

Dušan Kollár, Robert Šulka

ON SOME CLOSURE OPERATORS ON SEMIGROUPS

1. Introduction

In papers [1] and [2] some closure operators on semigroups were studied. In this article some other closure operators on semigroups are introduced, using nilpotency in semigroups. We study topologies, induced on a semigroup by these closure operators and characterize some classes of semigroups by means of these notions.

Let S be a semigroup and $U: 2^S \rightarrow 2^S$. The mapping U is called a closure operation on S in sense of Kuratowski if the following conditions hold for $M, M_1, M_2 \subseteq S$:

$$M \subseteq U(M),$$

$$U(\emptyset) = \emptyset,$$

$$U(U(M)) = U(M),$$

$$U(M_1 \cup M_2) = U(M_1) \cup U(M_2).$$

The mapping U is called a closure operation on S in sense of Čech if the following conditions hold:

$$M \subseteq U(M),$$

$$U(\emptyset) = \emptyset,$$

$$U(U(M)) = U(M),$$

$$\text{if } M_1 \subseteq M_2, \text{ then } U(M_1) \subseteq U(M_2).$$

We mention that if U is a closure operation in sense of Kuratowski, then it is closure operation in sense of Čech. In fact if $M_1 \subseteq M_2$, then $M_1 \cup M_2 = M_2$ and this implies that $U(M_2) = U(M_1 \cup M_2) \supseteq U(M_1)$.

Let S be a semigroup, $M \subseteq S$. We denote

$$N_1(M) = \{x \in S \mid x^n \in M \text{ for almost all } n \in \{1, 2, \dots\}\},$$

$$N_2(M) = \{x \in S \mid x^n \in M \text{ for infinitely many } n \in \{1, 2, \dots\}\},$$

$$N_3(M) = \{x \in S \mid x^n \in M \text{ for at least one } n \in \{1, 2, \dots\}\}.$$

In paper [2] it was shown, that the mapping

$$N_3: 2^S \rightarrow 2^S, M \mapsto N_3(M)$$

is closure operation in sense of Kuratowski. The open sets in the topology induced by N_3 on S are exactly those subsets of S , that are unions of some systems of subsemigroups of S , and the empty set. The system $\Sigma_3(S) = \{\langle a \rangle \mid a \in S\}$, where $\langle a \rangle$ is a cyclic semigroup generated by a , is the complete system of neighborhoods for this topology.

In paper [3] was proved, that the following relations hold for $M, M_1, M_2 \subseteq S$:

- (i) $N_1(M) \subseteq N_2(M) \subseteq N_3(M)$,
- (ii) if $M_1 \subseteq M_2$, then $N_i(M_1) \subseteq N_i(M_2)$ for $i=1, 2, 3$,
- (iii) $N_2(M_1 \cup M_2) = N_2(M_1) \cup N_2(M_2)$.

2. The closure operation U_2

$$\text{Let } U_2: 2^S \rightarrow 2^S, U_2(M) = N_2(M) \cup M.$$

Theorem 1. U_2 is a closure operation in sense of Kuratowski.

Proof. It is clear, that

$$\begin{aligned} a) \quad M \subseteq U_2(M) \quad \text{and} \quad b) \quad U_2(\emptyset) = \emptyset. \\ c) \quad U_2(U_2(M)) = U_2(N_2(M) \cup M) = N_2(N_2(M) \cup M) \cup N_2(M) \cup M = \\ = N_2(N_2(M)) \cup N_2(M) \cup M \subseteq N_2(M) \cup M = U_2(M), \text{ hence } U_2(U_2(M)) \subseteq U_2(M). \\ \text{From a) we get } U_2(M) \subseteq U_2(U_2(M)). \text{ Therefore } U_2(U_2(M)) = \\ = U_2(M). \\ d) \quad U_2(M_1 \cup M_2) = N_1(M_1 \cup M_2) \cup M_1 \cup M_2 = N_1(M_1) \cup N_2(M_2) \cup M_1 \cup M_2 = \\ = U_2(M_1) \cup U_2(M_2). \text{ Hence } U_2(M_1 \cup M_2) = U_2(M_1) \cup U_2(M_2). \end{aligned}$$

Theorem 2. M is closed subset of S iff $N_2(M) \subseteq M$.

Proof. $U_2(M) = M \iff N_2(M) \cup M = M \iff N_2(M) \subseteq M$.

Theorem 3. M is an open subset of S iff $M \subseteq N_1(M)$.

Proof. M is open iff CM is closed and this holds iff $N_2(CM) \subseteq CM$.

Let $N_2(CM) \subseteq CM$. Then every element x having infinitely

many powers x^n in CM belongs to CM . Hence for every element $x \in M$ almost all powers x^n belong to M . (Otherwise infinitely many powers x^n would belong to CM , and therefore $x \in CM$ would hold.) Hence $M \subseteq N_1(M)$.

Now let $M \subseteq N_1(M)$. Then all elements $x \in M$ have almost all powers x^n in M . Therefore if $x \in N_2(CM)$ i.e. infinitely many powers x^n belong to CM , then $x \notin M$. (If $x \in M$ would hold, then almost all powers x^n would belong to M and almost all powers x^n could not belong to CM .) Hence $x \in N_2(CM)$, implies $x \in CM$ i.e. $N_2(CM) \subseteq CM$.

Let $a \in S$. Let $G_{n_0}(a) = \{a^n \mid n \geq n_0, n \in \{1, 2, \dots\}\}$ for all $n_0 \in \{1, 2, \dots\}$. Then $O_{n_0}(a) = \{a\} \cup G_{n_0}(a)$ is a neighborhood of a for all $n_0 \in \{1, 2, \dots\}$, because evidently

$$\{a\} \cup G_{n_0}(a) \subseteq N_1(\{a\} \cup G_{n_0}(a)).$$

Let $a \in S$, and a be of finite order. Then $\langle a \rangle = P(a) \cup G(a)$, where $G(a)$ is the maximal subgroup in $\langle a \rangle$ and $P(a) = \langle a \rangle \setminus G(a)$.

$O_0(a) = \{a\} \cup G(a)$ is a neighborhood of a , because $\{a\} \cup G(a) \subseteq N_1(\{a\} \cup G(a))$. $O_0(a)$ is clearly the smallest neighborhood of a .

Theorem 4. The system $\Sigma_2(S) = \{O_0(a) \mid a \in S, a \text{ is of finite order}\} \cup \{O_{n_0}(a) \mid a \in S, a \text{ is of infinite order}, n_0 \in \{1, 2, \dots\}\}$ is the complete system of neighborhoods for the topology, generated on S by the closure operation U_2 .

Proof. Let M be an open subset of S and $a \in M$. Since M is an open set, $a \in M \subseteq N_1(M)$ holds i.e. almost all powers a^n belong to M . Hence there exists an n_0 such that $a^n \in M$ holds for all $n \geq n_0$. This means, that $O_{n_0}(a) = \{a\} \cup G_{n_0}(a) \subseteq M$.

If a is of finite order, then $O_0(a) = \{a\} \cup G(a) \subseteq M$.

Every open set M is therefore a union of some sets of $\Sigma_2(S)$. This proves our Theorem.

Lemma 1. Let $a \in S$, $\langle a \rangle = G(a)$ and the cyclic group $\langle a \rangle$ generated by a be of higher order than 2. Then $a^{-1} \neq a$ and $O_0(a) = O_0(a^{-1})$.

Proof. Under these conditions $P(a) = \emptyset$. Let e be the iden-

tity of $G(a)$. Evidently $a \neq e$, $a^2 \neq e$ (in other cases either $|\langle a \rangle| = 1$ or $|\langle a \rangle| = 2$ would hold).

Hence $a^n = e$ ($n > 2$). Therefore $a^{-1} = a^{n-1} \neq a$. But both a and a^{-1} generate $\langle a \rangle$. This means, that

$$O_0(a) = G(a) = \langle a \rangle = G(a^{-1}) = O_0(a^{-1}), \text{ where } a \neq a^{-1}.$$

Lemma 2. Let $a, b \in S$, $a \neq b$. Let a be of infinite order and b be of finite order. Then $O_1(a) \cap O_0(b) = \emptyset$.

Proof. Clearly $\langle a \rangle \cap \langle b \rangle = \emptyset$. But since

$$O_1(a) \subseteq \langle a \rangle \text{ and } O_0(b) \subseteq \langle b \rangle \text{ we get } O_1(a) \cap O_0(b) = \emptyset.$$

Lemma 3. Let $a, b \in S$, $a \neq b$ and a and b be of infinite order. Then the following relations hold:

a) there exist m_0 and n_0 such that $b \notin O_{m_0}(a)$ and $a \notin O_{n_0}(b)$,

b) If $b \in \langle a \rangle$, then $O_{m_0}(a) \cap O_{n_0}(b) \neq \emptyset$ for all m_0 and n_0 .

Proof. a) If $b \notin \langle a \rangle$ and $a \notin \langle b \rangle$, then $b \notin O_1(a) = \langle a \rangle$ and $a \notin O_1(b) = \langle b \rangle$.

If $b \in \langle a \rangle$, then $b = a^k$ ($k > 1$). For $m_0 > k$ we get $b = a^k \notin O_{m_0}(a) = \{a^m \mid m \geq m_0\} \cup \{a\}$. Moreover $a \notin O_1(b) = O_1(a^k) = \{a^k\} \cup \{a^{kn} \mid n \geq 1\} = \langle a \rangle$.

b) We have again $b = a^k$ ($k > 1$). Let $O_{m_0}(a) = \{a\} \cup \{a^m \mid m \geq m_0\}$, $O_{n_0}(b) = O_{n_0}(a^k) = \{a^k\} \cup \{a^{kn} \mid n \geq n_0\}$. If we choose $n \geq n_0$ such that $kn \geq m_0$, then $a^{kn} \in O_{n_0}(b)$ and $a^{kn} \in O_{m_0}(a)$. Hence $O_{m_0}(a) \cap O_{n_0}(b) \neq \emptyset$.

Lemma 4. Let $a, b \in S$, $a \neq b$ and a and b be of finite order. Let $\langle a \rangle$ and $\langle b \rangle$ be not groups of order higher than 2. Then either $a \notin O_0(b)$ or $b \notin O_0(a)$.

Proof. Let $b \notin \langle a \rangle$ and $a \notin \langle b \rangle$. Then $a \notin O_0(b) \subseteq \langle b \rangle$ and $b \notin O_0(a) \subseteq \langle a \rangle$.

Let $b \in \langle a \rangle$ and $a \notin G(a)$. Then $b = a^k$ ($k > 1$), $O_0(b) = O_0(a^k) = \{a^k\} \cup G(a^k) \subseteq \{a^k\} \cup G(a)$. Therefore $a \notin O_0(b)$.

Now let $b \in \langle a \rangle$ and $a \in G(a)$. Then $|\langle a \rangle| = 2$, $b = e$, where e is the identity of $G(a)$. Therefore $a \notin \{e\} = O_0(e) = O_0(b)$.

Lemma 5. Let $a \in S$, a be of finite order and let $|\langle a \rangle| > 1$. Let $b \in G(a)$ and $b \neq a$. Then $b \in O_0(a)$.

Proof. If $b \in G(a)$, then $b \in \{a\} \cup G(a) = O_0(a)$.

Lemma 6. Let $a, b \in S$, $a \neq b$ and a and b be idempotents. Then $O_0(a) \cap O_0(b) = \emptyset$.

Proof. It is sufficient to observe, that $O_0(a) = \{a\}$ and $O_0(b) = \{b\}$.

From these lemmas we get the following Theorems.

Theorem 5. The topology induced on S by U_2 is a T_0 -topology iff all finite cyclic subgroups of S are at most of order 2.

Proof. If the topology induced by U_2 on S is a T_0 -topology, then by Lemma 1, all finite cyclic subgroups of S are at most of order 2. The second part of the proof follows from Lemma 2., 3. and 4.

Theorem 6. The topology induced on S by U_2 is a T_1 -topology if all elements of finite order of S are idempotents.

Proof. If the topology induced by U_2 on S is a T_1 -topology, then by Lemma 5, for every element of finite order $|\langle a \rangle| = 1$. This means, that every element of finite order is an idempotent. The second part of the proof follows from Lemma 2., 3. and 6.

Theorem 7. The topology induced by U_2 on S is a T_2 -topology iff all elements of S are idempotents.

Proof. If the topology induced by U_2 on S is a T_2 -topology, then by Lemma 3, the semigroup S contains only elements of finite order and by Lemma 5, it contains only idempotents. The second part of the proof follows from Lemma 6.

Theorem 8. $U_2 = N_3$ iff every cyclic subsemigroup of S is either a cyclic group or a cyclic semigroup $\langle a \rangle$ such that $|P(a)| = 1$.

Proof. Comparing the complete systems of neighborhoods, we get that S does not contain elements of infinite order and

that $\langle a \rangle = \{a\} \cup G(a)$.

3. The closure operation U_1

Let $U_1 : 2^S \rightarrow 2^S$, $U_1(M) = M \cup N_1(M)$.

Lemma 7. For all $M, M_1, M_2 \subseteq S$, the following hold

$M \subseteq U_1(M)$,

$U_1(\emptyset) = \emptyset$,

if $M_1 \subseteq M_2$, then $U_1(M_1) \subseteq U_1(M_2)$.

Proof. The first two relations are evident. The third statement follows from the fact, that if $M_1 \subseteq M_2$, then $N_1(M_1) \subseteq N_1(M_2)$.

Lemma 8. If U_1 is a closure operation on S in sense of Čech, then S is a periodic semigroup.

Proof. Let S contain an element a of infinite order. Let $M = \langle a \rangle \setminus \{a\} \cup \{a^p \mid p \text{ is a prime}\}$.

Then $a \notin M$, $a \notin N_1(M)$, hence $a \notin U_1(M)$.

On the other hand $\langle a \rangle \setminus \{a\} \subseteq U_1(M)$. Therefore $a \in N_1(U_1(M))$, hence $a \in U_1(M) \cup N_1(U_1(M)) = U_1(U_1(M))$.

We have obtained that $a \notin U_1(M)$ but $a \in U_1(U_1(M))$. The equality $U_1(U_1(M)) = U_1(M)$ does not hold, i.e. U_1 is not a closure operation on S in sense of Čech.

Lemma 9. Let S be a periodic semigroup. Let $M \subseteq S$. Then $x \in U_1(M) = M \cup N_1(M)$ iff either $x \in M$ or $G(x) \subseteq M$.

Proof. Evidently $x \in N_1(M)$ iff $G(x) \subseteq M$. To end the proof it is sufficient to use the equality $U_1(M) = M \cup N_1(M)$.

Theorem 9. U_1 is a closure operation S in sense of Čech, iff S is a periodic semigroup.

Proof. By Lemma 8. if U_1 is a closure operation in sense of Čech, then S is a periodic semigroup.

Now we shall prove the converse statement.

Let S be an arbitrary semigroup and $M, M_1, M_2 \subseteq S$. Then $M \subseteq M \cup N_1(M) = U_1(M)$ and $M_1 \subseteq M_2 \Rightarrow N_1(M_1) \subseteq N_1(M_2)$. Therefore $U_1(M) \subseteq U_1(U_1(M))$.

We shall prove, that in a periodic semigroup S also the converse inclusion holds.

Let S be a periodic semigroup. If $x \in S$, then x is of finite order.

If $x \in U_1(U_1(M))$, then either $x \in U_1(M)$ or $G(x) \subseteq U_1(M)$.

Let $G(x) \subseteq U_1(M)$. Then for every $y \in G(x)$ either $y \in M$ or $G(y) \subseteq M$. But $G(x)$ is a finite cyclic group and $y \in G(x)$. Therefore $y \in \langle y \rangle = G(y) \subseteq M$. Hence $y \in G(x)$ implies $y \in M$. This means that $G(x) \subseteq M$. But then $x \in U_1(M)$.

We have proved, that if $x \in U_1(U_1(M))$, then $x \in U_1(M)$ i.e. $U_1(U_1(M)) \subseteq U_1(M)$ and this, together with the inclusion $U_1(M) \subseteq U_1(U_1(M))$ gives the equality $U_1(U_1(M)) = U_1(M)$.

This result together with Lemma 7 means that if S is a periodic semigroup, then U_1 is a closure operation on S in sense of Čech.

Theorem 10. Let U_1 be a closure operation on S in sense of Čech. Then a set $M \subseteq S$ is closed iff $N_1(M) \subseteq M$.

Proof. M is a closed set iff $M = U_1(M)$ i.e. iff $M = M \cup N_1(M)$ and this holds iff $N_1(M) \subseteq M$.

Theorem 11. Let U_1 be a closure operation on S in sense of Čech. Then a set $M \subseteq S$ is an open set iff $M \subseteq N_2(M)$.

Proof. M is open iff CM is closed and this holds iff $N_1(CM) \subseteq CM$.

Let $N_1(CM) \subseteq CM$. Then every element x having almost all powers x^n in CM belongs to CM . Therefore every element $x \in M$ has infinitely many powers x^n in M (if not, then x would be a member of CM). This means, that $M \subseteq N_2(M)$.

Now let $M \subseteq N_2(M)$. Then every element $x \in M$ has infinitely many powers x^n in M . Therefore every element x having almost all powers x^n in CM belongs to CM . This means, that $N_1(CM) \subseteq CM$.

Lemma 10. Let U_1 be a closure operation on S in sense of Kuratowski. Then S is a periodic semigroup.

The proof follows from Lemma 8. and from the fact, that U_1 is a closure operation in sense of Čech.

Lemma 11. If U_1 is a closure operation on S in sense of Kuratowski, then for every $a \in S$ such that a is of finite order and $a \notin G(a)$ we have $|G(a)|=1$.

Proof. Let $a \in S$, a be of finite order, $a \notin G(a)$, $a^i \neq a^k$, $a^i, a^k \in G(a)$ i.e. $|G(a)| > 1$. Then $M_1 = \{a, a^i\}$ and $M_2 = \{a, a^k\}$ are open sets (Theorem 11.), but $M_1 \cap M_2 = \{a\}$ is not an open set (by Theorem 11.). This is a contradiction to the fact, that U_1 is a closure operation.

The foregoing lemmas imply the following theorem.

Theorem 12. Let U_1 be a closure operation on S in sense of Kuratowski. Then S is a periodic semigroup and for every element a such that $a \notin G(a)$, $|G(a)|=1$ holds.

Theorem 13. Let U_1 be a closure operation on S in sense of Čech. Then $\Sigma_1(S) = \{\{a\} \mid a \in G(a), a \in S\} \cup \{\{a, a^k\} \mid a \notin G(a), a^k \in G(a), a \in S\}$ is a complete system of neighbourhoods of the topology induced on S by U_1 .

Proof. If $a \in G(a)$, then $\{a\}$ is an open set, that contains a , hence $\{a\}$ is a neighborhood of a .

If $a \notin G(a)$, $a^k \in G(a)$, then $\{a, a^k\}$ is an open set containing a , hence $\{a, a^k\}$ is a neighborhood of a .

On the other hand, let M be an open set and $a \in M$. By Theorem 9, S is a periodic semigroup, therefore the element a is of finite order.

If $a \notin G(a)$, then since M is an open set and $a \in M$, there exist infinitely many powers a^n belonging to M , i.e. there exists a power a^k such that $a^k \in G(a)$ and $a^k \in M$. Therefore $\{a, a^k\} \subseteq M$, where $a^k \in G(a)$.

If $a \in G(a)$ and $a \in M$, then $\{a\} \subseteq M$, where $a \in G(a)$.

This implies, that every open subset of S is a union of some subsystem of the system $\Sigma_1(S)$. Therefore $\Sigma_1(S)$ is a complete system of neighborhoods of the topology, induced on S by U_1 .

Theorem 14. Let S be a periodic semigroup and for every element $a \in S$ such that $a \notin G(a)$ let $|G(a)|=1$. Then U_1 is a

closure operation on S in sense of Kuratowski.

Proof. In view of Theorem 9, it is sufficient to show, that $U_1(M_1 \cup M_2) = U_1(M_1) \cup U_1(M_2)$.

$$\begin{aligned} a) \quad M_1 \subseteq M_2 \cup M_2 &\Rightarrow U_1(M_1) \subseteq U_1(M_1 \cup M_2), \\ M_2 \subseteq M_1 \cup M_2 &\Rightarrow U_1(M_2) \subseteq U_1(M_1 \cup M_2). \end{aligned}$$

Hence

$$U_1(M_1) \cup U_1(M_2) \subseteq U_1(M_1 \cup M_2).$$

b) Let $x \in U_1(M_1 \cup M_2)$. Then either $x \in M_1 \cup M_2$ or $G(x) \subseteq M_1 \cup M_2$. If $x \in M_1 \cup M_2$, then either $x \in M_1$ or $x \in M_2$. Hence either $x \in U_1(M_1)$ or $x \in U_1(M_2)$. In both cases $x \in U_1(M_1) \cup U_1(M_2)$.

If $x \in G(x) \subseteq M_1 \cup M_2$, then $x \in M_1 \cup M_2$ and we again have that $x \in U_1(M_1) \cup U_1(M_2)$.

If $x \notin G(x)$, then $G(x) = \{x^k\} \subseteq M_1 \cup M_2$. Hence either $x^k \in M_1$ or $x^k \in M_2$ i.e. either $G(x) = \{x^k\} \subseteq M_1$ or $G(x) = \{x^k\} \subseteq M_2$. Therefore either $x \in U_1(M_1)$ or $x \in U_1(M_2)$. In both cases $x \in U_1(M_1) \cup U_1(M_2)$.

This means, that

$$U_1(M_1 \cup M_2) \subseteq U_1(M_1) \cup U_1(M_2),$$

what together with

$$U_1(M_1) \cup U_1(M_2) \subseteq U_1(M_1 \cup M_2)$$

gives the equality

$$U_1(M_1 \cup M_2) = U_1(M_1) \cup U_1(M_2).$$

Now the proof is finished.

Let U_1 be a closure operation on S in sense of Kuratowski.

If $a \notin G(a)$, then $G(a) = \{a^k\}$. Let us denote $O(a) = \{a, a^k\}$. If $a \in G(a)$, let $O(a) = \{a\}$. Clearly $O(a)$ is the smallest neighborhood of the element a in the topology induced on S by U_1 .

Lemma 12. Let U_1 be a closure operation on S in sense of Kuratowski. Let $a, b \in S$, $a \neq b$. Then the following statements hold:

a) If $a \notin G(a) = \{a^m\}$, $O(a) = \{a, a^m\}$ and $b \notin G(b) = \{b^n\}$, $O(b) = \{b, b^n\}$, then $b \notin O(a)$ and $a \notin O(b)$.

b) If $a \notin G(a) = \{a^k\}$, $O(a) = \{a, a^k\}$ and $b \in G(b)$, $O(b) = \{b\}$, then $a \notin O(b)$.

c) If $a \in G(a)$, $O(a) = \{a\}$ and $b \in G(b)$, $O(b) = \{b\}$, then $O(a) \cap O(b) = \emptyset$.

d) If $a \notin G(a) = \{a^k\}$, $O(a) = \{a, a^k\}$, then $a^k \neq a$ and $a^k \in O(a)$.

Proof. a) Let $b \in O(a)$. Then $b = a^m$, i.e. $\{b\} = \{a^m\} = G(a) = G(b)$. Hence $b \in G(b)$ and therefore $O(b) = \{b\}$. But this is a contradiction to the fact, that $O(b) = \{b, b^n\}$, where $b \neq b^n$, because $b \notin G(b) = \{b^n\}$. Therefore $b \notin O(a)$.

Similarly one can prove, that $a \notin O(b)$.

The statements b), c), d) are evident.

Theorem 15. U_1 is closure operation on S in sense of Kuratowski iff S is a periodic semigroup and for every element a such that $a \notin G(a)$, $|G(a)|=1$.

The topology induced by U_1 on S is a T_0 -topology.

The proof follows from Theorem 12 and 14, and from Lemma 12.

Theorem 16. Let U_1 be a closure operation on S in sense of Kuratowski. Then the topology induced by U_1 on S is a T_1 -topology iff S is a periodic semigroup whose every cyclic subsemigroup is a group.

The topology, induced by U_1 on S is then the discrete topology.

The proof follows from Lemma 12.

4. Connections between U_1 , U_2 and N_3

${}^1O(a)$ will denote the smallest neighborhood of the element a in the topology, induced on S by U_1 , ${}^2O(a)$ the smallest neighborhood of the element a in the topology induced on S by U_2 .

Theorem 17. $U_1 = U_2$ on S iff S is a periodic semigroup and for every $a \in S$, $|G(a)|=1$ holds.

Proof. a) If $U_1 = U_2$, Then U_1 is a closure operation in sense of Kuratowski and S must be clearly a periodic semigroup. Hence it is sufficient to consider elements of finite order.

If $a \notin G(a) = \{a^k\}$, then ${}^1O(a) = {}^2O(a)$ means, that $\{a, a^k\} = \{a\} \cup G(a)$ i.e. $G(a) = \{a^k\}$. Hence $|G(a)|=1$.

If $a \in G(a)$, then ${}^1O(a) = {}^2O(a)$ means, that $\{a\} = \{a\} \cup G(a)$
 i.e. $G(a) = \{a\}$. Hence $|G(a)| = 1$.

b) If for every $a \in S$, $|G(a)| = 1$, then by Theorem 15, U_1 is a closure operation in sense of Kuratowski and we can easily see, that the complete systems of neighborhoods of the topologies, induced on S by closure operations U_1 and U_2 are equal. Hence $U_1 = U_2$.

Theorem 18. $U_1 = N_3$ on S iff a^2 is an idempotent for any $a \in S$.

Proof. We know, that $U_1(M) \subseteq U_2(M) \subseteq N_3(M)$ for every $M \in 2^S$. This means, that $U_1 = N_3$ iff $U_1 = U_2 = N_3$. From Theorem 17 and 8, it follows, that $U_1 = N_3$ iff S is a periodic semigroup and every element of S is either idempotent or $\langle a \rangle = P(a) \cup G(a)$, where $|P(a)| = |G(a)| = 1$. Hence $U_1 = N_3$ iff a^2 is an idempotent for any $a \in S$.

REFERENCES

- [1] B. Pondělíček: On certain relation for closure operation on a semigroup, Czech. Math. J. 20(95) (1970) 220-231.
- [2] R. Šulka: Radikaly i topologija v polugruppach, Mat.-fyz. časopis (1965) 3-14.
- [3] R. Šulka: On three lattices that belong to every semigroup, Math. Slovaca 34, (1984) 217-228.

INSTITUTE OF MATHEMATICS, SLOVAK TECHNICAL UNIVERSITY,
 812-19 BRATISLAVA, CZECHOSLOVAKIA

Received October 20, 1989.

