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SOME RECENT RESULTS ON QUASIGROUP DETERMINANTS 

1. Introduction 
In two previous papers the determinant of a latin square 

was discussed. This is a generalisation of the group 
determinant which led Frobenius to introduce group characters. 
To each latin square there is naturally associated a 
quasigroup and where this is a group the factorisation of the 
determinant is equivalent to the decomposition of the regular 
representation of the group into irreducible components. A 
theory of quasigroup characters has been discussed in [5]-[9] 
and thus a natural question to consider is that of whether the 
factors of the quasigroup determinant give rise to a 
"representation theory" which ties in with the characters, and 
which can provide a tool in quasigroup theory. However one may 
also view the determinant in a more combinatorial light, and 
in [4] results are given on the determinant associated to pair 
of latin squares. 

Here some recent results are described. Questions which 
were raised in [3] brought some comments at the conference, 
and these comments are discussed along with other work in 
progress. Whereas in the group case the pattern of 
factorisation of the determinant is rigidly determined by the 
character degrees, this no longer remains true for a general 
quasigroup. It is therefore of interest to give a family of 
examples where the factorisation pattern while different from 
that in the group case is completely determined by the 
character theory. Such a family is given here, suggested by 
some of the results in Frobenius' original paper [2]. It is 
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also shown how the knowledge of the factorisation of the 

determinant can provide help in calculating the character 

table for a quasigroup. 

In [2] Frobenius gives a method to construct explicitly an 

irreducible factor of a group determinant, starting from the 

corresponding irreducible character. It would be very 

interesting to construct the irreducible factors of a latin 

square determinant directly, but such a goal appears to be 

very difficult to achieve. Here a construction is given which 

produces the canonical factor of the determinant of a latin 

square which corresponds to a basic character of the 

corresponding loop, starting from the knowledge of the 

corresponding representation of the its mapping group. 

Throughout the work quasigroup determinant and latin 

square determinant are used interchangeably and the choice 

used is related to the context. Explicitly, if L is a latin 

square on the set Ω = {Ι,.,.,η} there corresponds a quasigroup 

(Q ,. ) on the set Q = {g , .. . ,q } defined by g. «g . = g. where L I l i 1 J Κ 
k = L ( i , j ) and conversely given a quasigroup (Q,.) of order η 
an ordering of the underlying set as bove can be used to 

define a latin square L . by L ( i , j ) — k where g.*g. — g*. U 2 J Λ 
Different choices of the ordering of Q give different 

quasigroups or latin squares which lie in the same isotopy 

class, and which have equivalent determinants. It may be noted 

here that the determinant is an invariant of the corresponding 

3-web. 

2. Definitions, Problems and Examples 

First some definitions in [3] and [4] are recalled for the 

convenience of the reader. Let L be a latin square of order n. 
The latin square matrix X L is defined to be the η χ η matrix 

with ( i , j ) t h entry χ^ where k = L ( i , j ) , and the latin square 

determinant θ^ is defined to be det(X^). It will also be 

convenient to refer to matrices Υ Z ^ obtained by replacing 
b Y ( r e sP·) in XL· If f and g are two elements of 

Cfjr^,...* ] define (s) by f = g if and only if f (x^,... ,xn) = 
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= ± g ( * _ / , ν , . . ) where σ is an element of S , the symme-* cr(l) ô (η) η 
trie group on {l,...,n>. The square l' is defined by 
^(ifj) = X.(J/i) . Then the relation ?? is defined on the set of 
latin squares of order η by L1 S L2 if and only if L^ is 
either isotopie to L2 or to L^· In an analogous manner ft can 
be defined on the class of loops of order η or the class of 
quasigroups of order n. 

The following problem is raised in [3] in the form of a 
question. 

Problem 1. Find a pair (L̂ , L2) of η χ η latin squares 
which are not X-related such that ΘΓ • θ, . 

L1 L2 
A suggestion was made at the conference that a generic way 

to produce examples of such pairs might be achieved as 
follows. Let L and M be latin squares such that L and M are 
not isotopie to LC and Mt respectively. Define Q^ to be the 
direct product QL χ QH and Q2 to be QL χ Then a reasonable 
conjecture is that BQ is equal Θ. to under the obvious 
identification of the underlying sets. However a computation 
was carried out for the smallest example where L and Η have 
order 6 and it was found that SQ * . It remains unknown 

2 
whether θ_ • eQ . 

2 
Further searches have been made on squares of small orders 

in an attempt to produce a suitable pair of squares, θ^ was 
calculated for a representative from each Ä-class of loops of 
order η which have the cyclic group C4 as a homomorhic image 
but it was found that all such determinants were inequivalent 
under (•). 

It was also pointed out at the conference that Problem 1 
is intimately connected to the theory of normed algebras. The 
author is indebted to Professor Hoenhke for this insight, 
which opens up an interesting line of research. 
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For a loop Q the loop matrix XQ is defined by 

*/->(·*fj) = where q.(q.p) = qu and qp is the right inverse U yjj i J Λ 
of q, i.e. q{qp) = e. When Q is a group 
(2.1) XQYQ » ZQ 
where 
(2.2) ζ = Ε χ y . 

g hk=q n K 

It is shown in [3] that (2.1) is equivalent to the 
associativity condition for Q. However the results of 
Frobenius use only the identity 
(2.3) - det(XQ)det(yQ)=det(ZQ). 

The following problem was introduced in [3]. 
Problem 2. Find a non-associative loop Q such that (2.3) 

holds. This may be difficult. One may formulate the weaker 
version: 

Problem 3. Find a loop Q such that 
det(XQ)det(YQ)=det(ZQ). 

3. Frobenius Extensions 
Let G = {e,g2>..,gn> be a finite group. Define the 

quasigroup (Q,.) on the set G χ {0,1} by 
(3.1) (g,0).(h,0) = (gh,0) - (g,l).(h,l) (g,h)eG, 
(3.2) (g,l).(h,0) = (hg,l) - (g,0).(h,l) (g,h)eG. 
Then (e,0) is an identity element and Q is a loop, the 

F Frobenius extension of G. It will be denoted by G . Note that 
F if G is commutative G « G χ C2. Also note that the inverse of 

(g,€) in Q is (g-1,e) where e = 0,1. Now consider XQ the loop 
matrix of Q, with rows and columns indexed by the elements of 
Q in the the order (e,0), (g2,0),...,(gn,0), (e,1),(g2,1),..., 
(g ,1). The (i,j)th entry of Xn is χ. where k is as follows: Ώ w Κ 

k - (gito) (g., 0)-1= (gigj1,0) i,j s n, 

k = (gi,0) (Çj_n, 1)_1= telici'1) i =S n,j > n, 
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k = (gi-n , 1 ) 1 = (gjlgi-n'1} i > n,j s n, 

k " ^i-n'1* ( gj-n' 1 ) - 1 = (gi-ngj-n'0) i' J > n' 
To simplify the discussion y and z_ will be used to 9 9 

denote the elements x. .. and χ. ,. respectively. The matrix (gr»o) (flr, l) 
XQ can then be written in the form 

<3'3> XQ - (£* f ) 
where r(i,j) - y ( ^ g - 1 } and Z*(i,j) = z ( gjl g i ) · 

Lemma 3.1. 0 Q = det(r+Z*)det(r-Z*). 
Proof. This follows from (3.3) and the elementary result 

from determinant theory that d e t = det(Λ+Β)det(A-B), 
where Λ and Β are square matrices.• 

There is an oblique proof of the following proposition in 
[ 2 ], § 10. The proof given here is much more direct. 

if 
Proposition 3.2. Let F(a) be the matrix Υ + aZ , where a 

is constant. Then det(F(a)) factors into distinct irreducible 
factors which are in 1:1 correspondence with the irreducible 
characters of G. If χ is an irreducible character of G, the 
corresponding factor φ χ is of degree (x(e)) and 
det (F(a)) - Ώχ φχ. 

Proof. Let 8 be basis {e^' 1, ... jg"1} for CG. Let R(g) and 
L(g) be the respective matrices of R(g) and L(g) with respect 
to S. Then 

Υ = Σ R(9)Ya geG y 

and 

Ζ*- Σ 1(g)ζσ· geG y 

It is a well-known result that if W(G) is the mapping group of 
G i.e. 

*(G) - gp < L(g), R{g)i geG > 
the irreducible constituents of the permutation matrix 
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representation Ti:J?(g)-»R(g) , L(g)-»L(g) are in 1:1 
correspondence with the irreducible representations of G (see 
[1], 2.7.). Moreover if ρ is an irreducible representation of 

it G and ρ is the corresponding representation of M(G) 
# 2 

deg(p ) = (deg(p)) . Thus if the matrices L(g) and J?(g) are 
decomposed into block diagonal matrices according to the 
splitting π = ®p , F (a) is decomposed into a block diagonal matrix and this produces a factorisation of det(F(a)) into & * * 
factors φ in 1:1 correspondence with the ρ and with deg(p ) 
= deg(p ). The proposition follows if it can be shown that 

Η # 
each factor φ is irreducible and that the φ are all 
distinct. From results which are in Frobenius' initial papers 
the specialisation of φ obtained by inserting 0 for ζ , geG, * f " 
in φ produces φ where φ is the factor of corresponding to 
ρ (with suitable replacement of χ b y y ) and f = deg(y>). Now 
Frobenius' results imply that ineguivalent representations of 
G give distinct factors of θ„ and thus the φ are all G _* distinct. It remains to show that for ρ a matrix realisation ^ * 
of ρ 

f* = det (Σ P*(R(g))y_ + α P*(Mg))zCT) geG y geG 9 

if 
is irreducible. Suppose that φ =φ1(£,ζ)φ2(£,ζ)is a non-trivial 

factorisation. It follows that det(E ρ (R(g))y) and 
geG 9 

det(£ p*(L(g))z) factorise as φΛχ,^φ 2(χ,0) and 
geG 9 

^ ( O / Z ) ^ (0,z) respectively. Thus 

det(E p*(R(g))y) det[(E P*(L(g))z ) = 
geG 9 geG y 

= det[(E p*(R(g))y_) (I p*(l(g))ζ )] 
geG 3 geG 9 

has a non-trivial factorisation. But 
(3.4) (Ep ,(R(g))yJ(Ep'(i(g))0 = Œ p*(R(g)Lfh))y ζ . 

geG 9 geG g g,heG 9 " 
Moreover if is replaced by x^ where k=R(g)L(h) the matrix 

(E R(g)L(h)yzh becomes |Z(G)|X . . . This follows from the 
geG 9 1 ' 
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exact sequence 
0 —» Z(G) —* G χ G —» M (G) —» {e}. 

Thus we have shown that the factor of Xj. corresponding to * ' ' 
ρ has a non-trivial factorisation, which leads to a 
contradiction since by Frobenius' theory it must be 

ff 
irreducible. Hence φ itself is irreducible and the 
proposition follows.· 

It is now possible to give a complete description of the 
character table of Q. The conjugacy classes of Q are the 
orbits of the inner mapping group of Q. This is generated by 
the elements R(x,y), L(x,y), T(x) of the mapping group of Q 
defined as follows: 

R(x,y) = R(x)R(y)R(xy)~1, 

L(x,y) = LWLMHyx)'1, 

T(x) = L(*)_1R(x) . 

Direct calculations shows that the image of an element of 
Q of the from (g,0) under any of the above generators is an 
element of the form (h_1gh,0). Thus the subset of Q of 
elements (g,0) splits into conjugacy classes where 
Cj0={ (g, 0), Cj. a conjugacy class of G. If ζ is an 
element of Q of the form (g,l) the following describes the 
action of the above generators on z. 

X y zR{x,y) zL(x,y) 

(h, 0) (k,0) K~Xh~XKhg,1) (ghkh^k'1,1) 

(ft, 0) (hgkh-1k-1,1) Ä_1h_1Ägh,1) 
(k,0) (Migk-1h-1,l) 

(Λ, 1) k'^h'^kgh,!) (hgkh_1k_1,l). 
Under the action of T(x) the image of ζ is always of the 

form (h~1gh,1). 

Thus the subset of Q of elements of the form (g,l) splits 
into classes each having |G| elements and descibed by 
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(99" 11)' Q" eG' }· Hence the total number of classes of Q is 
t + I G/G' I where t is the class number of G. 

F 
Theorem 3.3. Let G be any finite group, let Q - G . The 

basic characters of Q are described as follows. 
(a) Linear characters. Each linear character is obtained 

F F 
via the homomorphism G —» (G/G' ) by the "pullback" operation 
described in [7]. 

(b) Non-linear characters. To each non-linear character χ 
of G there corresponds a basic χ* of Q with = 

κ 
and χ (g,l) ** 0. All the non-linear characters of Q are 
obtained in this way. 

Proof. The number of basic characters of Q is equal to the 
number of conjugacy classes (see[5]). Since the existence of 
the linear characters in (a) follows from the results in [7] 
and the fact that (G/G' ) is abelian the theorem will follow if y 
it can be shown that the characters χ as described in (b) are 
basic characters and are all distinct. 

As in the proof of Proposition 3.2, to each irreducible 
character χ of G there corresponds a unique irreducible factor 
φ of det (y+Z ), and thus to χ there corresponds a factor φ # 
of det(y+Z ). By Lemma 3.1. φ is an irreducible factor of θ^. 
In [4] it is shown that each irreducible factor of θ^ 
corresponds to a unique basic character of Q. Denote the basic if 
character corresponding to φ by χ . If in φ the variable z^ is 
set equal to 0 for all i then the factorisation reduces to 
that of the group matrix Yß and thus ( φ χ ) i s obtained 
where φ is the irreducible factor of det(V_) which * # 
corresponds to χ in Frobenius' theory. Hence χ (g,0) = mx(g), 
m constant. This shows that distinct irreducible χ give rise 

it to distinct χ . 
We now compute the value of χ on an element of the form 

(g,1). Each of the 21 G/G" I elements of G described in (a) has 
norm l on each element of Q. Therefore 
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Σ I0(g,l)|2= 2IG/G' I -
ψ linear 

But for fixed (g,l) the normalization of the columns of the 
character table of Q gives 

* Σ l**(g,l) I2 = IQI/IG' I = 2\G/G' I. 
χ eBas(Q) 

jf 
This implies that if χ is a non-linear character as described χ 
in (b) then χ (g,l) = 0. By the normalization of the rows of 

* 1/2 
the character table of Q, χ (g,0) = (2) ' x(g) . The theorem 
proved. • 

4. The construction of the canonical factors of 9^ for an 
arbitrary loop Q 

The correspondence between the basic characters of a loop 
Q and the canonical factors of 9^ is described in [4] and may 
be summarised as follows. If are the conjugacy 
classes of Q and the reduced loop matrix XR of Q is obtained 
by replacing χ^ by χ^ whenever g lies in Γ^, the determinant 

of XR splits into linear factors, and there is a 1:1 
correspondence between basic characters of Q and distinct 
linear factors of 9 D. If φ is an irreducible factor of 9_ the κ \¿ 
corresponding factor tpR of 9^ is a power of a linear factor. 
The canonical factor of 9^ which corresponds to basic 
character χ of Q consists of the product of those factors φ 

for which has the same linear factor. In fact this factor 
may be obtained directly from χ as £[|Γ\ lar(ri)/(deg(x)1^2]χ , 
the sum being over all classes Γ\. 

Now XQ may be decomposed as XQ = £ n£ xq > where π^ is the 

permutation matrix obtained from XQ by substituting χ =1, U 
Xq =0 for i * j . The π^ correspond to the right maps of a loop 

φ J , 
Q which is not in general isotopie to Q but which has the 
property that H(Q*) » M(Q) as permutation groups. Now the n^ 
may be decomposed into block diagonal matrices according to 
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the decomposition of the natural representation of M(Q) into 
irreducible representations 
singular matrix Ρ such that 

p - 1 v -

Thus there exists a non-

B4 o 
3 

B* 

where Bj is a square matrix of size d e g . Further, if the 
substitution χ where q e Γ. is made in B. to produce 

<1 ^ i j 

(4.1) det[Bj)Ä] - (Σ Xd^Jx )J 

where f the degree of φj, and λ(τ^) ~ ΙΓ^ lXj(r¿)/f· (This 
means that λ is the association scheme character corresponding 
to Xj). The decomposition (4.1) ensures that det(Bj) - <pj is 
the canonical factor of θ^ corresponding to ψ j. 

The following algorithm constructs the canonical factor 
det(Bj) from the character ipj and set {i^,.. .irn}. For 
simplicity the subscript j is omitted. Let σ be an element of 
S k. Write σ as a product of disjoint cycles 

σ » (β^,.β^ ) (1^.. .Jb̂  ) (c^ . .c^) ... , 

where 1-cycles are included. Define the trace function 

V * f ( C ) C b y 

(4.2) Ta(X1,...,Xk)=T{X6 )T(X, 

... ,π^) « £ sign (σ)Τσ (0(1^) , 
ere S 

where Τ is the usual trace. Define 

(4.3) 

Then 

* Zf qi 
where the sum is over all f-tuples of (g.. 

•Xc ) 

*3 

,*(nk)) 

1 *f 
This construction is similar to Frobenius' 

"i 
) of Q. 

initial 
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construction of the irreducible factors of a group 
determinant, but whereas in the group case the φ f a c t o r i s e s 
as the fth power of an irreducible factor in general the 
factorisation of φ i s more complicated. 
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