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ON SOME CLOSURE OPERATORS ON SEMIGROUPS

1. Introduction

In papers (1] and {2] some closure operators on semigroups
were studied. In this article some other closure operators on
semigroups are introduced, using nilpotency in semigroups. We
study topologies, induced on a semigroup by these closure
bpefators and characterize some classes of semigroups by means
of these notions.

Let S be a semigroup and u:25525, The mapping U is
called a closure operation on S in sense of Kuratowski if the
following conditions hold for u,ul,uzss:

MSU(M),

U(e)=2,

U(U(M))=U(M),

U(M, UM, ) =U(M,)VU(M,) .

The mapping U is called a closure operation on S8 in sense
of Cech if the following conditions hold:

MSU(M),

U(e)=o,

U(U(M))=u(M),

if chnz, then U(MI)SU(Hz).

We mention that if U is a closure operation in sense of
Kuratowski, then it is closure operation in sense of Cech. In
fact if “1‘“2' then MluH2=H2 and this implies that U(H2)=
=U(M,UM,)2U(NM,) .

Let S be a semigroup, MsS. We denote

N (M) = {xes|x"eM for almost all ne{1,2,...}},
Nz(n) = {xeslxnen for infinitely many ne{1,2,...}},
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N3(M) = {xeSlxneM for at least one ne{l,2,...}}.

In paper [2] it was shown, that the mapping

N3: ZS—» ZS, M +— N3(M)

is closure operation in sense of Kuratowski. The open sets in
the topology induced by N3 on S are exactly those subsets of
S, that are unions of some systems of subsemigroups of S, and
the empty set. The system 23(5) = {<a>|aeS}, where <a> is a
cyclic semigroup generated by a, is the complete system of
neighborhoods for this topology.

In paper [3] was proved, that the following relations hold

for M,Ml,Mzss:

(1) N, (M)<N, (M)<N, (M),
(ii) if M,sM,, then Ni(Ml);Ni(Mz) for 1i=1,2,3,
(iii) N, (M UM)) = N, (M )UN,(M,).

2. The closure operation U2

Let U,:25-2%, U, (M) = N, (M)uM.

Theorem 1. U, is a closure operatinn in sense of Kuratow-

2
ski.
Proof. It is clear, that
a) MSUZ(M) and b) Uz(a)=z.
c) UZ(UZ(M)) = Ué(Nz(M)uM) = NZ(NZ(M)UM)unz(M)uM =
= N2(N2(M))uNz(M)uMSNz(M)uM = UZ(M)' hence U2(Uz(M))SU2(M).
From a) we get Uz(M)SUz(UZ(M)). Therefore UZ(Uz(M)) =
= UZ(M)' '
d) Uz(Mluuz) = Nl(MluMz)uMluM
= U2(M1)UU2(M2). Hence UZ(MIUMZ)

= Nl(Ml)uNz(MZ)unluM2 =
U2(M1)UU2(M2).

Theorem 2. M is closed subset of S iff NZ(M)SM.

2

Proof. UZ(M)=M = NZ(M)uM=M — NZ(M):M.
Theorem 3. M is an open subset of S iff MSN, (M) .

Proof. M is open iff CM is closed and this holds iff
N, (CM) SCM.
Let NZ(CM);CM. Then every element x having infinitely
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many powers x" in cM belongs to CM. Hence for every element
xeM almost all powers x" belong to M. (Otherwise infinitely
many powers x" would belong to CM, and therefore xeCM would
hold.) Hence Mle(M).

Now let HSNI(M). Then all elements xeM have almost all
powers x" in M. Therefore if xeNz(CM) i.e. infinitely many
powers x" belong to CM, then x¢M. (If xeM would hold, then al-
most all powers x™ would belong to M and almost all powers x
could not belong to CM.) Hence xeNz(CM), implies XeCM 1i.e.
N, (CM) sCM.

Let aeS. Let G, (a) = {an|n=n , he{l1,2,...}} for all
0

0
n,e{1,2,...}. Then O_ (a) = {a}uG_ (a) is a neighborhood of
N N

a for all noe{l,z,...}, because evidently
{a}ano(a)le({a}ano(a)).

Let aeS, and a be of finite order. Then <a>=P(a)uG(a),
where G(a) is the maximal subgroup in <a> and P(a)=<a>\G(a).

Oo(a) = {a}uG(a) is a neighborhood of a, because
{a}uG(a)le({a}uG(a)). Oo(a) is clearly the smallest neigh-
borhood of a.

Theorem 4. The system Ez(s) = {oo(a)laes, a is of finite
order}u{on (a) |aes, a is of infinite order, noe{l,z,...}} is
0

the complete system of neighborhoods for the topology, gene-
rated on S by the closure operation Uz.

Proof. Let M be an open subset of S and aeM. Since M is an
open set, aeMle(M) holds i.e. almost all powers a™ belong to
M. Hence there exists an n, such that a”eM holds for all nzn,.
This means, that Ono(a) = {a}ano(a)SM.

If a is of finite order, then Oo(a) = {a}uG(a)sM.

Every open set M is therefore a union of some sets of
ZZ(S). This proves our Theorem.

Lemma 1, Let aeS, <a>=G(a) and the cyclic group <a>
generated by a be of higher order than 2. Then a—lta and
oo(a)=oo(a'1) )

Proof. Under these conditions P(a)=e. Let e be the iden-
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tity of G(a). Evidently aze, alze (in other cases either
|<a>|=1 or |<a>|=2 would hold).

Hence al=e(n>2). Therefore a ‘=a" lza. But both a and
a'.1 generate <a>. This means, that

0,(a) = G(a) = <a> = Gg(a?t) = Oo(a_l), where a=a 1.

Lemma 2, Let a,beS, a*b. Let a be of infinite order and b
be of finite order. Then 0,(a)n0,(b)=2.

Proof. Clearly <a>n<b>=s. But since
Ol(a)s<a> and oo(b)s<b> we get ol(a)noo(b)=z.

Lemma 3. Let a,beS, azb and a and b be of infinite order.
Then the following relations hold:

a) there exist m, and n. such that bséom (a) and a¢0n (b),

0 0
0
b) If be<a>, then 0O_ (a)n0_ (b)#o0o for all m, and n,.
m0 n0 0 0
Proof. a) If b¢<a> and a¢<b>, then béol(a)=<a> and

acéo1 (b)=<b>.
If be<a>», then b=ak (k>1). For mo>k we get b=ak¢0m (a)=
0

={am|mzmo}u{a}. Moreover a¢01(b)=01(ak)={ak}u{akn|nzl}=<a>.
b) We have again b=ak(k>1). Let Om (a)={a}u{am|m=m0},
o]

(o) (b)=0n (ak)={ak}u{akn|n=no}. If we choose nzn such that
0

no (o}
kneo (b) and akneo (a). Hence o_ (a)n
o ) Mo

knzm then a

ol
nono(b):z.

Lemma 4. Let a,beS, a*b and a and b be of finite order.
Let <a> and <b> be not groups of order higher than 2. Then
either aéoo(b) or béoo(a).

Proof. Let b¢<a> and a¢<b>. Then aéoo(b)s<b> and
bg€0, (a)s<a>.

0 k k

Let be<a> and a¢G(a). Then b=a® (k>1), 0,(b)=0,(a")=
={a®*}uc(aX)s{a¥}uc(a). Therefore ago, (b) .

Now let be<a> and aeG(a). Then |<a>|=2, b=e, where e is
the identity of G(a). Therefore a¢{e}=oo(e)=oo(b).
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Lemma 5. Let aeS, a be of finite order and let |<a>|>1.
Let beG(a) and b#a. Then beoo(a).

Proof. If beG(a), then be{a}uG(a)=Oo(a).

Lemma 6. Let a,beS, azb and a and b be idempotents. Then
Oo(a)noo(b)=0.

Proof. It is sufficient to observe, that Oo(a)={a} and
Oo(b)={b}. '

From these lemmas we get the following Theorems.

Theorem 5. The topology induced on S by U2 is a
To—topology iff all finite cyclic subgroups of S are at most

of order 2.

Proof. If the topology induced by U, on S is a To-topo—
logy, then by Lemma 1, all finite cyclic subgroups of S are at
most of order 2. The second part of the proof follows from

Lemma 2., 3. and 4.

Theorem 6. The topology induced on S by U2 is a Tl—topo—
logy if all elements of finite order of S are idempotents.

Proof., If the topology induced by U2 on § is a Tl-topo—
logy, then by Lemma 5, for every element of finite order
|<a>|=1. This means, that every element of finite order is an
idempotent. The second part of the proof follows from Lemma
2.,3. and 6.

Theorem 7. The topology induced by U, on s is a Tz—topo—
logy iff all elements of S are idempotents.

Proof. If the topology induced by U,on s is a Tz—topology,
then by Lemma 3, the semigroup S contains only elements of
finite order and by Lemma 5, it contains only idempotents. The
second part of the proof follows from Lemma 6.

Theorem 8. U,=N, iff every cyclic subsemigroup of S. is
either a cyclic group or a cyclic semigroup <a> such that

|P(a)|=1.

Proof. Comparing the complete systems of neighborhoods, we
get that S does not contain elements of infinite order and
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that <a>={a}uG(a).

3. The closure operation v,

.0S__ .S =
Let Ul.z —2", Ul(M)—MuNl(M).

Lemma 7. For all M,Ml,M
MU, (M),
Ul(z)=z,

if Mlsnz,

Proof. The first two relations are evident. The third
statement follows from the fact, that if MISMZ’ then Nl(M)s
SN, (M) . '

2SS, the following hold

then Ul(Ml)gul(Mz)'

Lemma 8, If Uy is a closure operation on S 1in sense of

Cech, then S is a periodic semigroup.
Proof. Let S contain an element a of infinite order. Let
M=<a>\({a}u{ap|p is a prime}).
Then a¢M, aéNl(M), hence aéUl(M).

Oon the other hand <a>\{a}sU1(M). Therefore aeNl(Ul(M)),
hence anl(M)uNl(Ul(M))=U1(U1(M)).

We have obtained that aéUl(M) but anl(Ul(M)). The
equality U, (U, (M))=U, (M) does not hold, i.e. Uy is not a

I3 . v
closure operation on S in sense of Cech.

Lemma 9., Let S be a periodic semigroup. Let MsS. Then
erl(M)=MuNl(M) iff either xeM or G(x)<M.

Proof. Evidently xeNl(M) iff G(x)sSM. To end the proof
it is sufficient to use the equality U, (M)=MuN, (M).

Theorem 9. U, is a closure operation S in sense of Cech,

iff S is a periodic semigroup.

Proof. By Lemma 8. if U, is a closure operation in sense
of Cech, then S is a periodic semigroup.

Now we shall prove the converse statement.

Let S be-an arbitrary semigroup and M,Ml,Mzss. Then
MsMuNl(M)=Ul(M) and M. <M, = Nl(Ml)gNl(Mz). Therefore Ul(M)S

1572
<UL (U, (M) .
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We shall prove, that in a periodic semigroup S also the
converse inclusion holds.
Let S be a periodic semigroup. If xeS, then x is of finite

order.
If erl(Ul(M)), then either erl(M) or G(x)sUl(M).
Let G(x)sUl(M). Then for every yeG(x) either yeM or

G(y)sM. But G(x) is a finite cyclic group and YEG(X) .
Therefore ye<y>=G(y)sM. Hence Y€G (X) implies yeM. This
means that G(x)sM. But then erl(M).

We have proved, that if erl(Ul(M)), then erl(M) i.e.
Ul(Ul(M))SUI(M) and this, together whith the inclusion
Ul(M)sul(Ul(M)) gives the equality Ul(Ul(M))=U1(M).

This result together with Lemma 7 means that if S is a pe-
riodic semigroup, then U, in a closure operation on § in sehse

of Cech.

1

Theorem 10. Let U1 be a closure operation on S in sense of
Cech. Then a set MsS is closed iff N, (M)sM.

Proof. M is a closed set iff M=U1(M) i.e. iff M=HuN1(H)
and this holds iff Nl(M)sM.

Theorem 11, Let U1 be a closure operation on S in sense of
Cech. Then a set MsS is an open set iff MSNZ(M).

Proof. M is open iff CM is closed and this holds iff
N, (CM)SCM.

Let Nl(CM)SCM. Then every element x having almost all
powers x™ in cM belongs to CM. Therefore every element xeM has
infinitely many powers x" in M (if not, then x would be a mem-
ber of CM). This means, that MSNZ(M).

Now let MSNZ(M). Then every element xeM has infinitely
many powers x in M. Therefore every element x having almost
all powers x" in cM belongs to CM. This means, that Nl(CM)SCM.

Lemma 10, Let U1
Kuratowski. Then S is a periodic semigroup.

be a closure operation on S in sense of

The proof follows from Lemma 8. and from the fact, that U1
is a closure operation in sense of Cech.
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Lemma 11, If U1 is a closure operation on S in sense of
Kuratowski, then for every aeS such that a is of finite order
and a¢G(a) we have |G(a)]|=1.

Proof. Let aeS, a be of finite order, a¢G(a), al:ak,

*

al,akeG(a) i.e. |G(a)!|>1. Then M1={a,a1} and M2={a,ak}

are open sets (Theorem 11.), but MlnM2={a} is not an open
set (by Theorem 11.). This is a contradiction to the fact,
that U1 is a closure operation.

The foregoing lemmas imply the following theorem.

Theorem 12, Let U, be a closure operation on S in sense of

1
Kuratowski. Then S is a periodic semigroup and for every

element a such that agG(a), |G(a)|=1 holds.

Theorem 13, Let u, be a closure operation on S in sense of
Cech. Then Zl(S)={{a}|aeG(a), aeS}u{{a,ak}[aéG(a), akeG(a),
aeS} 1is a complete system of neighbourhoods of +the topology

induced on S by Ul;

Proof. If aeG(a), then {a} is an open set, that contains
a, hence {a} is a neighborhood of a.

If a¢G(a), akeG(a), then {a,ak} is an open set
containing a, hence {a,ak} is a neighborhood of a.

Oon the other hand, let M be an open set and aeM. By
Theorem 9, S is a periodic semigroup, therefore the element a
is of finite order.

If a¢G(a), then since M is an open set and aeM, there ex-
ist infinitely many powers a® belonging to M, i.e. there ex-
ists a power ak such that akeG(a) and akeM. Therefore {a,ak};
€M, where akeG(a).

If aeG(af and aeM, then {a}s<M, where aeG(a).

This implies, that every open subset of S is a union of
some subsystem of the system El(s). Therefore Zl(s) is a com-
plete system of neighborhoods of the topology, induced on S by
Ul'

Theorem 14. Let S be a periodic semigroup and for every

element aeS such that ag¢G(a) let |G(a) |=1. Then U, is a
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closure operation on S in sense of Kuratowski.

Proof. In view of Theorem 9, it 1is sufficient to show,
that U, (M,UM,)=U, (M )uU, (M,).
a) M SM,UM, = U (M;)SU (M UM,),
M,SM UM, = U, (M,)SU, (M;UM,).
Hence
U, (M;) VU, (M) SU, (M UM,) .
b) Let erl(MluMZ). Then either xeMluM2 or G(x)leuMz.
If xeMluMZ, then either xeM1 or xeMZ. Hence either
erl(Ml) or erl(Mz). In both cases erl(Ml)uUI(MZ).
If xeG(x)leuM
erl(Ml)uUl(Mz). «
If x¢G(x), then G(x)={x }eM, UM

27 then xeMluM2 and we again have that

5 Hence either xkenl or
xkeM2 i.e. either G(x)={xk}sM1 or G(x)={xk}sM2. Therefore
either erl(Ml) or erl(Mz). In both cases erl(Ml)uul(Mz).
This means, that
U, (MyUM,) SU, (M))VU, (M,),
what together with
U, (M;) VU, (M) SU, (M, UM,)
gives the equality
U, (M UM,)=U, (M,)VU, (M,).
Now the proof is finished.

Let U, be a closure operation on S in sense of Kuratowski.
Jf ag¢G(a), then G(a)={ak}. Let us denote O(a)={a,ak}. If
aeG(a), let O(a)={a}. Clearly O(a) is the smallest neighborho-

od of the element a in the topology induced on S by u,-

Lemma 12, Let U1 be a closure operation on S in sense of
Kuratowski. Let a,beS, a*b. Then the following statements
hold:

a) If agG(a)={a"}, O(a)={a,a™} and b¢G(b)={b"}, O(b)=
={b,b"}, then b¢0(a) and a¢0O(b).

b) If a¢G(a)={ak}, 0(a)={a,ak} and beG(b), O0(b)={b}, then
a¢o(b).

c) If aeG(a), O(a)={a} and beG(b), O(b)={b}, then o(a)n
nO(b)=e. ’
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d) If a¢G(a)={ak}, O(a)={a,ak}, then ak:a and akeo(a).

Proof. a) Let beO(a). Then b=a", i.e. {b}={a"}=G(a)=G(D).
Hence beG(b) and therefore 0(b)={b}; But this is a contra-
diction to the fact, that O(b)={b,b"}, where b=b", because
béG(b)={b"}. Therefore bg¢o(a).

Similarly one can prove, that a¢o(b).

The statements b), c), d) are evident.

Theorem 15. U1
Kuratowski iff S is a periodic semigroup and for every element
a such that a¢G(a), |G(a)]|=1.

The topology induced by U, on s is a To-topology.

is closure operation on S in sense of

The proof follows from Theorem 12 and 14, and from Lemma
i2.

Theorem 16, Let U1
Kuratowski. Then the topology induced by U1 on S is a Tl—topo—

be a closure operation on S in sense of

logy iff S 1is a periodic semigroup whose every cyclic
subsemigroup is a group.

The topology, induced by U, on s is then the discrete
topology.

The proof follows from Lemma 12.

4. Connections between Ul' U, and N3

2
1O(a) will denote the smallest neighborhood of the ele-
ment a in the topology, induced on S by U, 2O(a) the smallest

neighborhood of the element a in the topology induced on S by
UZ'

Theorem 17, U1=U2
for every aeS, |G(a)|=1 holds.

on S iff S is a periodic semigroup and

Proof. a) If U1=UZ’ Then U1 is a closure operation in
sense of Kuratowski and S must be clearly a periodic
semigroup. Hence it is sufficient to consider elements of
finite order.

If a¢G(a)={ak}, then lo(a)=20(a) means, that {a,ak}=

={a}uG(a) i.e. G(a)={ak}. Hence |G(a)|=1.
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If aeG(a), then 10(a)=20(a) meahs, that {a}={a}uG(a)
i.e. G(a)={a}. Hence [G(a)]|=1.

b) If for every aeS, |G(a)|=1, then by Theorem 15, Uy
a closure operation in sense of Kuratowski and we can easily

is

see, that the complete systems of neighborhoods of the topolo-

gies, induced on S by closure operations U, and U, are equal.

1
Hence Ul=U2'

Theorem 18. U,=N, on S iff a% is an idempotent for any

aE€s.

Proof, We know, that Ul(M)sUZ(M)sNa(M) for every Mezs.
This means, that U, =N iff U.=U =N,. From Theorem 17 and 8,

1 3 1 72
it follows, that Ul=N3 iff S is a periodic semigroup and
every element of S is either idempotent or
<a> = P(a)uG(a), where |P(a)| = |G(a)|=1.
Hence Ul=N3 iff a2 is an idempotent for any aeS.
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