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GROUP RELATED SYMMETRIC GROUPOIDS 

Let R be a subset of an abelian group (<?,+), furthermore 
let · be a binary operation on R, such that (J?,·) is a sym-
metric groupoid, i.e. the following identities are assumed to 
be satisfied: 

In addition, we suppose a relationship between the binary 
operation of the group and the symmetric groupoid, given by 
a*b=a(a)+τ(b), a,beR, where σ,τ:Κ—>G are mappings. Whenever 
there is such a relationship between the group structure 
(G,+) and the structure of the symmetric groupoid (R,·), we 
shall write (R,·)s(G,+), and call R a group related symmetric 
groupoid. 

Group related symmetric groupoids arise in a natural way 
in algebraic topology. Let s* ,JtelN, denote the it-sphere, 
[S^/S11] the set of homotopy classes of continuous, basepoint 
preserving mappings S1"—>Sn. It is well known that [S^S11] 
is the underlying set for an abelian group, mostly written by 
πm(Sn) and called the m-th homotopy group of Sn. For χ,yeSn, 

(i) 
(ii) 
(iii) 

a-a=a VaeJî, 
a>(a'b)=b Wa,beR, 

(a»a) «c=a· (b· (a»c) ) Va,b,ceJ?. 

we put 
x'y:=-y+2<x;y>xesn, 

where <·;·> stands for the ordinary scalar product in IRn. 
This binary operation on Sn is called reflecting product and 

.n 
,n 
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makes s" a symmetric groupoid. For mappings we 
now define (f*g)(x):=f(x)*g(x), xeS™. Since this binary oper-
ation is well-behaved with respect to homotopy, we get the 
structure of a symmetric groupoid on [S^S11]. It turns out 
(cf. [1], (3.7), (3.9)), that the group structure and the 
structure coming from the reflecting product on [S^/S11] are 
related in the manner described above. In the following we 
shall investigate group related symmetric groupoids from an 
algebraic point of view and find some criteria for 
isomorphism. 

1. Proposition. Let (R,·)s(G,+). Then we have 
(i) a(-)=id-r(), 
(ii) T(a-T(a)+x(b) )=x(a)-a+jb Wa,beR. 

Proof. Simple calculation, using axioms (i) and (ii) . • 

Since in R the binary operation · can be expressed in 
terms of τ, we shall sometimes write (R,t) instead of (R,·). 

A kind of converse of Prop. 1 is the following 

2. Remark. Given a subset R of G, and a mapping z:R—>G 
satisfying a-x(a)+T(b)eR and r(a-x(a)+T(b))-T(a)-a+b for 
a,beR, we can define a group related symmetric groupoid by 
σ(β) :=a-T(a) , a-Jb:=a(a)+T(Jb) . 

3. Definition. Isomorphisms between symmetric groupoids 
are defined in the usual way; for isomorphic symmetric group-
oids (R, · ) and (R' ,·') we write (R, · ) a (R' ·' ) . 

In particular, let (R,·)s(G,+), (R' ,·' )£(G,+) with OeR,R' , 
where 0 denotes the neutral element of the group, and let λ be 
an isomorphism between (R,·) and (R' ,·' ). If, in addition, 
λ(0)=0, we call λ a distinguished isomorphism between symme-
tric groupoids. 

Analogously we can define similar concepts coming from 
group theory, e.g. (distinguished) epimorphism. 

Our first aim will be to simplify the conditions for the 
mapping τ. By the following proposition we get in a simple 
manner isomorphic copies of symmetric groupoids: 
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4. Proposition. Let (R,·) be a symmetric groupoid, R£G, 
with (G,+) being an abelian group, geG. Let R' :=R+g, and 
for a' ,b' eR' define a' ·' b' : = (a' -g) · (b' -g)+g. Then (R' , ·' ) s 
s(R,·)· 

Proof. The isomorphism X:R'—>R is defined by X(a'): = 
:=a' -g, a' eR' . • 

5. Corollary. Let (R,-)S(G,+), R' :=R+g for geG and a bi-
nary operation ·' on the set R' be defined as in Prop. 4. Then 
there is a mapping τ' :R'—>G with 

a' ·' Jt>' =a' -τ' (a' ) +τ' (b' ) , a' ,b' eR' ; 
in other words, (R' ,·' ) is group related. 

Proof. Let τ' (a') :=τ (a'-g) . • 

6. Proposition. Let (R , t ) s ( G,+), OeR. Then there is a 
* * * 

bijective map r :R—>R with (R,"c ) = (R,x), τ (0) =0 and 
r*2=id. 

Proof. Let a,beR. Suppose 0-τ(0)=:ο*0. 
If we let τ (a):=0'a=c+T(a), then trivially follows τ (0)=0, 
and we have 

a-b = a-T(a)+T(b) = a-(T(a)+c)+(T(b)+c) = a-τ (a)+r (b). 

It is justified to write (R, t*), since both τ* and τ describe 
the binary operation · on R, i.e. the equation τ (a-τ*(a)+ * * * * 
+τ (b))=T (a)-a+Jb holds. For a=0, £>eR we get τ (τ (b))=b, 

* 2 * * and therefore τ =id. Since τ (a)=0«a, the mapping τ has R 
as range. 

From now on, because of Cor. 5 and Prop. 6, we always 
2 . 

assume 0eR, τ(0)=0, and τ =id. 
Group related symmetric groupoids satisfy some useful 

necessary conditions, which we shall gather in the next 
theorem. 

7. Theorem. Let (G,+) be an abelian group, (R,')s(G,+), 
a,beR. Then (R,·) is entropie, right distributive and 
balanced, i.e. a-b=b implies b»a=a. In addition, we have the 
identity 

a·b+b·a=a+b· 
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Proof. Let a,b,x,yzR. As an example, we show the validity 
of the entropie law 

{a-x)'(yb) = (a»y) · (X'b) . 
Using τ to express the binary operation, we get (a-x)'(yb) = 
=2 (a-τ (a) )-(χ-τ (χ) ) - (y-τ (y) ) +Jb, and the assertion follows, 
since ((»,+) is abelian. The rest is shown by similar 
computations. • 

For balanced symmetric groupoids, see e.g. [2]. Group 
related symmetric groupoids come under the concept of so 
called SIE-groupoids [3] (which means, that the binary 
operation satisfies axioms (i) and (ii) from symmetric 
groupoids, as well as the entropie law). 

Symmetric groupoids (R,')s(G,+) with OeR and (G,+) abe-
lian may be described by means of a certain subset U of R, de-
fined as follows. 

8. Definition. Let (J?,t) be a group related symmetric 
groupoid. We define U:={ueR, u=r-T(r), reR>. It can easily be 
seen, that U=RO=a(R) . 

We list the relevant properties of 17, and of the subgroup 
<U> of G generated by 17, in the following 

9. Proposition. Let (R, · ) s (CJ,+) , OeR, (G,+) be abelian, 
and U as in Def. 8. Then the following holds 
(i) τ J £j=-id. 
(ii) reR =» r+<t7>£R, 

reR, ue<U> τ(r+u)=τ(r)+τ(u). 
In particular, <U>SR. 

(iii) T|<[;>=-id, 
U,V€<[7> => u· v=2u-v. 

(iv) ueU => U+2<U>SU. 

In particular, 2<u>su. 

Proof, (i) Let uel7. Then 3reR with 
•c(u)=x(r-T(r) ) 

=τ (j τ (r) +τ (0) ) 
=τ(r)-r=-u. 

(ii) Let reR, u^U. We first show r+u^R. By definition 
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of U resp. by bijectivity of τ there are r' , r^eR with 
u1=r1~T(r1), r(r')=r, and we calculate 

r+Uj^TÍr' )+r1-T(r1)=r1»r' eJ?. 
But r+u^eR implies r+ueR for ue<I/>, and in particular 
<U>ZR. In order to prove 

reR, U€<U> T(r+u)=T(r)+x(u), 
it is again sufficient to consider ueCJ. As above, there exist 
r^r'eJ? with t^r^-tir^, x(r')=r, and consequently, 

τ (r+u) =r (r^-τ(Γχ) +τ (r' ) ) 
-rir^-rj+r' 
-χ(r)-u 
=T(r)+T(u). 

(iii) The validity of x^y^-id is ensured by the last 
equation in the proof of (ii) . For u,ve<U> we have wv=u-
-τ(u)+τ(r)=2u-v. 

(iv) Let Then Br^reJ? with u^r^O, u=r·0, and 
-ιχ*0·Γ·0. We calculate 

u+2u1=2u1~(-u) 
=υχ·(-υ) 
= (^•0). ((O-r).O) 

""^(r^ (0-r)) ·0eC7. 
But this implies u+2<U>iU. m 

To clarify the structure of (R,·)£(G,+), we introduce the 
following equivalence relations: 

10. Definition. Let (J?, · ) fi (G, +) . 
(a) For r,r'eR we define r-r': «=» r-r'e<U>. 
(b) For u,u'e<U> we define u»u' : <=» u-u' e2<U>. 

11. Proposition. The relations -, « are congruence rela-
tions, i.e. for elements a,a',b,b' eR (e<U>) with a-b and 
a'-b' we have a«a' -b'b' , (and analogously for *). 

Proof. We show the assertion only for the relation -; in 
the case of » the proof is done in the same way. 

Prop. 9, (ii) implies for a-b: 
τ(a)=r(b+a-b)=τ(b)+τ(a-b) 

—> r (a-b)=T(a) -x(jb). 
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Let a,a' ,b,b' eR with a~b, a'-b' . 
a·a' -b'b'=a-z(a)+x(a' )-b+x(b)-x(b' ) 

=a-b-(τ(a)-τ(b))+x(a' )-τ(b' ) 
=(a-b)-x(a-b)+x(a' -b' ) 
=2 (a-Jb) - (a' -b' ) e<U>. 

• 

Using Prop. 9 and Prop. 11, we can give the following 
description of group related symmetric groupoids. Here σ 
denotes the mapping known from Prop. 1. 

12. Theorem. Let (R,«)S(G,+) be a symmetric groupoid, 
OeJ?, (G,+) be an abelian group. Then we have: 

(1) R is a union of equivalence classes by <U> in G. 
(2) U is a union of equivalence classes by 2<U> in <U>. 
(3) —• U is a distinguished epimorphism between 

symmetric groupoids. 
(4) Choose a set {r¿}¿€j representatives of equiva-

lence classes by <U> in G, such that R= r .+<U>. 
iel 1 

The multiplicative structure on the symmetric groupoid 
(R, ' ) is determined by furthermore, we have 
σ(Γ^+ϋ)=σ(Γ^)+2υ, ue<[7>. 

Let J—r., s~r ., i.e. 3u,ve<U> with r=r.+u, s=r .+v, then ι ' j ' ' ι ' j ' 
r-s=r. τ .+WV. ι J 

(5) The symmetric factor groupoids R/<U>, U/2<U> resp. 
<U>/2<U> are trivial, i.e. let r j s R / < U > , then for the 
canonically induced binary operation on R/<U>, which for sim-
plicity also will be written by ·, we have r^rj=r., (and 
analogously for U/2<U> resp. <U>/2<U>). 

Proof. Prop. 9, (ii), (iv) imply (1) and (2). 
(3) follows from the remark after Def. 8, and since for 

a,beR we get 
a(a'b)=a'b-r(a'b) 

=2 (a-τ (a) ) - (b-τ (£>) ) 
=cr(a) 'cr(b) . 

(4) By (1), any reR can be uniquely represented as a pair 
where r^ is the representative of the corresponding 

equivalence class, ue<U>, and . r=r.+u. By Prop. 1, the 
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multiplicative structure · on the symmetric groupoid R is 
known, if x(r) is known for all reR. 

Prop. 9, (ii) implies τ(r)=τ(r^+u)=T(r^)-υ=τ(r¿)+τ(u), 
therefore a(r)=a(r^)+2u. 

Now let r,seR; r=r^+u, s=rj+v. Then we calculate 
r · s=i—τ (r) +τ (s) 

=r¿+u-T ) +U+T (r .) -ν 
=r ^-τ(r^)+τ(rj)+2u-v 
=r . τ .+WV. ι J 

(5) The existence of all symmetric factor groupoids 
mentioned above is ensured by Prop. 11. We give the proof only 
for R/<U>, for which we simply note, starting with an equation 
from (4) 

r·s=r^-τ(r^)+τ(r .)+2u-v 
=rj+ (Γ_.-τ(r̂ ) ) -(r^.-τ(r) +2Ι/-Κ«Γ̂ +<1/>. 

ι 
13. Remark: Let G be an abelian group, lt*G a subgroup, let 

{rj,jeJ} be a set of representatives of all classes of G/V. 
with rQ:=0 as a representative of It, and let ISJ. Then on any 
union R of classes by li in G (without loss of generality sup-
pose lis R, i.e. 0 el), 1?: = ̂  r .+li, we can induce the structure iel 1 

of a group related symmetric groupoid by means of the 
following principle: 

Let u^ell, iel; let uQ:=0. We define 
<r(ri):=uil iel, 

a(r^+u) :=σ(Γ^) +2u, iel, uell, 
τ(r):=Γ-σ(Γ), reR, 

r·s:=a(r)+τ(s), r,seR. 
Then z(r)eR, as can easily be seen; furthermore one computes 
τ (r =τ (r -u for uell and Γ^,ζεΙ; and for r=r^+u, 
i , jel, u,reil: 

τ (ι—T(r)+T(s) = τ(Γ^+ι/-τ(Γ^+ΐί)+τ(Γ^+ν) ) 
= τ(Γ ·+τ(Γj)-r .+r£-τ(r+2u-v 

^ * ι 11 r. . ν • s 
eU 

m T(rj.)-T(rj.)+rJ-ri+r(ri)-2u+iT 
= Tí^+uj-fr.+uj + ír j+r) 
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= T(r)-r+s. 
Next we go in for the question of isomorphisms between 

group related symmetric groupoids. The problem becomes simpler 
by 

14. Proposition. Let (G,+) be an abelian group, (R,·), 
(R' , '' )s(G,+) , and 0eR,R' . Further, let λ: (J?' ,·') —• (R, · ) 
be a distinguished isomorphism between these symmetric 
groupoids, i.e. λ(0)=0. Then the following holds: 
(1) X(r'+u')=X(r')+A(u') for r'eR' , u'e<U'>. 
In particular, λ respects classes, i.e. for r' ,r"eR' with 
r' ~r"e<U' > we have λ(r' )-λ(r")e<U>. 
(2) λ|<£;/ >:<17' > —» <U> is an isomorphism of groups. 

Proof. The operation ·' on K' may be described by mappings 
σ' and τ' , and · on R by σ and τ. 
\(r' >'s') =λ(r')'X(s') for r' ,s'eR' implies λ(σ' (Γ') + 
+τ' (s' ) ) = σ(λ(Γ' ))+τ(λ(β' )) . 
For r' resp. s'= 0 we get λ(σ' (r') ) =σ(λ(r') ) , λ(τ' (s'))-
-τ(λ(»' )) . 
Inserting this into the above equation one obtain^ 
(Η) λ (σ' (r' ) +τ' (s' ) ) = λ (σ' (r' , } +λ (τ' (s' ) ) . 
Now let r' eR' , u'QeU' , i.e. there is s'0eR' with UQ=s'q-
-τ' (SQ>=a' (S'Q) · Since τ' is bijective on R' , there is r"eR' 
with r' (r")=r' . Condition (H) implies 

X(r'+u'Q) = λ (τ' (r") +σ' (s'Q) ) 
= λ (τ' (Γ"))+λ(σ' (s'0)) 
- λ(Γ')+A(u'0). 

Especially for u' ,r' e<U' > we get +v' )=λ(υ' )+λ(κ' ) , and 
for r'eR' , u'e<U'> we obtain λ (r' +u' ) =λ (r' ) +λ (u' ) . It 
remains to show, that λ|<v, > is an isomorphism between the 
groups <U' > and <V>: λ is injective by assumption; and by the 
above calculations, the inclusions λ ([/')£!/, λ (<V >) s<[/> are 
valid. In order to show the equality of λ(<17' >) and <U>, we 
first prove the equality of X(t7' ) and U. 

Let veU=R'0, i.e. there is reR with v=r«0. Since λ is 
bijective, there is r'eR' with A(r')=r, and for v' :=r' OeU' 
we get λ(ν')=λ(r' ·0)=λ(r')·0=r·0=v. 
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Now let ue<U>, i.e. there are u^,... with u=u1+... 
...+u.. Since λ(V ) =U, there are elements ti'.eU' with λ(u'.) = Λ 1 1 

for i=l,...,k, and consequently, λ +...=u. It 
remains to show, that λ respects classes. For this, let 
r' ,r"eR' and u'e<U'> with r'-r"=u' . It follows immediately 
X(r' )=λ(Γ"+α' )=X(r")+X(u' ), hence A(r')-λ(Γ")€<ϋ>. ι 

15. Remark. In the following we can restrict ourselves on 
the consideration of special isomorphisms between group relat-
ed symmetric groupoids. For this remark let (R' , •')S(G,+) be 
a group related symmetric groupoid with its corresponding sub-
group <U'> and the underlying set R' = Î J r'. + +<U' > (according 

iel 1 

to Theorem 12, (1)), where {r'j,jeJ} denotes a set of repre-
sentatives for all classes of G/<U' >, which contains 
r^i-OeG, and I a suitable subset of J with 

By Theorem 12, (4), the operation ·' on R' is determined 
by the values of σ' (reject/'>, lei; in particular, let σ' (0)-0. 

Suppose li is a subgroup of G, isomorphic -to <U' >, and 
p:<U'> —»li a group isomorphism, furthermore {r^keK} a set 
of representatives of all classes of G/lt with rQ>0; in 
addition we assume π:Ι —» IC to be an injective mapping with 
ir(0)*0. Then r

n ( ¿ ) b e c o m e s a symmetric groupoid 
isomorphic to R' by defining σ(Γ

π(^) ) :=Ρ(σ' (r¿) ) and by the 
principle from Rem. 13, such that <p(R)>=ti. Denote the binary 
operation on R by ·. An isomorphism λ:(R' ,·')—>(R,·) is giv-
en by λ(r^+u' ):-rn(1)+p(W ). 

Consequently, without loss of generality, we can restrict 
ourselves to the consideration of distinguished isomorphisms 
λ: (R, ·)—•(*#·') with <p(R)>=<a' (R)>, such that -defining 
Ii:=<p(R)>- one has for representatives r^ of 
classes modulo U. 

To describe isomorphisms between group related symmetric 
groupoids, we make use of the representation for symmetric 
groupoids introduced above (Theorem 12 to Rem. 15). The 
following theorem sharpens Prop.14. 

16. Theorem. Let (R,·),(R,·' )s(G,+) be symmetric group-
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oids with OeR, with • resp. ·' described by σ resp. σ' . Let 
<σ(Κ)>=<σ' (R) >=:!£, and write J?= ̂  r .+"U. Furthermore, suppose 

iel 1 
\:R—>R being a bijection with λ(0)=0 and Viel. 
Then the following are equivalent: 

(1) λ: (J?,·')—*(R,') is a distinguished isomorphism 
between symmetric groupoids. 

(2) (a) λ(r+u) =λ(r)+λ(υ) , reJ?, ueli; in particular, Xj^ is 
an isomorphism of groups. 

(b) σ(Γ)=λ(σ' (r))+2(r-A(r)). 
Proof. "(1) (2)" (a) is implied by Prop. 14. 
(b) In the proof of Prop. 14 we have shown σ(λ(τ))= 

=λ(σ' (r) ) . Since λ respects classes, i.e. r-X(r)el¿, we 
calculate 

σ(Γ)=σ(λ(Γ)+Γ-λ(Γ)) 
Th.12,(4)σ(λ(Γ))+2(Γ_λ(Γ)) 

=λ(σ' (r))+2(r-A(r)). 
" (1) <= (2)" Let reJ?. There are iel, uett with r=r^+u. Since 

r-λ(r)=ri+u-X(ri+u)r..-A(r¿)+u-A(u)elf 
we obtain from (b) 

λ(σ'(Γ)) = σ(Γ)+2(λ(Γ)-Γ) =a(r+X(r)-r) =σ(λ(Γ)). 
So we calculate 

X(r»'s) = λ(Γ^·' Tj+wv) 
= λ(rj+σ' (^)-σ' (ry+u-v 
= λ (Tj) +λ (σ' (ri) )-λ(ο-' (r j) ) +2λ (u) —λ (ν) 
= λ (r j) +σ(λ (r^) ) -σ(λ(r) +2λ (u) -λ (ν) 
= X(rj.)+X(vr)+ff(X(ri))+2X(u)-a(X(rj.))-2X(K) 
- λ (rj+r) +σ(λ (i-i+u) ) -σ(λ(ΓΛν) ) 

= λ (r̂ +ii) · λ (i"j+V) 
= λ(Γ)·λ(δ) . 

• 

The subsequent corollaries describe isomorphisms from a 
slightly different point of view. 

17. Corollary. Let (R, · ) , (J?, ·' ) e (G,+) be symmetric group-
oids with OeJ?, and · , ·' on R be described by σ, σ' , further-
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more let <a(R) >=<σ' (R) >=:U, and R=\^Jr.+U. Then the follow-
iel 

ing are equivalent: 
(1) (*,.)•(«.·')· 
(2) 3 λ:1/ —» U isomorphism of groups, s.th. a(r^)-

-λ(σ' (ri))e21Í Viel. 

Proof. "(1) (2)" by Rem. 15 and Theorem 16. 
" (1) «— (2)" Let λ:It—»Ii be an isomorphism of groups, let 
σ(Γ.)~λ(σ' (r.))e2U Viel. We construct an extension of λ on 
whole R, such that λ: (J?,·')—>(R,·) becomes an isomorphism 
between symmetric groupoids: Choose for each r^,iel, an 
element X(r^)eR satisfying 2λ(Γ^)=2Γ^-(σ(Γ^)-λ(σ' (r^)) and 
Γ^-λ(Γ^)€ΐί (in particular: λ(0):=0). For iel, uell we define 
X(r..+u) :=X(r..)+X(u) . 

From above we obtain σ(Γ.)=λ(σ' (r¿))+2τ^-2λ(r^). By an 
easy calculation we get σ(τ)=λ(σ' (r))+2(r-λ(r)) for reR. 
Applying Theorem 16 completes the proof. • 

18. Corollary. Let (J?, ·')s(G,+) be a symmetric groupoid 
with OeJ?, where ·' on R is described by σ' , put 1ί:=<σ' (R)>, 
and write r .+U. Let X:R—*R be a bijection with r.-

iel 1 1 

-X(r^)eli, and suppose that —>11 is an isomorphism of 
groups, λ describes an isomorphism between group related 
symmetric groupoids iff λ ( r = λ ( r + λ ( u ) Viel, uell. 

Proof. Let · be a further binary operation on R, 

described by σ, let X:(R,·')—>(J?,·) be an isomorphism 
between symmetric groupoids. Since <a(R)>=U, the assertion 
follows by Theorem 16. 

"<=" Let X(ri+u)=X(ri)+\(u) Viel, uell. We define σ(τ) : = 
:=λ(σ' (r))+2(r-λ(r)); by this and an easy calculation, for reR 
with r=r^+u, uell we obtain σ(Γ^+ιτ)=σ(Γ^)+2ΐΓ. 

By Rem. 13 we conclude, that c(r) induces on R the binary 
operation · of a symmetric groupoid, defined by r»s=s+a(r)-
-<r(s) , r,seR. Applying Theorem 16 completes the proof. • 
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