

Wieslaw A. Dudek

UNIPOTENT n-ARY GROUPS

In the theory of binary quasigroups, so-called unipotent quasigroups, i.e. quasigroups with the identity $aa = bb$, play an important role. These quasigroups are connected with some Latin squares [3]. In the theory of Latin cubes, unipotent ternary quasigroups play a similar role.

In this note we give a natural generalization of these quasigroups to the case of n -ary ($n \geq 3$) quasigroups and groups, and we prove that every unipotent n -group (i.e. every unipotent n -ary group) is derived from some its binary retract.

The terminology and notation used in this note is standard (see for example [2], [4], [6]).

We recall only that an element z of an n -group (G, f) , which satisfies the equation $f(x, x, \dots, x, z) = x$, is called the skew element to x , and is denoted $z = \bar{x}$. From the definition of an n -group follows that it is uniquely determined. Moreover, one can prove (see [4]) that

$$f(x, x, \dots, \bar{x}, \dots, x) = x,$$

$$f(y, x, \dots, \bar{x}, \dots, x) = y$$

for every $x, y \in G$, where \bar{x} can appear at any place under the sign of the function f . The skew element to \bar{x} is denoted as $\bar{\bar{x}}$.

It is clear that an element x of an n -group (G, f) is an idempotent iff $x = \bar{x}$.

Let (G, f) be an n -group and let (G, \cdot) be its binary retract ([6], [7]). The binary power of x in (G, \cdot) is denoted by x^k . The n -ary power of this element (i.e. the power in (G, f)) is denoted by $x^{<k>}$ and is defined as follows (see [9]):

$$x^{} = \begin{cases} x & \text{for } k=0, \\ f(x^{}, x, x, \dots, x) & \text{for } k>0, \\ z: f(z, x^{}, x, \dots, x) = x & \text{for } k<0. \end{cases}$$

The exponential laws given below are easily verified:

$$(x^{})^{~~} = x^{},~~$$

$$f(x^{}, x^{}, \dots, x^{~~}) = x^{}.~~$$

A minimal natural number (if exists) p such that $x^{

} = x$ is called an n -ary order of x and is denoted by $\text{ord}_n(x)$.

Definition. An n -ary quasigroup (group) (G, f) is called unipotent iff

$$(1) \quad f(x, x, \dots, x) = f(y, y, \dots, y)$$

for all $x, y \in G$. If $f(x, x, \dots, x) = b$ for all $x \in G$ and some $b \in G$, then an n -group (G, f) is called b -unipotent.

Observe that in a b -unipotent n -group $x = \bar{x}$ iff $x = b$. This means that a unipotent n -group has only one idempotent.

It is well-known (see [8], [2], [6]) that for any n -group (G, f) there exist an element $b \in G$, a binary group (G, \cdot) and its automorphism θ -such that

$$(2) \quad f(x_1^n) = x_1 \cdot \theta x_2 \cdot \theta^2 x_3 \cdot \dots \cdot \theta^{n-2} x_{n-1} \cdot \theta^{n-1} x_n \cdot b,$$

where $\theta b = b$ and $\theta^{n-1} x = b \cdot x \cdot b^{-1}$ for all $x \in G$.

If an n -group (G, f) is unipotent, then putting $x_1 = x_2 = \dots = x_n = e$, in (2), where e is the identity of (G, \cdot) , we obtain $f(e, e, \dots, e) = b$. Thus (1) implies $f(x, x, \dots, x) = b$ and, consequently,

$$(3) \quad x \cdot \theta x \cdot \theta^2 x \cdot \dots \cdot \theta^{n-2} x \cdot \theta^{n-1} x = e$$

for all $x \in G$. Moreover, from the above remarks and (3) we obtain $b^n = e$ and

$$x \cdot \theta x \cdot \theta^2 x \cdot \dots \cdot \theta^{n-2} x \cdot b \cdot x = b.$$

Applying θ to the preceding equality and using (3) we get

$x^{-1} \cdot b \cdot \theta x = b$, which gives $\theta x = b^{-1} \cdot x \cdot b$. Thus

$$f(x_1^n) = x_1 \cdot b^{-1} \cdot x_2 \cdot b^{-1} \cdot x_3 \cdot b^{-1} \cdot \dots \cdot b^{-1} \cdot x_{n-1} \cdot b^{-1} \cdot x_n.$$

Let $x \circ y = x \cdot b^{-1} \cdot y$. Then (G, \circ) is a group with identity b .

Therefore

$$(4) \quad f(x_1^n) = x_1 \circ x_2 \circ x_3 \circ \dots \circ x_{n-1} \circ x_n$$

and $x^n = b$ in (G, \circ) .

Conversely, direct computations show that if (G, \circ) is a group of a finite exponent dividing n , then an n -group (G, f) defined by the formula (4) is a unipotent n -group in which $f(x, x, \dots, x) = e$ for all $x \in G$, where e is the identity of (G, \circ) .

So we have the following theorem.

Theorem. An n -groupoid (G, f) is a unipotent n -group iff the groupoid (G, \circ) defined by

$$x \circ y = f(x, f(z, z, \dots, z), f(z, z, \dots, z), \dots, f(z, z, \dots, z), y),$$

where z is an arbitrary fixed element of G , is a group of a finite exponent dividing n , and (G, f) is an n -group derived (in the sense of Dörnte) from this group (G, \circ) . Moreover, the constant value of $f(z, z, \dots, z)$ is the identity of (G, \circ) .

Let \bar{x} be the skew element to x and let $\bar{x}^{(s+1)}$ be skew to $\bar{x}^{(s)}$, where $s > 0$ and $\bar{x}^{(0)} = x$. In other words:

$$\bar{x}^{(1)} = \bar{x}, \quad \bar{x}^{(2)} = \bar{\bar{x}}, \quad \bar{x}^{(3)} = \bar{\bar{\bar{x}}}, \quad \text{etc.}$$

It is easily verified that if a unipotent n -group (G, f) is derived from a group (G, \circ) , then $x^{<k>} = x^{1-k}$ and $\bar{x}^{(k)} = x^{2k}$ for all $x \in G$. Thus the following proposition is true.

Proposition 1. Let (G, f) be a unipotent n -group. Then:

$$(i) \quad \bar{x}^{(k)} = x^{<n-2k+1>},$$

$$(ii) \quad \bar{x}^{(n+1)} = \bar{x},$$

$$(iii) \quad x^{<n>} = x,$$

$$(iv) \quad \text{ord}_n(x) = \text{ord}_2(x),$$

(v) if n is odd, then the operation $x \rightarrow \bar{x}$ is one-to-one and $\bar{x}^{(t)} = x$ for $t = \frac{n+1}{2}$.

From the Hosszú theorem it follows that all n -groups defined on a given group are isotopic. In general, these n -groups are not isomorphic [2]. Moreover, an n -group isotopic to a unipotent n -group may not be unipotent. For example, the 5-group (Z_5, f) defined by the formula

$f(x_1^5) = (x_1 + 2x_2 + 4x_3 + 3x_4 + x_5) \pmod{5}$ and a unipotent 5-group (Z_5, g) , where $g(x_1^5) = (x_1 + x_2 + x_3 + x_4 + x_5) \pmod{5}$ are isotopic. This isotopy has the form $(\varepsilon, \theta, \theta^2, \theta^3, \varepsilon, \varepsilon)$, where $\theta x = 2x \pmod{5}$ and ε is the identity mapping of Z_5 . Since a 5-group (Z_5, f) is idempotent, then (Z_5, f) and (Z_5, g) are not isomorphic.

Proposition 2. Unipotent n -groups are isomorphic iff are isotopic.

This fact follows immediately from the following two lemmas.

Lemma 1. Retracts of isotopic n -groups are isomorphic.

Proof. Let n -groups (G, f) and (G, g) be isotopic. Then there exist bijections $\alpha_1, \alpha_2, \dots, \alpha_{n+1}$ of G such that

$$\alpha_{n+1} f(x_1^n) = g(\alpha_1 x_1, \alpha_2 x_2, \dots, \alpha_n x_n).$$

Thus $\alpha_{n+1}(x \cdot y) = \alpha_1 x \alpha_n y$ for $x \cdot y = f(x, b, b, \dots, b, y)$ and $x \cdot y = g(x, b_2, b_3, \dots, b_{n-1}, y)$, where $b_i = \alpha_i b$, $i = 2, 3, \dots, n-1$.

Hence the retract $(G, \cdot) = \text{ret}_{b_2, \dots, b_{n-1}}(G, f)$ and $(G, \cdot) = \text{ret}_{b_2, \dots, b_{n-1}}(G, g)$ are isotopic. This completes the proof since isotopic groups are isomorphic [1] and all retracts of a given n -group are isomorphic (see [7] and [5]).

Lemma 2. Let n -groups (G, f) and (G, g) be derived (in the sense of Dörnte) from groups (G, \cdot) and (G, \circ) , respectively. Then n -groups (G, f) and (G, g) are isomorphic iff are isotopic.

Proof. If n -groups (G, f) and (G, g) are isotopic, then by Lemma 1 all retracts of (G, f) and (G, g) are isomorphic. Hence

(G, \circ) and (G, \square) are isomorphic too. Obviously any isomorphism $\varphi: (G, \circ) \rightarrow (G, \square)$ is an isomorphism of n-groups derived from (G, \circ) and (G, \square) .

The converse is clear.

Corollary 1. Unipotent n-groups are isomorphic iff are isotopic, i.e. iff some their retracts are isomorphic.

Proposition 3. Let an n-group (G, f) be b-derived from a group (G, \cdot) . Then a subset H containing the identity of (G, \cdot) and an element b is an n-subgroup of (G, f) iff it is a subgroup of (G, \cdot) .

Proof. By the assumption an n-group (G, f) has the form $f(x_1^n) = x_1 \cdot x_2 \cdot \dots \cdot x_n \cdot b$, where b and the identity e of (G, \cdot) are in H. If (H, f) is an n-subgroup, then $\bar{b} \in H$. Hence $\bar{b} = b^{1-n}$ and $b^{-1} = f(\bar{b}, b, \dots, b, e, e) \in H$. Thus $xy = f(x, y, e, \dots, e, b^{-1}) \in H$ for all $x, y \in H$. Moreover, for every $x \in H$ the equation $e = f(x, z, b^{-1}, e, e, \dots, e) = x \cdot z$ has a unique solution $z \in H$, which proves that H is a subgroup of (G, \cdot) .

Conversely, if H is a subgroup of (G, \cdot) , then for all $x_1, x_2, \dots, x_n \in H$ we have $f(x_1^n) = x_1 \cdot x_2 \cdot \dots \cdot x_n \cdot b \in H$. Similarly, $\bar{x} = x^{2-n} \cdot b^{-1} \in H$ for all $x \in H$. Thus (H, f) is an n-subgroup of (G, f) . The proof is complete.

The proposition just proved and the Theorem imply the following

Corollary 2. Let (G, f) be a unipotent n-group derived from a group (G, \circ) . Then a non-empty subset H of G is an n-subgroup of (G, f) iff it is a subgroup of (G, \circ) .

According to [4] an n-subgroup H of n-group (G, f) is called semi-invariant iff

$$f(x, H, H, \dots, H) = f(H, H, \dots, H, x)$$

for all $x \in G$, and it is called invariant iff

$$f(x, H, H, \dots, H) = f(\underbrace{H, \dots, H}_{i-1}, \underbrace{x, H, \dots, H}_{n-i})$$

for all $x \in G$ and $i=1,2,\dots,n$. Obviously, every invariant n -subgroup is semi-invariant.

Proposition 4. If an n -group (G, f) is b -derived from a group (G, \cdot) , then a subset H containing an element b and the identity of (G, \cdot) is a semi-invariant n -subgroup of (G, f) iff it is an invariant subgroup of (G, \cdot) .

Proof. Let H contains b and the identity of (G, \cdot) . In view of Proposition 3 H is an n -subgroup of (G, f) iff it is a subgroup of (G, \cdot) .

Suppose that an n -subgroup H is semi-invariant. Since for every $y \in G$ there exists $x \in G$ such that $y = x \cdot b$,

$$\begin{aligned} y \cdot H &= y \cdot b^{-1} \cdot H = x \cdot H = x \cdot H^{n-1} \cdot b = f(x, H, \dots, H) = \\ &= f(H, \dots, H, x) = H^{n-1} \cdot x \cdot b = H \cdot x \cdot b = H \cdot y. \end{aligned}$$

Thus H is an invariant subgroup of (G, \cdot) .

Conversely, if H an invariant subgroup of (G, \cdot) , then

$$\begin{aligned} f(y, H, H, \dots, H) &= y \cdot H^{n-1} \cdot b = H \cdot y \cdot H^{n-2} \cdot b = \dots = \\ &= H^{n-1} \cdot y \cdot b = f(H, H, \dots, H, y) \end{aligned}$$

for all $y \in G$, which completes our proof.

Corollary 3. If an n -group (G, f) is b -derived from a group (G, \cdot) , then an n -subgroup H containing an element b and the identity of (G, \cdot) is invariant iff it is semi-invariant.

Corollary 4. Let (G, f) be a unipotent-group derived from a group (G, \cdot) . Then for any subset H of G the following conditions are equivalent:

- a) H is a semi-invariant n -subgroup of (G, f) ,
- b) H is an invariant n -subgroup of (G, f) ,
- c) H is an invariant subgroup of (G, \cdot) .

REFERENCES

- [1] A.A. Albert: Quasigroups, I, Trans. Amer. Math. Soc. 54 (1943), 507-519.

- [2] **V.D. Belousov:** n-ary quasigroups. (in Russian), Štinica, Kishiniev, 1972.
- [3] **J. Dénes, A.D. Keedwell:** Latin squares and their applications, Akadémiai Kiado, Budapest; and Academic Press, New York 1974.
- [4] **W. Dörnte:** Untersuchungen über einen verallgemeinerten Gruppenbergriff, Math. Z. 29(1928), 1-19.
- [5] **W.A. Dudek:** Medial n-groups and skew elements, Proceedings of the V Universal Algebra Symposium, Turawa, 3-7 May, 1988.
- [6] **W.A. Dudek, J. Michalski:** On a generalization of Hosszú theorem, Demonstratio Math. 15 (1982), 783-805.
- [7] **W.A. Dudek, J. Michalski:** On retracts of polyadic groups, Demonstratio Math. 17 (1984), 281-301.
- [8] **M.Hosszú:** On the explicit form of n-group operations, Publ. Math. Debrecen 10 (1963), 88-92.
- [9] **J. D. Monk, F. M. Sioson:** On the general theory of m-groups, Fund. Math. 72 (1971), 233-244.
- [10] **E.L. Post:** Polyadic groups, Trans. Amer. Math. Soc. 48 (1940), 208-350.

INSTITUTE OF MATHEMATICS, PEDAGOGICAL UNIVERSITY,
Al. Armii Krajowej 13/15, 42-200 CZESTOCHOWA, POLAND

Received October 31, 1989.

