characters of Q is equal to the
number of conjugacy classes (see[5]). Since the existence of
the linear characters in (a) follows from the results in [7)
and the fact that (G/G’) is abelian the theorem will follow if
it can be shown that the characters x* as described in (b) are
basic characters and are all distinct.

As in the proof of Proposition 3.2, to each irreducible
character Y of G there corresponds a unique irreducible factor
Py of det £Y+Z*), and thus to x there corresponds a factor ¢
of det(Y+Z ). By Lemma 3.1. ¢ is an irreducible factor of GQ.
In [4] it is shown that each irreducible factor of OQ
corresponds to a unique basic character of Q. Denote the basic
character corresponding to ¢ by x*. If in ¢ the variable z; is
set equal to 0 for all i then the factorisation reduces to

that of the group matrix YG and thus (wx)deg(x) is obtained
where Py is the irreducible factor of ift(YG) which
corresponds to y in Frobenius’ theory. Hence x (g,0) = mx(g),
m constant. This shows that distinct irreducible y give rise
to distinct z*.

We now compute the value of x* on an element of the form
(g,1). Each of the 2|/G/G’'| elements of G described in (a) has
norm 1 on each element of Q. Therefore
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T 1¥(g,1)1%= 216/6" I.
¥ linear

But for fixed (g,1l) the normalization of the columns of the
character table of Q gives

x L Ix*(g.l)l2 = 1Ql/l6' | = 216/¢° |
x €Bas(Q)

This implies that if x* is a non-linear character as described
in (b) then x*(g,l) = 0. By the normalization of the rows of

the character table of Q, x*(g,O) = (2)1/2x(g). The theorem
proved. =

4. The construction of the canonical factors of 8. for an
-
arbitrary loop Q

The correspondence between the basic characters of a 1loop

Q and the canonical factors of ©_. is described in [4] and . may

Q

be summarised as follows. If Fl,...,F are the conjugacy

t
classes of Q and the reduced loop matrix Xp of Q is obtained

by replacing xq by X, 7 whenever g lies in Fi, the determinant
OQ of X splits into linear factors, and there is a 1:1
correspondence between basic characters of Q@ and distinct
linear factors of GR. If ¢ is an irreducible factor of GQ the
corresponding factor PR of GR is a power of a 1linear factor.
The canonlcal factor ¢ of GQ which corresponds to basic
character x of Q con51sts of the product of those factors ¢

for which PR has the same linear factor. In fact this factor

may be obtained directly from ¥ as Z[IFiIx(vi)/(deg(x)llz]xv,
the sum being over all classes Fi.

NOV.XQ may be decomposed as XQ ) nlxq , Where n; 1is the

permutation matrix obtained from XQ by substituting xq =1,
i

=0 for i # j. The n, correspond to the right maps of a 1loop

Q’ which is not in general isotopic to Q@ but which has the

property that M(Q*) ~ M(Q) as permutation groups. Now the n;

may be decomposed into block diagonal matrices according to
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the decomposition of the natural representation of M(Q) into
irreducible representations wj. Thus there exists a non-
singular matrix P such that

B

0

B1 0

p"leP= ot ,
‘s,

where Bj is a square matrix of size deg(wj). Further, if the

substitution xq=x7 where q € ri is made in Bj to produce
i

(Bj)R’

(4.1) det[Bj)R] = (¥ A(vi)x1i)f,
where f the degreé of wj' and A(vi) = IFiIxj(Ti)/f. (This
means that A is the association scheme character corresponding
to xj). The decomposition (4.1) ensures that det(Bj) = pj is

the canonical factor of GQ corresponding to wj.
-

The following algorithm constructs the canonical factor
det(B,) from the character ¥ and set {nl,...un}. For
simplicity the subscript j is omitted. Let ¢ be an element of
Sy Write ¢ as a product of disjoint cycles

o= (al...akl) (b, ... kz)(cl... "3)'" ,

where 1l-cycles are included. Define the trace function

Ta:Hf(C) — C by

b
1 ky 1 3

where T is the usual trace. Define

4.2) T (X peee, X )=T(X ...X_ )T(X, ...X, JT(X_, «..X_ ) ...
( ) Tg(Xy k ( a, a, b, c Sk

(4.3) W(nl"“'"k) = Zs sign(a')To_(VI(nl),...,W(nk)).
oe
Then
flo, = y(m, ,...,M, )x S 4
x =L 1, 1c77q3 q

where the sum is over all f-tuples of (qi reeeiqy ) of Q.
1 4

This construction is similar to Frobenius’ initial
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construction of the irreducible factors of a group
determinant, but whereas in the group case the P factorises
as the fth power of an irreducible factor in general the
factorisation of ey is more complicated.
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