

Antoni Chronowski

DECOMPOSITIONS AND EXTENSIONS OF HOMOMORPHISMS
OF n -GROUPS

In this paper we present necessary and sufficient conditions for decompositions of n -groups determined by p -ideals to be semiselective and selective. Next, we apply these results to the theorems concerning extensions of homomorphisms of n -groups.

We shall consider n -groups for $n \geq 3$. Theorems, definitions, and notation related to the theory of n -groups are based on papers [1], [2], [4], [5], [6]. Definitions and theorems about decompositions of sets are based on the paper [3].

We begin with decompositions of n -groups. Let (A, f) be an n -group. A skew element for an arbitrary element $a \in A$ will be denoted by \bar{a} .

Let us quote an important theorem (cf [4]).

Theorem 1. An n -groupoid (A, f) is an n -group if and only if

$f(x_1^n) = x_1 \cdot \alpha(x_2) \cdot \alpha^2(x_3) \cdot \dots \cdot \alpha^{n-1}(x_n) \cdot a$, where:

- (i) (A, \cdot) is a group,
- (ii) $a \in A$ is a fixed element,
- (iii) $\alpha \in \text{Aut}(A, \cdot)$, $\alpha(a) = a$, $\alpha^{n-1}(x) = a \cdot x \cdot a^{-1}$ for $x \in A$.

The system (A, \cdot, α, a) will be called a binary retract of an n -group (A, f) (this terminology is partly different from the terminology used in paper [2]). In the sequel the binary retract (A, \cdot, α, a) will often be treated as a group (A, \cdot) and called simply the retract.

Let us recall the useful method of constructing a retract (A, \cdot, α, a) for an n -group (A, f) (cf. [6]).

Namely,

$$\begin{aligned} x \cdot y &= f(x, \overset{(n-2)}{p}, y), \\ \alpha(x) &= f(\bar{p}, x, \overset{(n-2)}{p}), \\ a &= \overset{(n)}{p} \end{aligned}$$

for an arbitrary fixed element $p \in A$ and for all $x, y \in A$.

The set A with the operation \cdot forms a group with an identity element \bar{p} . In this case we shall say that (A, \cdot, α, a) is a binary retract of an n -group (A, f) with respect to an element p and write $(A, \cdot, \alpha, a)_p$. In the paper [2] the above (A, \cdot) is called a binary retract of an n -group (A, f) with respect to an element p .

Notice that the following statement results immediately from the definition of the operation \cdot in the set A .

Proposition 1. If σ is a congruence on an n -group (A, f) , then σ is a group congruence on a retract $(A, \cdot, \alpha, a)_p$, $p \in A$.

The converse theorem is not true as may be seen from the following example.

Example. We shall give an example of a group congruence on a retract of the form $(A, \cdot, \alpha, a)_p$ of a 3-group (A, f) which is not a congruence on this 3-group (A, f) .

Consider the Klein group $A = \{e, a, b, c\}$ i.e.

.	e	a	b	c
e	e	a	b	c
a	a	e	c	b
b	b	c	e	a
c	c	b	a	e

It is easy to check that the mapping $\alpha: A \rightarrow A$ defined by $\alpha(e) = e$, $\alpha(a) = b$, $\alpha(b) = a$, $\alpha(c) = c$ is an automorphism of the second order of the Klein group. Let us define the 3-ary operation on the set A as follows

$$f(x_1, x_2, x_3) = x_1 \cdot \alpha(x_2) \cdot x_3$$

for arbitrary $x_1, x_2, x_3 \in A$. By Theorem 1 (A, f) is a 3-group.

Notice that the Klein group (A, \cdot) is a retract of the form $(A, \cdot, \alpha, e)_e$ of the 3-group (A, f) . Let σ be a congruence on the Klein (A, \cdot) determined by the normal subgroup $\{e, a\}$. Therefore, we have $A/\sigma = \{\{e, a\}, \{b, c\}\}$. The relation σ is not a congruence on the above 3-group (A, f) . Indeed, for $f(e, e, e) = e$ and $f(e, a, e) = b$ we have $(e, b) \notin \sigma$.

Proposition 2 (cf. [2]). Let (B, f) be an n -subgroup of an n -group (A, f) . Let $p \in B$ be an arbitrary fixed element. Then the retract $(B, \cdot, \alpha, a)_p$ is a subgroup of the retract $(A, \cdot, \alpha, a)_p$.

Definition 1 (cf. [5]). Let (A, f) be an n -group and $p \in A$. A p -ideal of n -group (A, f) is a set of the form p/σ for some congruence relation σ in (A, f) .

Let I be a p -ideal of an n -group (A, f) and let $\sigma \subset A \times A$ be a relation defined in the following way

$$x \sigma y \Leftrightarrow f(x, \bar{y}, (n-3), p) \in I$$

for arbitrary $x, y \in A$. Theorems 2.5 and 2.6 of [5] imply that the relation σ is the only congruence on the n -group (A, f) for which the p -ideal I is its equivalence class. Therefore, we shall say that the p -ideal I determines the congruence σ on the n -group (A, f) . The decomposition of the set A designated by the congruence σ is actually determined by the p -ideal I .

In the sequel we shall need the following definitions (cf. [3]). Let A be an arbitrary set, B an arbitrary subset of the set A and let $\{A_t\}_{t \in T}$ and $\{B_s\}_{s \in S}$ be decompositions of the sets A and B , respectively.

Definition 2. We shall say that $\{B_s\}_{s \in S}$ is the subdecomposition of the decomposition $\{A_t\}_{t \in T}$ if the following condition holds

$$(1) \quad \forall s \in S \ \exists t \in T : B_s \subset A_t.$$

Definition 3. We shall say that the decomposition $\{B_s\}_{s \in S}$ is semiselective for the decomposition $\{A_t\}_{t \in T}$ if the condition (1) holds and

$$(2) \quad \forall t \in T \quad \forall s_1, s_2 \in S : [(B_{s_1} \subset A_t \wedge B_{s_2} \subset A_t) \rightarrow B_{s_1} = B_{s_2}].$$

Definition 4. We shall say that the decomposition $\{B_s\}_{s \in S}$ is selective for the decomposition $\{A_t\}_{t \in T}$ if the conditions (1) and (2) hold and

$$\forall t \in T \quad \exists s \in S : B_s \subset A_t.$$

Let (A, f) be an n -group and $p \in A$. Consider subsets X and Y of the set A . Farther on we shall use the following notation

$$f(X, \binom{n-2}{p}, Y) = \{f(x, \binom{n-2}{p}, y) \in A : x \in X, y \in Y\}.$$

Theorem 2. Let (B, f) be an n -subgroup of an n -group (A, f) and $p \in B$. If D_A (resp. D_B) stands for the decomposition of the set A (resp. B) determined by the \bar{p} -ideal A_0 (resp. \bar{p} -ideal B_0) of (A, f) (resp. (B, f)). Then

1° D_B is a subdecomposition of D_A iff

$$(3) \quad B_0 \subset A_0;$$

2° D_B is semiselective for D_A iff

$$(4) \quad B_0 = B \cap A_0;$$

3° D_B is selective for D_A iff the condition (4) holds and

$$(5) \quad A = f(B, \binom{n-2}{p}, A_0).$$

Proof. Let us consider the retracts $(A, \cdot, \alpha, a)_p$ and $(B, \cdot, \alpha, a)_p$ of the n -groups (A, f) and (B, f) , respectively. The skew element \bar{p} is an identity element of the groups $(A, \cdot, \alpha, a)_p$ and $(B, \cdot, \alpha, a)_p$. Therefore, by Proposition 1 A_0 and B_0 are normal subgroups of the groups $(A, \cdot, \alpha, a)_p$ and $(B, \cdot, \alpha, a)_p$, respectively. The normal subgroups A_0 and B_0 dictate the decompositions D_A and D_B , respectively. Notice that under these assumptions the condition (5) is equivalent to the condition $A = B \cdot A_0$. Now, it is enough to apply Theorems 1-3 of [3].

The above results will be used to solve some problems related to extensions of homomorphisms of n -groups.

Theorem 3. Let (B, f) be an n -subgroup of an n -group (A, f) and $p \in B$. Let $h: B \rightarrow C$ be a homomorphism from the n -group (B, f) into an n -groupoid (C, f) . Let B_0 be a p -ideal determined by the congruence $\text{ker } h$ on the n -group (B, f) . Then the homomorphism $h: B \rightarrow C$ from the n -group (B, f) into the n -groupoid (C, f) can be extended to a homomorphism $\tilde{h}: A \rightarrow C$ from the n -group (A, f) into the n -groupoid (C, f) under the assumption that $\text{Im } \tilde{h} = \text{Im } h$ if and only if there exists a \bar{p} -ideal A_0 of the n -group (A, f) such that the conditions (4) and (5) are satisfied.

Proof. (i) It is easy to notice that $\text{ker } h \subset \text{ker } \tilde{h}$. Let A_0 be a \bar{p} -ideal determined by the congruence $\text{ker } \tilde{h}$ on the n -group (A, f) . Hence $B_0 \subset B \cap A_0$. Now take an arbitrary $x \in B \cap A_0$. Since $x \in A_0$, we have $\tilde{h}(x) = \tilde{h}(\bar{p}) = h(\bar{p})$. But $x \in B$, so $\tilde{h}(x) = h(x)$. Hence $h(x) = h(\bar{p})$, i.e. $x \in B_0$. Thus the condition (4) is fulfilled. Since $\text{Im } \tilde{h} = \text{Im } h$, for an arbitrary $c \in A$ there exists a $b \in B$ such that $\tilde{h}(c) = h(b)$. Hence $\tilde{h}(c) = \tilde{h}(b)$. Thus $(b, c) \in \text{ker } \tilde{h}$. Consequently, the decomposition of the set B determined by the \bar{p} -ideal B_0 is selective for the decomposition of the set A which is determined by the \bar{p} -ideal A_0 . Thus using Theorem 2(3°) we get (5).

(ii) Let us assume that there exists a \bar{p} -ideal A_0 of the n -group (A, f) such that the conditions (4) and (5) hold. Thus, the decomposition $\{B_s\}_{s \in S}$ of the set B determined by the \bar{p} -ideal B_0 is selective for the decomposition $\{A_t\}_{t \in T}$ of the set A which is determined by the \bar{p} -ideal A_0 . Let σ be a congruence on the n -group (A, f) determined by the \bar{p} -ideal A_0 . Define the mapping $\tilde{h}: A \rightarrow C$ by

$$\tilde{h}(x) = h(b)$$

for an arbitrary $x \in A$, where $b \in B$ is an arbitrary fixed element such that $(x, b) \in \sigma$. Let us notice that $\text{Im } \tilde{h} = \text{Im } h$. Take arbitrary elements $x_1, x_2, \dots, x_n \in A$. There exist elements $b_1, b_2, \dots, b_n \in B$ such that $(x_1, b_1) \in \sigma, (x_2, b_2) \in \sigma, \dots, (x_n, b_n) \in \sigma$. Since σ is a congruence on the n -group (A, f) we have $(f(x_1, x_2, \dots, x_n), f(b_1, b_2, \dots, b_n)) \in \sigma$. Hence

$\tilde{h}(f(x_1, x_2, \dots, x_n)) = h(f(b_1, b_2, \dots, b_n)) = f(h(b_1), h(b_2), \dots, h(b_n)) = f(\tilde{h}(x_1), \tilde{h}(x_2), \dots, \tilde{h}(x_n))$. Thus \tilde{h} is a homomorphism from the n -group (A, f) into the n -groupoid (C, f) .

Theorem 4. Let (B, f) be an n -subgroup of an n -group (A, f) and $p \in B$. Let $h: B \rightarrow C$ be a homomorphism from the n -group (B, f) onto an n -group (C, f) . Let B_0 be a \bar{p} -ideal determined by the congruence $\text{ker } h$ on the n -group (B, f) . The n -group (C, f) can be extended to an n -group (\tilde{C}, f) in such a way that there exists a homomorphism $\tilde{h}: A \rightarrow \tilde{C}$ from the n -group (A, f) onto the n -group (\tilde{C}, f) which is the extension of the homomorphism h if and only if there exists a \bar{p} -ideal A_0 of the n -group (A, f) such that the condition (4) holds.

Proof. To prove (4) it is enough to take as A_0 the \bar{p} -ideal determined by the congruence $\text{ker } \tilde{h}$ on the n -group (A, f) and to apply the same argument as in the proof of the condition (4) in Theorem 3. Let A_0 be a \bar{p} -ideal of the n -group (A, f) such that the condition (4) holds. It follows from Theorem 2 (2^o) that the decomposition of the set B determined by the \bar{p} -ideal B_0 is semiselective for the decomposition of the set A determined by the \bar{p} -ideal A_0 . Put $B_t = h^{-1}(\{t\})$ for any $t \in C$. In this manner the elements of the quotient n -group $(B/B_0, f)$ are indexed one-to-one by means of the elements of the n -group (C, f) . Let \tilde{C} be an arbitrary set such that $C \subseteq \tilde{C}$ and $\text{card } \tilde{C} = \text{card } A/A_0$. With the aid of the elements of the set \tilde{C} we index one-to-one the elements of the A/A_0 in such a way that

$$\forall t_1 \in C \quad \forall t_2 \in \tilde{C} : [B_{t_1} \subset A_{t_2} \Leftrightarrow t_1 = t_2] .$$

In the set \tilde{C} we define an n -ary operation f as follows:

$$f(t_1, t_2, \dots, t_n) = t_{n+1} \Leftrightarrow f(A_{t_1}, A_{t_2}, \dots, A_{t_{n+1}})$$

for arbitrary $t_1, t_2, \dots, t_{n+1} \in \tilde{C}$. It is easy to notice that (\tilde{C}, f) is an n -group isomorphic to the quotient n -group $(A/A_0, f)$. Moreover, (C, f) is an n -subgroup of the n -group (\tilde{C}, f) . The function $\tilde{h}: A \rightarrow \tilde{C}$ defined by

$$\tilde{h}(x) = t \Leftrightarrow x \in A_t$$

for an arbitrary $x \in A$ is a homomorphism from the n -group (A, f) onto the n -group (\tilde{C}, f) . The homomorphism \tilde{h} is the extension of the homomorphism h . The proof is complete.

REFERENCES

- [1] V. D. Belousov: *n*-ary quasigroups, (in Russian), Kišinev, 1972.
- [2] W. A. Dudek, J. Michalski: On a generalization of Hosszú theorem, *Demonstratio Math.*, 15 (1982), 783-805.
- [3] A. Grząślewicz: On extensions of homomorphisms, *Aequationes Math.*, 17 (1978), 199-207.
- [4] M. Hosszú: On the explicit form of n -group operations, *Publ. Math.*, Debrecen, 10 (1963), 88-92.
- [5] J. D. Monk, F.D. Sioson: On general theory of m -groups, *Fund. Math.*, 72 (1971), 233-244.
- [6] E. I. Sokolov: The Gluskin-Hosszú theorem for Dörnte n -groups, Nets and quasigroups (in Russian), *Mat. Issled.*, 39 (1976), 187-189.

INSTITUTE OF MATHEMATICS, PEDAGOGICAL UNIVERSITY,
30-084 KRAKÓW, POLAND

Received October 25, 1989.

