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A.D. Keedwell

PROPER LOOPS OF ORDER n IN WHICH EACH NON-IDENTITY ELEMENT
HAS LEFT ORDER n

When a latin square of order n is bordered by its own
first row and first column, it becomes the multiplication
table of a loop. Each column of the latin square may be re-
garded as a permutation of its first column. If each of these
permutations consists of a single cycle of length n, this is
equivalent to saying that each non-identity element of the
loop has left-order n.

In the development of an idea for enumerating latin
squares which was originally suggested by P.A. MacMahon, the
question arose as to whether, when n is a prime p, a loop with
the above property is necessarily isotopic to the cyclic group
of order p.

In [4], it was shown that, for all p=z7, the answer is in
the negative; and moreover that, for all positive integers
nz7, proper loops with every non-identity element of order n
can quite easily be constructed. Here, we present a more ele-
gant (and more algebraic) proof for the case when n is odd
using the concept of a left-neofield.

First we dispose of the case when n is even and greater
than 7. Tillson {7] has given a constructive method for sepa-

*

rating the complete directed graph K,, on n = 2m vertices

into 2m-1 disjoint Hamiltonian circuits for all mz4., If we

. * . .
label the vertices of K with the integers 0,1,2,...,2m-1,

2m
these +¢m-1 Hamiltonian circuits define 2m-1 discordant
permutations each consisting of a single cycle of 1length 2m.
Since a group of even order contains at least one element of

order 2 and since each loop isotopic to a group is isomorphic
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to that group, a loop defined by permutations of order 2m can-
not be group-isotopic and so we have a solution to our problem
for even n.

When n is odd, our method is to a sequencing of the cyclic
group of even order n-1 to construct a cyclic neofield of
characteristic n. If the sequencing is chosen suitably, the
addition loop of the neofield is not a group (provided that
nz7) and so we have a solution to our problem for odd n.

We shall require the following two definitions.

Definition 1. Let (G,:) be a finite group of order n and
suppose that the elements agsdy,85, 00,2 4 of G can be
arranged in a sequence in such a way that the partial products

bo=a0=e (the identity element), b

=aja;...a

said to be sequenceable ([5), page 85).

1=3021¢ b2=aoa1a2,...,bn_1=

are all different. The group (G, ') is then

Definition 2, A left-neofield (N,+,:-) 1is an algebraic
systen comprising a set N on which two binary operations (+)

and (-) are defined such that
(i) (N,+) 1is a loop, with identity element 0 say;
(ii) (N\{0},-) is a group; and
(iii) x(y+z)=xy+xz for all x,y,zeN.

Theorem 1, Let (G, ) be a finite sequenceable group of
n-1 elements with identity element denoted by 1. Let 0 be a
symbol not in the set G and define N=Gu{0}. Then we can con-
struct a left neofield (N,+,-) of order and characteristic
n. That is, each non-identity element of the loop (N,+) has
left-order n.

Proof. Let ao=1,a1,a2,...,an_1 be the sequencing of
(G,-) with partial products b0=a°, b1=aoa1, b2=a0a1a2,...,
= : . -1 _
bn-l_aoal"’an—l' Then the mapping e : bi — bi bi+1_ai+1

for i=0,1,...,n-2 1is a near complete mapping of (G,:) (see
Definition 4). If ¢(g) = g8(g) for each geG, then ¢ : bi—a

- bi+1 for 1i=0,1,...,n-2.

We define addition in N by the statement that g+1=¢(qg)
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for each geG except bn- Also, b +1=0 and 0+1=1.

1° n-1
Further, for all ¥x,yeN,
x+y=y(y 1x+1)=y¢(y 1x) if y=0 or xb;fl;
=x6(y 1x).
It is evident that (N\{0},:)=(G,-) and so is a group.
Also, the validity of the 1left distributive 1law is a
consequence of the definition of x+y, since

1 1

zx+zy = zy[(zy) ~zx+1] = zy(y ~x+1) = z(x+y).

It remains to show that (N,+) 1is a loop: that is, its Cayley
table must be a latin square. Now, the values of y¢(y-1x)
are all distinct and different from y or 0 as x varies through

the elements of N distinct from 0 and yb When x=0, we

n-1°

have defined x+y=0+y=y(0+1)=y; and, when x=yb we have

n-1'
x+y=y(bn_1+1)=0. Thus, the elements of each column of the
addition table of (N,+) are distinct. Also, the values of

xe(y—lx) are all distinct and different from x or 0 as Yy
-1

varies through the elements of N distinct from 0 and xb ..

-1
n-1’

x+y=xb;}1(bn_1+1)=o. So, the elements of each row of the
addition table of (N,+) are all distinct. We conclude that
(N,+,) 1is a left-neofield.

since 1+1=¢(1)=b, and ¢(b;)=b,
we find that the sum of n-1 1’s is [{(1+1)+1]+...=bn_1.
Hence, the sum of n 1’s is b _,+1=0. From the left distribu-
tive law, each element of (N,+,'), except 0, has additive

When y=0, we have x+y=x+0=x and when y=xb we have

for i=0,1,...,n-2,

order n. This completes the proof.

It remains to choose the sequencing suitably so that the

addition loop of the neofield‘is not a group. We use the

following sequencing of the cyclic group C2m=<a:a2m=1>:

a2m—2 3 2m-4 5 2m-6 2m-3 2 2m-1l

1,«a, ,a” , o 07, PR 00,

The mapping ¢ given by the partial products is then
¢ = [1« ot2m-1 a2 a2m—2 a3 a2m—3 a4 .. am—l am+1 am],

where the image of o™ is undefined.



30 A.D. Keedwell

Because C, is abelian, the right distributive 1law holds

and so we get a cyclic neofield of order 2m+1 whose addition
table is exhibited in Figure 1.

0 1 « ... - ee. o?m1
0 0 1 € evr e ee.  a®m?
o o o o2 &1
A1 (ML ;m 0 o2
a2m-1 azm-l a2 a4 .
1 1 a a3 .
« « o2 2 .
o? o 22 .
am_l am-l am+1 am+3 0
Figure 1.
We observe that 0+0=am+1, am+0=am+1+1, am+1=am+1+a but
0+1#a™+a except when m=2, since 1=o"+2 implies that m=2.

Thus, for all m>2, the quadrangle criterion is not satisfied
by the quadrangles marked in Figure 1 and so we have a proper
loop of order 2m+1 with each non-identity element of order
2m+1.

Remark (1). Note that the group (G,:) wused in Theorem 1
can be any sequenceable group, not necessarily a cyclic group.
The theory of sequenceable groups is still in its infancy but
it is known that several infinite classes of dgroups are
sequenceable such as the cyclic groups of even order, the
dicyclic groups and the non-abelian groups of order pqg, where
P, q are distinct primes such that p<qg and 2 is a primitive
root of p. The most recent major work on this topic has been
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done by B.A. Anderson (see, for example [1] and [2]). Not all
of this work has yet been published but a full account of
present knowledge will be included in a forthcoming book by
J. Dénes and the present author.

Remark (2). The construction described in Theorem 1 above
is a special case of a more dgeneral construction due to
D.F. Hsu and the present writer (see [6]) which establishes a
one-to-one correspondence between left neofields based on a
given group (G,:') and certain kinds of mappings of that group
called orthomorphisms and near-orthomorphisms in canonical

form. We shall describe this briefly.

Definition 3, Let (G,-) be a finite group. A complete
mapping of (G,:) 1is a permutation 6 of G such that the map-
ping ¢ : X — x8(x) 1is another permutation of G ([5], page
28) . The mapping ¢ is called an orthomorphism of (G,-).’

A finite group which has a complete mapping is called
admissible ([3], page 115). A complete mapping (or orthomor-
phism) is in canonical form if 6(e)=e, where e is the identi-

ty element of (G,-).

Definition 4. A near-complete mapping (in canonical form)

of a finite group (G,:) is a one-to-one mapping 8 from the
set G\{g}, where g is some non-identity of G called the ex-
domain element, onto the set G\{e}, where e is the identity
element of G, such that the mapping ¢ : x > x. O6(x) is a
mapping of the same kind. The mapping ¢ is called a near-
-orthomorphism of (G,-).

Example ([6], page 331). The mapping

e a a2 a3 a4 a5 a6 b ba ba2 ba3 ba4 ba5 ba6

ba3 a3 a6 ba4 a5 b ba5 ba6 a4 a2 . ba2 ba a

is a near-complete mapping of the dihedral group D7=<a,b :
a’=b%=e, ab=ba 1>,
The corresponding near-orthomorphism can be written in

semi-cyclic form as follows:
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¢ = (e ba3](a a4a2)(a3ba bas)(asbasb)(asbazba4).

In [6], it is proved that "“there is a one-to-one corre-
spondence between left neofields based on a group (G,") and
orthomorphisms and near-orthomorphisms of (G,-). Each left
neofield for which 1+1=0 corresponds to an orthomorphism of
(G,*) and each left neofield for which 1+120 corresponds to
a near-orthomorphism; and conversely."

If each element of the additive loop of a 1left neofield
for which 1+1#0 has the same left-order k, then the neofield
is said to have characteristic k. This includes and general-
izes the concept of characteristic of a Galois field). Our

example above gives rise to a left neofield of order 15 and
characteristic 3 based on the dihedral group D,.
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Added in proof

(1) Since this paper was written (in 1989), P.J. Owens and
D.A. Preece have shown that, for certain prime orders of thg
form 8k+3, there exist latin squares with much more remarkable
properties than those constructed in the above paper as
examples of loops with every element of left order n. Not only
do the Owens/Preece squares have the required property that
each column (except the first), when regarded as a permutation
of the first column, consists of a single cycle but also they
have the much stronger property that, for every pair of posi-
tive integers r, s with 0<r<s=n, the sth column, when regard-
ed as a permutation of the rth column, consists of a single
cycle. Moreover, because the Owens/Preece squares are symme-
tric, they have the same remarkable property with respect to
every pair of distinct rows.

owens conjectures that squares of this kind exist for all
prime orders of the form 8k+3 but also so far examples have
been constructed only for the orders 11, 19 and 43.

(2) In Remark (1), we referred to a forthcoming book. This
has now been published as BAnnals of Discrete Mathematics,
Volume 46, 1991.
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