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ON SOME CLOSURE OPERATORS ON SEMIGROUPS 

1. Introduction 

In papers [1] and [2] some closure operators on semigroups 
were studied. In this article some other closure operators on 
semigroups are introduced, using nilpotency in semigroups. We 
study topologies, induced on a semigroup by these closure 
operators and characterize some classes of semigroups by means 
of these notions. 

S s 
Let S be a semigroup and U:2 —»2 . The mapping U is 

called a closure operation on S in sense of Kuratowski if the 
following conditions hold for Μ,Μ^,Μ^β: 

MSU(M), 
U(0)«0, 
U(U(M))=U(M) , 
U(M1uM2)-U(M1)UU(M2) . 
The mapping U is called a closure operation on S in sense 

of Cech if the following conditions hold: 
MSU(M), 
U(0)=0, 
U(U(M))=U(M), 
if H 1CM 2, then U(M1)SU(M2). 
He mention that if U is a closure operation in sense of 

Kuratowski, then it is closure operation in sense of Cech. In 
fact if H 1CM 2, then Μ

1
υ Μ

2
= Μ

2
 a n d t h i s implies that U(M2)« 

-U(M1uK2)aa(N1). 
Let S be a semigroup, MSS. We denote 

Νχ(Μ) = {xeSIxn«M for almost all nc{l,2,...}}, 
N2(M) - {x«S|xn6M for infinitely many nc{1,2,...}}, 
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N3(M) = {xeS|xneM for at least one ne{1,2,...}>. 
In paper [2] it was shown, that the mapping 

N3: 2S—» 2S, Μ ι—> N3(M) 
is closure operation in sense of Kuratowski. The open sets in 
the topology induced by N^ on S are exactly those subsets of 
S, that are unions of some systems of subsemigroups of S, and 
the empty set. The system Z3(s) = {<a>|a€S}, where <a> is a 
cyclic semigroup generated by a, is the complete system of 
neighborhoods for this topology. 

In paper [3] was proved, that the following relations hold 
for M,M1,M2SS: 

(i) N^MJSN^MJSN.JÍM) , 
(ii) if M1SM2, then (M^£Νλ(M2) for i=l,2,3, 
(ill) Ν2(Μ1υΜ2) = Ν2(Μ1)υΝ2(Μ2). 

2. The closure operation U2 

Let U2:2S—>2S, U2(M) = Ν2(Μ)υΜ. 
Theorem 1. U2 is a closure operation in sense of Kuratow-

ski. 
Proof. It is clear, that 
a) M£U2(M) and b) U2(0)=a. 
c) U 2 ( U 2 ( M ) ) = U 2 ( N 2 ( M ) u M ) = Ν 2 ( Ν 2 ( Μ ) Υ Μ ) Υ Ν 2 ( Μ ) υ Μ = 

= N2 (N2 (Μ) ) υΝ2 (Μ) υΜ£Ν2 (Μ) υΜ = U2 (M) , hence X¡2 (ü2 (M) ) SU2 (M) . 
From a) we get U2(M)£U2(U2(M)). Therefore U2(U2(M)) = 

=U2(M). 
d) U2(M1wM2) = Ν1(Μ1υΜ2)υΜ1υΜ2 = Νχ (M.̂  uN2 (M2) uMjUl^ = 

= U2(M1)uU2(M2) . Hence U^MjUM^ = U2 (M^ uU2 (M2) . 
Theorem 2. M is closed subset of S iff N2(M)£M. 
Proof. U2(M)=M <=» Ν2(Μ)υΜ=Μ <=» N2(M)£M. 
Theorem 3. M is an open subset of S iff M£N^(M). 
Proof. M is open iff CM is closed and this holds iff 

N2(CM)£CM. 
Let N_(CM)£CM. Then every element χ having infinitely 
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many powers xn in CM belongs to CM. Hence for every element 
xeM almost all powers xn belong to M. (Otherwise infinitely 
many powers x n would belong to CM, and therefore xeCM would 
hold.) Hence MSN^(M). 

Now let MSN1(M). Then all elements xeM have almost all 
powers x n in M. Therefore if xeN2(CM) i.e. infinitely many 
powers xn belong to CM, then x^M. (If xeM would hold, then al-
most all powers xn would belong to M and almost all powers xn 

could not belong to CM.) Hence xeN2(CM), implies xeCM i.e. 
N2(CM)£CM. 

Let aeS. Let G n (a) = {an|ntnQ, n€{l,2,...}} for all 

n_c{l,2,...}. Then O (a) = {a}uG (a) is a neighborhood of 
0 0 

a for all nQe{l, 2,...> , because evidently 
{a}uG (a)£N ({a}uG (a)). 

0 0 
Let aeS, and a be of finite order. Then <a>=P(a)uG(a), 

where G(a) is the maximal subgroup in <a> and P(a)=<a>\G(a). 
0Q(a) = {a}uG(a) is a neighborhood of a, because 

{a}uG(a)£N1({a}uG(a)). 0Q(a) is clearly the smallest neigh-
borhood of a. 

Theorem 4. The system I 2( s) = {°0(a)|a6S» a i® o f finite 
order}<j{On (a)|aeS, a is of infinite order, nQe{l,2,... }} is 
the complete system of neighborhoods for the topology, gene-
rated on S by the closure operation U2. 

Proof. Let M be an open subset of S and aeM. Since M is an 
open set, aeMSN^fM) holds i.e. almost all powers a11 belong to 
M. Hence there exists an nQ such that aneM holds for all nfcnQ. 
This means, that O (a) = {a}uG (a)£M. 

0 n0 
If a is of finite order, then 0Q(a) = {a}uG(a)£M. 
Every open set M is therefore a union of some sets of 

£2(S). This proves our Theorem. 
Lemma 1. Let aeS, <a>=G(a) and the cyclic group <a> 

generated by a be of higher order than 2. Then a-1*a and 

V a ^ V 3 ' 1 ) · 
Proof. Under these conditions P(a)=e. Let e be the iden-
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tity of G(a). Evidently a*e, a *e (in other cases either 
|<a>|=l or |<a>|=2 would hold). 

Hence an=e(n>2). Therefore a 1=an ^a. But both a and 
a 1 generate <a>. This means, that 
OQ(a) = G(a) = <a> = G(a-1) = 00(a-1), where a*a-1. 

Lemma 2. Let a,beS, a*b. Let a be of infinite order and b 
be of finite order. Then 01 (a)r>0Q(b) =0. 

Proof. Clearly <a>n<b>=a. But since 
01(a)£<a> and 0Q(b)s<b> we get O1(a)nOQ(b)=0. 

Lemma 3. Let a,beS, a*b and a and b be of infinite order. 
Then the following relations hold: 

a) there exist ϋΐ„ and n. such that b¿0 (a) and a¿0 (b) , 0 0 nig nQ 
b) If be<a>, then 0 (a)nO (b)*o for all m. and n„. iHQ nQ 0 0 
Proof, a) If b«É<a> and a«£<b>, then b¿C>1(a)=<a> and 

a^01(b)=<b>. k k If be<a>, then b=a (k>l) . For mQ>k we get b=a ¿C>m (a) = 
= {am|mim0>u{a}. Moreover a¿01(b)(ak)={ak}u{akn|n*l}=<a>. 

b) We have again b=ak(k>l). Let 0m (a)={a}u{am|mam0}, 
V le lcn ® O (b)=0 (a )={a >w{a Inan.}. If we choose n^n. such that Πρ Πρ o o 

knamn, then akneO (b) and akneO (a). Henee 0 (a)n 0 n0 m0 m0 

Lemma 4. Let a,beS, a*b and a and b be of finite order. 
Let <a> and <b> be not groups of order higher than 2. Then 
either a^OQ(b) or b¿0Q(a). 

Proof. Let b¿<a> and a¿<b>. Then a¿0Q(b)s<b> and 
b¿0Q(a)s<a>. 

Let be<a> and a¿G(a) . Then b=ak (k>l), O0(b)=C>0(ak) = 
={ak}uG(ak)S{ak}uG(a). Therefore a¿0Q(b). 

Now let be<a> and aeG(a). Then |<a>|=2, b=e, where e is 
the identity of G(a). Therefore a¿{e}=0Q(e)=0Q(b). 
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Lemma 5. Let aeS, a be of finite order and let |<a>|>l. 
Let beG(a) and b*a. Then beOQ(a). 

Proof. If beG(a) , then be{a}uG(a)=C>o(a) . 
Lemma 6. Let a,beS, a*b and a and b be idempotents. Then 

Oo(a)nOo(b)=0. 

Proof. It is sufficient to observe, that 0Q(a)={a} and 
Oo(b)={b}. 

From these lemmas we get the following Theorems. 
Theorem 5. The topology induced on S by U2 is a 

TQ-topology iff all finite cyclic subgroups of S are at most 
of order 2. 

Proof. If the topology induced by U2 on S is a TQ-topo-
logy, then by Lemma 1, all finite cyclic subgroups of S are at 
most of order 2. The second part of the proof follows from 
Lemma 2., 3. and 4. 

Theorem 6. The topology induced on S by U2 is a ^-topo-
logy if all elements of finite order of S are idempotents. 

Proof. If the topology induced by U2 on S is a T^-topo-
logy, then by Lemma 5, for every element of finite order 
|<a>|=l. This means, that every element of finite order is an 
iderapotent. The second part of the proof follows from Lemma 
2.,3. and 6. 

Theorem 7. The topology induced by U2 on S is a ^-topo-
logy iff all elements of S are idempotents. 

Proof. If the topology induced by U2on S is a T2~topology, 
then by Lemma 3, the semigroup S contains only elements of 
finite order and by Lemma 5, it contains only idempotents. The 
second part of the proof follows from Lemma 6. 

Theorem 8. U2=N3 iff every cyclic subsemigroup of S. is 
either a cyclic group or a cyclic semigroup <a> such that 
|P(a)|=1. 

Proof. Comparing the complete systems of neighborhoods, we 
get that S does not contain elements of infinite order and 
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that <a>={a}uG(a). 

3. The closure operation U^ 

Let U ^ 8 — > 2 S , υ χ (Μ) =ΜυΝ1 (M) . 

Lemma 7. For all Μ,Μ^,Μ^ε, the following hold 
MSU^M) , 

if ΜιςΜ2, then U1(M1)SU1(M2). 

Proof. The first two relations are evident. The third 
statement follows from the fact, that if M^SM^ then N^Mjs 
£N2 (M) . 

Lemma 8. If U^ is a closure operation on S in sense of 
Cech, then S is a periodic semigroup. 

Proof. Let S contain an element a of infinite order. Let 
M=<a>\({a}u{a^I ρ is a prime}). 

Then a¿M, a^N^M), hence a^U^M). 
On the other hand <a>\{a}sui(M). Therefore (U^(M)), 

hence ael^ (Μ)υΝ χ(υ χ(M))(υ χ(M)). 
We have obtained that a^U^M) Lut aeU1(U1(M)). The 

equality U ^ ( U ^ ( M ) ) ( M ) does not hold, i.e. is not a 
closure operation on S in sense of Cech. 

Lemma 9. Let S be a periodic semigroup. Let M£S. Then 
xeU^(M)=MuN^(M) iff either xeM or G(x)£M. 

Proof. Evidently χ€Νχ(Μ) iff G(x)£M. To end the proof 
it is sufficient to use the equality U1(M)=MuN1(M). 

Theorem 9. U^ is a closure operation S in sense of Cech, 
iff S is a periodic semigroup. 

Proof. By Lemma 8. if ^ is a closure operation in sense 
of Cech, then S is a periodic semigroup. 

Now we shall prove the converse statement. 
Let S be· an arbitrary semigroup and Μ , Μ ^ Μ ^ ε . Then 

M S M u N ^ M ^ U ^ M ) and Mjfil^ =» N^ (M^) (M2) . Therefore U^Mjs 
S U ^ U ^ M ) ) . 
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We shall prove, that in a periodic semigroup S also the 
converse inclusion holds. 

Let S be a periodic semigroup. If xeS, then χ is of finite 
order. 

If xeU1(U1(M)), then either xeU^M) or GfxjsU^M). 
Let GfxjsU^M). Then for every yeG(x) either yeM or 

G(y)£M. But G(χ) is a finite cyclic group and yeG(x). 
Therefore ye<y>=G(y)SM. Hence yeG(x) implies yeM. This 
means that G(x)£M. But then xeU^M). 

We have proved, that if xeU^U^M)), then xeU^ (M) i.e. 
U1(U1(M) jsu^M) and this, together whith the inclusion 
U (M)sU (U (M)) gives the equality U^(U^(M))(M). 

This result together with Lemma 7 means that if S is a pe-
riodic semigroup, then U^ in a closure operation on S in sense 
of Cech. 

Theorem 10. Let U^ be a closure operation on S in sense of 
Cech. Then a set M£S is closed iff N^MJSM. 

Proof. M is a closed set iff M ^ ^ M ) i.e. iff Μ=ΜυΝχ(Μ) 
and this holds iff N^MÌSM. 

Theorem 11. Let U^ be a closure operation on S in sense of 
Cech. Then a set M£S is an open set iff M£N2(M). 

Proof. M is open iff CM is closed and this holds iff 
N^ (CM) SCM. 

Let N^CMJSCM. Then every element χ having almost all 
powers χ in CM belongs to CM. Therefore every element xeM has 
infinitely many powers xn in M (if not, then χ would be a mem-
ber of CM). This means, that MSN2(M). 

Now let M£N2(M). Then every element xeM has infinitely 
many powers χ in M. Therefore every element χ having almost 
all powers xn in CM belongs to CM. This means, that N^CMJSCM. 

Lemma 10. Let U^ be a closure operation on S in sense of 
Kuratowski. Then S is a periodic semigroup. 

The proof follows from Lemma 8. and from the fact, that 
is a closure operation in sense of Cech. 



42 D. Kollâr, R. Sulka 

Lemma 11. If ΐ^ is a closure operation on S in sense of 
Kuratowski, then for every aeS such that a is of finite order 
and a^G(a) we have |G(a)|=l. 

i k 
Proof. Let aeS, a be of finite order, a^G(a), a *a , 

a1,akeG(a) i.e. |G(a)j>l. Then M1={a,a1} and M2={a,ak} 
are open sets (Theorem 11.), but MjnM2={a} is not an open 
set (by Theorem 11.). This is a contradiction to the fact, 
that U^ is a closure operation. 

The foregoing lemmas imply the following theorem. 
Theorem 12. Let U^ be a closure operation on S in sense of 

Kuratowski. Then S is a periodic semigroup and for every 
element a such that a¿G(a), |G(a)|=l holds. 

Theorem 13. Let U^ be a closure operation on S in sense of 
Cech. Then £ (S)={{a}|aeG(a), aeS}u{{a,ak}|a¿G(a), ak«G(a), 
aeS} is a complete system of neighbourhoods of the topology 
induced on S by Û ·. 

Proof. If aeG(a), then {a} is an open set, that contains 
a, hence {a} is a neighborhood of a. 

k k If a^G(a), a eG(a), then {a,a } is an open set )ς 
containing a, hence {a,a } is a neighborhood of a. 

On the other hand, let M be an open set and aeM.- By 
Theorem 9, S is a periodic semigroup, therefore the element a 
is of finite order. 

If a¿G(a), then since M is an open set and aeM, there ex-
ist infinitely many powers an belonging to M, i.e. there ex-k k k k ists a power a such that a eG(a) and a eM. Therefore {a,a }£ 
£M, where akeG(a). 

If aeG(a) and aeM, then {a}£M, where aeG(a). 
This implies, that every open subset of S is a union of 

some subsystem of the system Σ̂ ίί») . Therefore £̂ (£5) is a com-
plete system of neighborhoods of the topology, induced on S by 
V 

Theorem 14. Let S be a periodic semigroup and for every 
element aeS such that a^G(a) let |G(a) |=1. Then U.. is a 
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closure operation on S in sense of Kuratowski. 

Proof. In view of Theorem 9, it is sufficient to show, 
that U 1(Μ ι υΜ 2)=U X(Μ χ)uU 1(M 2). 

a) M 1£M 2uM 2 => U1(M1)sU1(M1uM2), 
M 2SM 1WM 2 => U1(M2)su1(M1UM2). 
Hence 
U 1(M 1)uU 1(M 2)SU 1(M 1UM 2). 

b) Let xeU^MjUMj). Then either xeM uM or G(x)SM1uM2· 
If xeMj^uMj, then either xeM^ or x e M 2 * Hence either 

x«U (Μχ) or xeU1(M2). In both cases xel^ (M^ υϋχ (M2) . 
If xeG(x)SM1uM2, then xeM^uMj and we again have that 

X6U1(M1)UU1(M2). 
If x*G(x), then G(x) ={xk>£M1uM2. Hence either xkeM or 

x keM 2 i.e. either G(x)={xk}SM or G(x)={xk}SM2. Therefore 
either x e U ^ M ^ or xeU1(M2). In both cases Χ6υχ (M^ υϋχ (M2) . 

This means, that 
U1(M1uM2)SU1(M1)UU1(M2), 

what together with 
U 1(M 1)uU 1(M 2)SU 1(M 1UM 2) 

gives the equality 
U 1(M 1uM 2)=U 1(M 1)UU 1(M 2). 

Now the proof is finished. 

Let U^ be a closure operation on S in sense of Kuratowski. 
If a¿G(a), then G(a)={ak}. Let us denote 0(a)={a,ak>. If 

aeG(a), let 0(a)={a}. Clearly 0(a) is the smallest neighborho-
od of the element a in the topology induced on S by U^. 

Lemma 12. Let U^ be a closure operation on S in sense of 
Kuratowski. Let a,beS, a*b. Then the following statements 
hold: 

a) If a¿G(a)={am}, 0(a)={a,am} and b¿G(b)={bn}, 0(b)= 
={b,bn}, then b^O(a) and a^O(b). 

b) If a*G(a)={ak>, 0(a)={a,ak> and beG(b), 0(b)={b}, then 
a¿0(b). 

c) If aeG(a), 0(a)={a} and beG(b), 0(b)={b}, then 0(a)n 
nO(b)=0. 
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d) If a*G(a)={ak}, 0(a)={a,ak>, then ak*a and akeO(a). 
Proof, a) Let beO(a). Then b=am, i.e. {b}={am}=G(a)=G(b). 

Hence beG(b) and therefore 0(b)={b}. But this is a contra-
diction to the fact, that 0(b)={b,bn>, where b*bn, because 
b¿G(b)={bn}. Therefore b¿0(a). 

Similarly one can prove, that a^O(b). 
The statements b), c), d) are evident. 
Theorem 15. U^ is closure operation on S in sense of 

Kuratowski iff S is a periodic semigroup and for every element 
a such that a¿G(a), |G(a)|=1. 

The topology induced by U^ on S is a TQ-topology. 
The proof follows from Theorem 12 and 14, and from Lemma 

12. 
Theorem 16. Let U^ be a closure operation on S in sense of 

Kuratowski. Then the topology induced by U^ on S is a ^-topo-
logy iff S is a periodic semigroup whose every cyclic 
subsemigroup is a group. 

The topology, induced by U^ on S is then the discrete 
topology. 

The proof follows from Lemma 12. 

4. Connections between U^, U^ and N3 

^Ofa) will denote the smallest neighborhood of the ele-
2 

ment a in the topology, induced on S by U^, 0(a) the smallest 
neighborhood of the element a in the topology induced on S by 
V 

Theorem 17. U1=U2 on S iff S is a periodic semigroup and 
for every aeS, |G(a)|=l holds. 

Proof, a) If ui=u2» T h e n i-s a closure operation in 
sense of Kuratowski and S must be clearly a periodic 
semigroup. Hence it is sufficient to consider elements of 
finite order. 

If a*G(a)={ak}, then ^ ( a ^ O f a ) means, that {a,ak}= 
={a}uG(a) i.e. G(a)={ak}. Hence |G(a)|=1. 
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If aeG(a), then 10(a)=20(a) means, that {a}={a}uG(a) 
i.e. G(a)={a}. Hence jG(a)|=1. 

b) If for every aeS, |G(a)|=1, then by Theorem 15, U^ is 
a closure operation in sense of Kuratowski and we can easily 
see, that the complete systems of neighborhoods of the topolo-
gies, induced on S by closure operations and U2 are equal. 
Hence U1=U2· 

2 Theorem 18. U1=N;J on S iff a is an idempotent for any 
aeS. 

Proof. We know, that υχ(M)SU2(M)SN3(M) for every M€2S. 
This means, that U1=N;} iff U^ = U2 = N3 · F r o m Theorem 17 and 8, 
it follows, that U

1
= N

3 iff S is a periodic semigroup and 
every element of S is either idempotent or 
<a> = P(a)uG(a), where |P(a)| = |G(a)|=1. 

2 Hence U =N iff a is an idempotent for any aeS. 
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