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A.D. Keedwell 

PROPER LOOPS OF ORDER η IN WHICH EACH NON-IDENTITY ELEMENT 
HAS LEFT ORDER η 

When a latin square of order η is bordered by its own 
first row and first column, it becomes the multiplication 
table of a loop. Each column of the latin square may be re-
garded as a permutation of its first column. If each of these 
permutations consists of a single cycle of length n, this is 
equivalent to saying that each non-identity element of the 
loop has left-order n. 

In the development of an idea for enumerating latin 
squares which was originally suggested by P.A. MacMahon, the 
question arose as to whether, when η is a prime p, a loop with 
the above property is necessarily isotopie to the cyclic group 
of order p. 

In [4], it was shown that, for all p^7, the answer is in 
the negative; and moreover that, for all positive integers 
n*7, proper loops with every non-identity element of order η 
can quite easily be constructed. Here, we present a more ele-
gant (and more algebraic) proof for the case when η is odd 
using the concept of a left-neofield. 

First we dispose of the case when η is even and greater 
than 7. Tillson [7] has given a constructive method for sepa-

* 
rating the complete directed graph K 2 m on η = 2m vertices 
into 2m-l disjoint Hamiltonian circuits for all m£4. If we 
label the vertices of K 2 m with the integers 0,1,2,...,2m-l, 
these <?m-l Hamiltonian circuits define 2m-l discordant 
permutations each consisting of a single cycle of length 2m. 
Since a group of even order contains at least one element of 
order 2 and since each loop isotopie to a group is isomorphic 
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to that group, a loop defined by permutations of order 2m can-
not be group-isotopic and so we have a solution to our problem 
for even n. 

When η is odd, our method is to a sequencing of the cyclic 
group of even order n-1 to construct a cyclic neofield of 
characteristic n. If the sequencing is chosen suitably, the 
addition loop of the neofield is not a group (provided that 
n*7) and so we have a solution to our problem for odd n. 

We shall require the following two definitions. 
Definition 1. Let (G, ·) be a finite group of order η and 

suppose that the elements ao'ai'a2'"'"'an-l of G can be 
arranged in a sequence in such a way that the partial products 
b0=aQ=e (the identity element), b ^ a ^ ^ b2=aoala2''"',bn-l" 
*&0®ι···βη-ι are all different. The group (G, · ) is then 
said to be sequenceable ([5], page 85). 

Definition 2. A left-neofield (N,+,·) is an algebraic 
system comprising a set Ν on which two binary operations (+) 
and (•) are defined such that 

(i) (N,+) is a loop, with identity element 0 say; 
(ii) (N\{0>,·) is a group; and 
(iii) x(y+z)=xy+xz for all x,y,zeN. 
Theorem 1. Let (G,·) be a finite sequenceable group of 

n-1 elements with identity element denoted by 1. Let 0 be a 
symbol not in the set G and define N=Gu{0}. Then we can con-
struct a left neofield (N,+,·) of order and characteristic 
n. That is, each non-identity element of the loop (N,+) has 
left-order n. 

Proof. Let a0=l,a1,a2,...,an_1 be the sequencing of 

(G,·) with partial products b
0-a0> bi = ao ai' b2=a0ala2'*''' 

bn-l=aOal*'*an-l' T h e n t h e m aPP i n9 θ : bi ~* bIlbi+i=ai+i 
for i=0,1,...,n-2 is a near complete mapping of (G,·) (see 
Definition 4). If ^(g) = gö(g) for each geG, then φ : b^—> 
—* bi+l f o r i=0,l,...,n-2. 

We define addition in Ν by the statement that g+l=#(g) 
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for each geG except b Also, b ,+1=0 and 0+1=1. η—ι η—ι 

Further, for all x,yeN, 

x+y=y(y - 1x+l)=y0(y - 1x) if y*0 or xbJ^j.; 

=x0(y _ 1x). 

It is evident that (N\{0},·)a(G,·) and so is a group. 

Also, the validity of the left distributive law is a 

consequence of the definition of x+y, since 

zx+zy = zy[(zy) - 1zx+l] = zy(y - 1x+l) = z(x+y). 

It remains to show that (N,+) is a loop: that is, its Cayley 

table must be a latin square. Now, the values of y^(y 1x) 

are all distinct and different from y or 0 as χ varies through 

the elements of Ν distinct from 0 and Υ ^ . ^ · When x=0, we 

have defined x+y=0+y=y(0+1)=y; and, when x = Y b
n _ i »

 w e have 

x+y=y(b n_ 1+l)=0. Thus, the elements of each column of the 

addition table of (N,+) are distinct. Also, the values of 

x0(y _ 1x) are all distinct and different from χ or 0 as y 

varies through the elements of Ν distinct from 0 and x b ^ ^ 

When y=0, we have x+y=x+0=x and when y = x b n - l ' w e h a v e 

x+y=xb - 1,(b ,+l)=0. So, the elements of each row of the n-i n-i 
addition table of (N,+) are all distinct. We conclude that 

(N,+,·) is a left-neofield. 

Since 1+1=0(1)=^ and f o r i=0,l,...,n-2, 

we find that the sum of n-1 l's is [{(1+1)+1] + .. ̂ ^ . j ^ · 

Hence, the sum of η l's is b ,+1=0. From the left distribu-n—l 

tive law, each element of (N,+,-)# except 0, has additive 

order n. This completes the proof. 

It remains to choose the sequencing suitably so that the 

addition loop of the neofield is not a group. We use the 

following sequencing of the cyclic group C 2 m=<a:a
2 m=l>: 

, 2m-2 3 2m-4 5 2m-6 2m-3 2 2m-l Ι,α,α ,α ,α ,α ,α ,.,.,α ,α ,α 

The mapping φ given by the partial products is then 

, r, 2m-l 2 2m-2 3 2m-3 4 m-1 m+1 n, φ = [ 1 α α a a a a o c . . . a a a ] , 

where the image of a m is undefined. 
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Because C 2 m is abelian, the right distributive law holds 
and so we get a cyclic neofield of order 2m+l whose addition 
table is exhibited in Figure 1. 

0 1 « 2m-i ... a 

0 0 1 a ... a2m-l 

«m 0 a m + 2 am-l 

am+l m+1 a ~m a 0 m-2 a 

a2m-l a2m-l a 2 a 4 

1 1 a 3 a 

a a a2m-l a2 

a2 a 2 a2m-2 1 

am-l am-l m+1 a am +3 0 

Figure 1. 

We observe that 0+0=am+l, am + 0=am+1+l, a m+l=a m + 1+a but 
0+l^am+a except when m=2, since l=a m + 2 implies that m=2. 
Thus, for all m>2, the quadrangle criterion is not satisfied 
by the quadrangles marked in Figure 1 and so we have a proper 
loop of order 2m+l with each non-identity element of order 
2m+l. 

Remark (1). Note that the group (G,·) used in Theorem 1 
can be any sequenceable group, not necessarily a cyclic group. 
The theory of sequenceable groups is still in its infancy but 
it is known that several infinite classes of groups are 
sequenceable such as the cyclic groups of even order, the 
dicyclic groups and the non-abelian groups of order pq, where 
p, q are distinct primes such that p<q and 2 is a primitive 
root of p. The most recent major work on this topic has been 
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done by B.A. Anderson (see, for example [1] and [2]) . Not all 
of this work has yet been published but a full account of 
present knowledge will be included in a forthcoming book by 
J. Dénes and the present author. 

Remark (2). The construction described in Theorem 1 above 
is a special case of a more general construction due to 
D.F. Hsu and the present writer (see [6]) which establishes a 
one-to-one correspondence between left neofields based on a 
given group (G,·) and certain kinds of mappings of that group 
called orthomorphisms and near-orthomorphisms in canonical 
form. We shall describe this briefly. 

Definition 3. Let (G,·) be a finite group. A complete 
mapping of (G,·) is a permutation θ of G such that the map-
ping φ : χ —> χθ(χ) is another permutation of G ([5], page 
28). The mapping φ is called an orthomorphism of (G,·). 

A finite group which has a complete mapping is called 
admissible ([3], page 115). A complete mapping (or orthomor-
phism) is in canonical form if 0(e)=e, where e is the identi-
ty element of (G,·). 

Definition 4. A near-complete mapping (in canonical form) 
of a finite group (G,·) is a one-to-one mapping θ from the 
set G\{g}, where g is some non-identity of G called the ex-
domain element, onto the set G\{e}, where e is the identity 
element of G,. such that the mapping φ : χ —> χ. θ (χ) is a 
mapping of the same kind. The mapping φ is called a near-
-orthomorphism of (G,·). 

Example ([6], page 331). The mapping 

θ = 
2 3 4 5 6 2 3 4 5 6 e a a a a a a b ba ba ba ba ba ba 

3 3 6 4 5 5 6 4 ? ? ba a a ba a b ba ba° a a . ba ba a 

is a near-complete mapping of the dihedral group D_=<a,b : 
7 2 -1 a =b =e, ab=ba >. 

The corresponding near-orthomorphism can be written in 
semi-cyclic form as follows: 
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φ = [e ba3](a a4a2)(a3ba ba5)(a6ba6b)(a5ba2ba4). 
In [6], it is proved that "there is a one-to-one corre-

spondence between left neofields based on a group (G,·) and 
orthomorphisms and near-orthomorphisms of (G,·)· Each left 
neofield for which 1+1=0 corresponds to an orthomorphism of 
(G,·) and each left neofield for which 1+1*0 corresponds to 
a near-orthomorphism; and conversely." 

If each element of the additive loop of a left neofield 
for which 1+1*0 has the same left-order k, then the neofield 
is said to have characteristic k. This includes and general-
izes the concept of characteristic of á Galois field). Our 
example above gives rise to a left neofield of order 15 and 
characteristic 3 based on the dihedral group D_. 
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Added in proof 
(1) Since this paper was written (in 1989), P.J. Owens and 

D.A. Preece have shown that, for certain prime orders of the 
form 8k+3, there exist latin squares with much more remarkable 
properties than those constructed in the above paper as 
examples of loops with every element of left order n. Not only 
do the Owens/Preece squares have the required property that 
each column (except the first), when regarded as a permutation 
of the first column, consists of a single cycle but also they 
have the much stronger property that, for every pair of posi-
tive integers r, s with 0<r<ssn, the sth column, when regard-
ed as a permutation of the rth column, consists of a single 
cycle. Moreover, because the Owens/Preece squares are symme-
tric, they have the same remarkable property with respect to 
every pair of distinct rows. 

Owens conjectures that squares of this kind exist for all 
prime orders of the form 8k+3 but also so far examples have 
been constructed only for the orders 11, 19 and 43. 

(2) In Remark (1), we referred to a forthcoming book. This 
has now been published as Annals of Discrete Mathematics, 
Volume 46, 1991. 
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