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GROUP RELATED SYMMETRIC GROUPOIDS

Let R be a subset of an abelian group (G,+), furthermore
let - be a binary operation on R, such that (R,*) is a sym-
metric groupoid, i.e. the following identities are assumed to
be satisfied:

(i) a-a=a VaeR,
(ii) a+(a*b)=b Va,beR,
(iii) (ara)+c=a+ (b+(a*c)) Va,b,ceR.

In addition, we suppose a relationship between the binary
operation of the group and the symmetric groupoid, given by
asb=c(a)+t(b), a,beR, where o,T:R—G are mappings. Whenever
there is such a relationship between the group structure
(G,+) and the structure of the symmetric groupoid (R,-), we
shall write (R,*)s(G,+), and call R a group related symmetric
groupoid.

Group related symmetric groupoids arise in a natural way
in algebraic topology. Let Sk,keN, denote the k-sphere,
[sm;sn] the set of homotopy classes of continuous, basepoint
preserving mappings s™—s™. It is well known that [Sm;sn]
is the underlying set for an abelian group, mostly written by
nm(Sn) and called the m-th homotopy group of s™. For x,yesn,
we put

x-y:=-y+2<x;y>xesn,
where <-;-> stands for the ordinary scalar product in r".
This binary operation on s™ is called reflecting product and
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makes S a symmetric groupoid. For mappings f,g:Sm—->Sn we
now define (f-g)(x):=f(x)-.g(x), xeS™. Since this binary oper-
ation is well-behaved with respect to homotopy, we get the
structure of a symmetric groupoid on [Sm;sn]. It turns out
(cf. [1]), (3.7), (3.9)), that the group structure and the
structure coming from the reflecting product on [Sm;sn] are
related in the manner described above. In the following we
shall investigate group related symmetric groupoids from an
algebraic point of view and find some criteria for
isomorphism.

1. Proposition, Let (R,*)S(G,+). Then we have

(1) o(-)=id-r(-),
(ii) T(a-t(a)+Tt(b))=t(a)-a+b Va,beR.
Proof. Simple calculation, using axioms (i) and (ii). ]

Since in R the binary operation + can be expressed in
terms of T, we shall sometimes write (R,T) instead of (R,°).
A xind of converse of Prop. 1 is the following

2. Remark. Given a subset R of G, and a mapping T:R—G
satisfying a-t(a)+t(b)eR and <t(a-t(a)+t(b))=t(a)-a+b for
a,beR, we can define a group related symmetric groupoid by
o(a):=a-t(a), a-b:=c(a)+t(b).

3. Definition., Isomorphisms between symmetric groupoids
are defined in the usual way; for isomorphic symmetric group-
oids (R,*) and (R ,*’) we write (R,*)=(R" +').

In particular, let (R,°*)S(G,+), (R’ ,*')S(G,+) with 0eR,R',
where 0 denotes the neutral element of the group, and let A be
an isomorphism between (R,+) and (R’',+’). If, in addition,
A(0)=0, we call A a distinguished isomorphism between symme-
tric groupoids.

Analogously we can define similar concepts coming from
group theory, e.g. (distinguished) epimorphism.

Our first aim will be to simplify the conditions for the
mapping t. By the following proposition we get in a simple
manner isomorphic copies of symmetric groupoids:
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4. Proposition. Let (R,-) be a symmetric groupoid, R<G,
with (G,+) being an abelian group, geG. Let R’ :=R+g, and
for a’ ,b’€eR’ define a’-'b’:=(a’'-g)+(b’' -g)+g. Then (R, )=
=2(R,*).

Proof. The isomorphism A:R'—R 1is defined by a(a’):=
t=a’' -g, a’'eR’'. =
5. Corollary. Let (R,*)S$(G,+), R :=R+g for geG and a bi-
nary operation *’ on the set R’ be defined as in Prop. 4. Then
there is a mapping <t :R°—G with
a'«'b' =a’-t' (a’)+t’' (b’), a ,b' eR’;

in other words, (R’ ,-’) is group related.

Proof, Let <’ (a’'):=t(a’'-g). =
6. Proposition. Let (R,T)S(G,+), 0OeR. Then there 1is a
bijective map t*:R—aR with (R,t*)=(R,t), r*(0)=0 and
*2 .
T “=id.

Proof. Let a,beR. Suppose O0-Tt(0)=:c#0.
If we let t*(a):=0-a=c+t(a), then trivially follows t*(0)=0,
and we have

a-b = a-t(a)+T(b) = a-(t(a)+c)+(T(b)+c) = a-T (a)+T" (b).
It is justified to write (R,r*), since both t* and t describe
the binary operation - on R, i.e. the equation t*(a-t*(a)+
+t*(b))=t"(a)-a+b holds. For a=0, beR we get T (T (b))=b,
and therefore t*2=id. Since t*(a)=0-a, the mapping t* has R
as range.

From now on, because of Cor. 5 and Prop. 6, we always
assume Oe€R, T(0)=0, and t2=id.

Group related symmetric groupoids satisfy some useful
necessary conditions, which we shall gather in the next
theoren.

7. Theorem. Let (G,+) be an abelian group, (R,-)S(G,+),
a,berR. Then (R,-) 1is entropic, right distributive and
balanced, i.e. a*b=b implies b-a=a. In addition, we have the
identity

asb+b-a=a+b.
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Proof. Let a,b,x,yeR. As an example, we show the validity
of the entropic law
(asx)+(y*b) = (a*y):(x+b).
Using T to express the binary operation, we get (a*x)+(y*b)=
=2(a-t(a))~(x-t(x))=-(y-t(y))+b, and the assertion follows,
since (G,+) 1is abelian. The rest is shown by similar
computations. n

For balanced symmetric groupoids, see e.g. [2]. Group
related symmetric groupoids come under the concept of so
called SIE-groupoids [3] (which means, that the binary
operation satisfies axioms (i) and (ii) from symmetric
groupoids, as well as the entropic law).

Symmetric groupoids (R,-)<(G,+) with 0eR and (G,+) abe-
lian may be described by means of a certain subset U of R, de-
fined as follows.

8. Definition. Let (R,T) be a group related symmetric
groupoid. We define U:={ueR, u=r-t(r), reR}. It can easily be
seen, that U=R:0=0(R).

We list the relevant properties of U, and of the subgroup
<U> of G generated by U, in the following

9. Proposition. Let (R,°*)Ss(G,+), OeR, (G,+) Dbe abelian,
and U as in Def. 8. Then the following holds
(1) tIU=—id.
(ii) . reR == r+<U><R,
reR, ue<U> = t(r+u)=t(r)+t(u).

In particular, <U><R.

(1ii) t|<U>=—1d,
u,ve<U> = u-v=2Uu-v.
(iv) uelU = u+2<U><U.

In particular, 2<U>sU.

Proof. (i) Let ueU. Then 3IreR with
T(u)=t(r-t(r))
=T(r-t(r)+t(0))
=t (r)-r=-u.

(ii) Let reR, uleU. We first show r+u, eR. By definition
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of U resp. by bijectivity of Tt there are r’,rleR with

u1=r1-t(rl), T(r’)=r, and we calculate

r+u,=t(r’)+r, 1)
But r+u,eR implies r+ueR for ue<U>, and in particular

<U>sSR. In order to prove

-T(r =r1-r €R.

reR, ue<U> = <t(r+u)=t(r)+t(u),
it is again sufficient to consider ueU. As above, there exist
rl,r'eR with u=r1-t(r1), T(r’')=r, and consequently,

t(r+u)=t(r1-t(rl)+t(r’))

=t(r,)-r +r’
=t(r)-u
=t (r)+t(u).
(iii) The validity of t|<U>=-id is ensured by the last
equation in the proof of (ii). For u,ve<U> we have u-v=u-

-t (u)+t(v)=2u-v.

(iv) Let u, ,ueU. Then 3r1,reR with u,=r,-0, u=r-o, and
-u=0-r<0. We calculate
u+2u1=2u1-(-u)
=u1~(-u)
=(r,:0)*((0+r)-0)
Th.7

(ry(0+r))-0ev.
But this implies u+2<U><U. ]

To clarify the structure of (R,*)S(G,+), we introduce the
following equivalence relations:

10, Definition. Let (R,*)S(G,+).
(a) For r,r’'eR we define r-~r’': = r-r’e<U>.
(b) For u,u’ e<U> we define u=~u’': & u-u’ e2<U>.

11. Proposition. The relations ~, # are congruence rela-
tions, i.e. for elements a,a’,b,b’eR (e<U>) with a~b and
a’~b’ we have a-+a’~b+b’, (and analogously for =).

Proof. We show the assertion only for the relation ~; in
the case of = the proof is done in the same way.
Prop. 9, (ii) implies for a-~b:
t(a)=t(b+a-b)=t (b)+T (a-b)

= tT(a-b)=t(a)-t(b).
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Let a,a’,b,b’eR with a~b, a’'~b’'.
a-a’-b+b’ =a-t(a)+t(a’ )-b+r(b)-Tt(b’')

=a-b-(t(a)-t(b))+T(a’ )-t(b’)

=(a-b)-t(a-b)+t(a’'-b’')

=2(a-b)-(a’' -b’ )e<U>.

u

Using Prop. 9 and Prop. 11, we can give the following
description of group related symmetric groupoids. Here o

denotes the mapping known from Prop. 1.

12. Theorem. Let (R,-)€(G,+) be a symmetric groupoid,
0eR, (G,+) be an abelian group. Then we have:

(1) R is a union of equivalence classes by <U> in G.

(2) U is a union of equivalence classes by 2<U> in <U>.

(3) Oo:R —> U is a distinguished epimorphism between
symmetric groupoids.

(4) Choose a set {ri}ier
lence classes by <U> in G, such that R=L~)ri+<u>.

of representatives of equiva-

iel
The multiplicative structure on the symmetric groupoid
(R,*) is determined by {o(ri)}iel; furthermore, we have

o(ri+u)=a(ri)+2u, ue<U>.

Let r-r,, s~rj, i.e. Ju,ve<U> with r=r.+u, s=rj+v, then
r-s=ri-rj+u-v.

(5) The symmetric factor groupoids R/<U>, U/2<U> resp.
<U>/2<U> are trivial, i.e. let Fi,FjeR/<U>, then for the
canonically induced binary operation on R/<U>, which for sim-
plicity also will be written by -, we have Fi-Fj=Fj, (and
analogously for U/2<U> resp. <U>/2<U>).

Proof. Prop. 9, (ii), (iv) imply (1) and (2).
(3) follows from the remark after Def. 8, and since for
a,beR we get
c(a*b)=a+b-t(a*b)
=2(a-t(a))-(b-t(b))
=o(a)-o(b).
(4) By (1), any reR can be uniquely represented as a pair
(ri,u), where r; is the representative of the corresponding

equivalence class, ue<U>, and . r=ri+u. By Prop. 1, the
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multiplicative structure - on the symmetric groupoid R is
known, if T(r) is known for all reR.

Prop. 9, (ii) implies t(r)=t(ri+u)=t(ri)-u=t(ri)+t(u),
therefore 0(r)=o(ri)+2u.

Now let r,seR; r=ri+u, s=rj+v. Then we calculate

res=r-t(r)+t(s)
=ri+u-t(ri)+u+t(rj)-v
=ri-t(ri)+t(rj)+2u-v
=ri-rj+u-v.

(5) The existence of all symmetric factor groupoids
mentioned above is ensured by Prop. 11. We give the proof only
for R/<U>, for which we simply note, starting with an equation
from (4)

r-s=ri-t(ri)+t(rj)+2u-v
=rj+(ri-t(ri))-(rj-t(rj))+2u-verj+<U>.
| )

13. Remark: Let G be an abelian group, UsG a subgroup, let
{rj,jeJ} be a set of representatives of all classes of G/U
with r°:=0 as a representative of U, and let IsJ. Then on any
union R of classes by U in G (without loss of generality sup-
pose USR, i.e. QeI), R:=&_}ri+u! we can induce the structure
of a group related sy;;itric groupoid by means of the
following principle:

Let uieu, ieI; let u,:=0. We define

a(ri):=uil ieI,
c(ri+u):=0(ri)+2u, ieI, uel,
T(r):=r-o(r), rer,
res:=o(r)+t(s), r,seR.
Then t(r)eR, as can easily be seen; furthermore one computes
t(ri+u)=t(ri)-u for uelU and ri,ieI; and for r=r,+u, s=rj+v,
i,jeI, u,vel:
T(r-t(r)+t(s) = t(ri+u-t(ri+u)+t(rj+v))

t(rj+f(rj)_rj+ri-t(ri)+2u-i

cu
t(rj)-t(rj)+rj—ri+r(ri)—2u+v
t(ri+u)-(ri+u)+(rj+v)
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= T(r)-r+s.

Next we go in for the dquestion of isomorphisms between
group related symmetric groupoids. The problem becomes simpler
by

14. Proposition. Let (G,+) be an abelian group, (R,*),
(R’ ,*’)s(G,+), and OeR,R’. Further, let A:(R' ,+") — (R,*)
be a distinguished isomorphism between these symmetric
groupoids, i.e. A(0)=0. Then the following holds:

(1) A(r'+u’)=a(r’)+a(u’) for r’'eR , U e<U >.

In particular, A respects classes, i.e. for r’',r'’er’ with
r’'-r’’e<U’> we have A(r’)-a(r’)e<uU>.

(2) A|<U,>:<U'> — <U> is an isomorphism of groups.

Proof. The operation :’ on R’ may be described by mappings
o/ and T/, and - on R by ¢ and T.
A(r’ «’s’) = aA(r’')+a(s’) for r’ ,s’' erR’ implies A(o’ (r')+
+T’' (8’)) = o(A(r’'))+Tt(A(s’')).
For r’ resp. s'=0 we get A(o! (r'))=o(a(r')), Aa(tr' (s’'))=
=T (A(s’)).
Inserting this into the above equation one obtains>

(H) A(O! (r')+T’ (s')) = A0’ (r', )+A (T’ (5')).

Now let r’eR’, ubeU’, i.e. there is sbeR’ with ub=sb-
-t’(sb)=a’(sb). Since ©’ is bijective on R’ , there is r’’er’
with <’ (r”)=r’. Condition (H) implies

A(r’+ub) = A(t’(r“)+a’(sb))
= AT (r”))+a(o’ (sq3))
. = A(r’)+h(ub).

Especially for u’ ,v'e<U’'> we get aA(u'+v’)=a(u’)+a(v’), and
for r‘erR’ , u e<U’ > we obtain A(r’+u’ )=a(r’')+a(u'). It

remains to show, that a is an isomorphism between the

groups <U’> and <U>: A ii<gn;ective by assumption; and by the
above calculations, the inclusions A (U’ )<U, A(<U’ >)s<U> are
valid. In order to show the equality of A(<U’>) and <U>, we
first prove the equality of a(U’) and U.

Let veU=R-0, i.e. there is reR with v=r-0. Since A is
bijective, there is r‘eR’ with A(r’)=r, and for v’ :=r’.0el’
we get A(v')=A(r’ +0)=A(r’')-0=r-0=v.
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1,...,ukeU with u=u1+...

...+uk. Since A (U’ )=U, there are elements u}eU’ with A(u3)=
=u; for i=1,...,k, and consequently, A(ui+...+uk)=u. It

Now let ue<U>, i.e. there are u

remains to show, that A respects classes. For this, let
r',r“eR” and u’'e<U’'> with r'-r“=u’. It follows immediately
A(r )=Aa(r+u’)=a(r“)+ar(u’), hence A(r')-a(r’’)e<Us.

15, Remark. In the following we can restrict ourselves on
the consideration of special isomorphisms between group relat-
ed symmetric groupoids. For this remark let (R’ ,*’)$(G,+) be
a group related symmetric groupoid with its corresponding sub-
group <U’> and the underlying set R’=L_)r}+ +<U’> (according

iel \
to Theorem 12, (1)), where {r},jeJ} denotes a set of repre-
sentatives for all classes of G/<U’ >, which contains

rb:-OGG, and I a suitable subset of J with rbe{r},ier}.
By Theorem 12, (4), the operation ' on R° is determined
by the values of c'(r})e<0’>, ieI; in particular, let o’ (0)=0.
Suppose U is a subgroup of G, isomorphic ‘to «<U’ >, and
p:<U’> — U a group isomorphism, furthermore ({r,,keK} a set
of representatives of all classes of G/U with ro=0; in
addition we assume mn:I — K to be an injective mapping with

n(0)=0. Then R:sl_jrn(i)+u becomes a symmetric groupoid
ler
isomorphic to R’ by defining c(rn(i)):=p(a’(r3)) and by the

principle from Rem. 13, such that <p(R)>=U. Denote the binary
operation on R by <. An isomorphism a:(R',+’)—(R,*) is giv-
en by h(r}+u’):-rn(i)+p(u’).

Consequently, without loss of generality, we can restrict
ourselves to the consideration of distinguished isomorphisms
A:(R,*)>(R,*’) with <p(R)>=<o’ (R)>, such that -defining
U:=<p(R)>- one has ri-k(ri)eu for representatives r; of
classes modulo U.

To describe isomorphisms between group related symmetric
groupoids, we make use of the representation for symmetric
groupoids introduced above (Theorem 12 to Rem. 15). The
following theorem sharpens Prop.14.

16. Theorem, Let (R,°),(R,*')S(G,+) be symmetric group-
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oids with 0OeR, with ¢« resp. ¢’ described by ¢ resp. o¢’'. Let
<0 (R)>=<0’ (R)>=:U, and write R=&_)ri+u. Furthermore, suppose
A:R—R being a bijection with ;?£)=0 and ri-A(ri)eu VieI.
Then the following are equivalent:

(1) A:(R,*’')—(R,"*) is a distinguished isomorphism
between symmetric groupoids.

(2) (a) A(r+u)=Aa(r)+a(u), reR, uel; in particular, Alu is
an isomorphism of groups.

(b) o(r)=a(e’ (r))+2(r-a(r)).

Proof. "(1) = (2)" (a) is implied by Prop. 14.

(b) In the proof of Prop. 14 we have shown g(a(r))=
=A(0’ (r)). Since A respects classes, i.e. r=a(r)ed, we
calculate

g(r)y=c(a(r)+r-a(r))

12 (8o a(ry)+2(r-a(r))

=A(0’ (r))+2(r-a(r)).
"(1l) & (2)" Let reR. There are ieI, uelU with r=r,+u. Since

r-A(r)=ri+u—A(ri+u)(g)ri-h(ri)+u—h(u)eu
we obtain from (b)
A(o’ (r)) = o(r)y+2(a(r)-r) = o(r+a(r)-r) = o(A(r)).
So we calculate
A(re's)

A(rio’rj+u~v)

= A(rj+a’(ri)—o'(rj)+u-v

= A(r.)+A(a’(ri))—A(c’(rj))+2A(u)-A(V)

= A(r.)+0(A(ri))—a(h(rj))+2A(u)-h(v)

= A(r.)+A(v)+o(l(ri))+21(u)-c(k(rj))-2A(V)
= A(r.+V)+0(A(ri+u))—G(A(rj+v))

= A(ri+u)-h(rj+v)

= A(r)-a(s).

LI S T

]
The subsequent corollaries describe isomorphisms from a
slightly different point of view.

17. Corollary. Let (R,-),(R,*')e(G,+) be symmetric group-
oids with 0eR, and ¢+, +’ on R be described by ¢, o‘, further-
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more let <o (R)>=<0’ (R)>=:U, and R=\_}ri+u. Then the follow-
iel
ing are equivalent:
(1) (R,*)=(R,*").
(2) 3 A:Uu > U isomorphism of groups, s.th. o(ri)—
-A(0” (r;))e2U Viel.

Proof. "(1) = (2)" by Rem. 15 and Theorem 16.
"(1l) e= (2)" Let A:U—U be an isomorphism of groups, let
o(ri)-l(o’(ri))ezu VieI. We construct an extension of A on
whole R, such that A:(R,*')—(R,*) becomes an isomorphism
between symmetric groupoids: Choose for each ri,ieI, an
element A(ri)eR satisfying 2A(ri)=2ri~(a(ri)-x(o’(ri)) and
ri-A(ri)eu (in particular: A(0):=0). For ieI, ued we define
A(ri+u):=h(ri)+k(u).

From above we obtain o(ri)=h(o’(ri))+2ri-2A(ri). By an
easy calculation we get o(r)=a(o’ (r))+2(r-a(r)) for reR.
Applying Theorem 16 completes the proof. [ ]

18. Corollary. Let (R,*’')S(G,+) be a symmetric groupoid

with 0eR, where -’ on R is described by o’ , put U:=<0’ (R)>,

and write R=|_)Jr;+U. Let A:R—R be a bijection with r;=-
ier

-A(ri)eu, and suppose that Alu:u—au is an isomorphism of

groups. A describes an isomorphism between group related
symmetric groupoids iff A(ri+u)=A(ri)+A(u) VieI, uel.

Proof. "=" Let * be a further binary operation on R,
described by o, let A: (R, )—(R,") be an isomorphism
between symmetric groupoids. Since <o (R)>=U, the assertion
follows by Theorem 16.

"ee! Let A(ri+u)=h(ri)+h(u) VieI, ueU. We define o(r):=
s=A (0’ (r))+2(r-a(r)); by this and an easy calculation, for rer
with r=r,+u, uell we obtain o(ri+u)=0(ri)+2u.

By Rem. 13 we conclude, that o(r) induces on R the binary
operation - of a symmetric groupoid, defined by res=s+o(r)-
-o0(s), r,seR. Applying Theorem 16 completes the proof. ]
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