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MULTIPLICATION GROUPS OF QUASIGROUPS: ELEMENTARY COMBINATORICS 

1. Preliminaries 
Assume that G is a set of permutations acting on a set 

Q. It might be difficult (or even impossible) to construct a 
guasigroup (Q,·) such that all rows and, simultaneously, all 
columns of the multiplication table belong to G. If such a 
guasigroup exists, it will have certain properties, following 
from the structure of G. It is a main purpose of this paper 
to exhibit such properties, thus continuing earlier work done 
in [9] and [10]. In particular, the results of [10] are ex-
tended, and elementary proofs are presented which have not 
been included there. Throughout this paper, it will always be 
assumed that G is a group of permutations. By this assump-
tion, the techniques of (permutation) group theory will become 
available. For the needed group theoretic notations the reader 
is referred to Huppert [8] and Wielandt [18]. The basic nota-
tions of universal algebra can be found in Burris, Sankappana-
var [5], or in [11]. However, the rest of this section will 
give some definitions and facts which are fundamental for this 
paper. Let (Q,·) be a groupoid, i.e. Q is a set and 
(x,y) ι—> x y is a binary operation on Q. For each element 
aeQ, the left multiplication mapping L(a) : Q—» —> Q is 
defined by xL(a) := a x and, analogously, the right mul-
tiplication mapping R(a) : Q —» Q by xR(a) := x a (in 
general, the image of χ under a mapping M will be written as 
xM). If all left and right multiplication mappings are permu-
tations of Q, then the groupoid (Q,·) will be called a quasi-
group. In other words, a guasigroup is a groupoid with the 
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property that in every row and in every column of the multi-
plication table each element of Q occurs exactly once. The 
multiplication group Mit(Q,·) of a quasigroup (Q,·) is 
defined as the permutation group <L(a),R(a) | aeQ>, generated 
by all left and all right multiplication mappings. Hence, if G 
is a group of permutations, then the motivating question for 
this paper can be formulated as follows: 

Question. Given a permutation group G acting on a set Q, 
which are quasigroups (Q,•) with Mlt(Q,-)£G? 

On every quasigroup (Q, · ) two additional binary opera-
tions / and \ (right division and left division) can be de-
fined by x/y := xR(y) 1 and x\y yL(x) In some situa-
tions it is advantageous to consider the (universal) algebra 
(Q/-,/f\) instead of (Q, · ) (cf. Birkhoff [3], p. 160). This 
becomes obvious in the following proposition which is easy to 
prove: 

Proposition 1. Let (Q,·) be a quasigroup. Then the alge-
bras (Q,Mlt(Q,·)) and (Q,·,/,\) have the same congruence 
relations. If the base set Q is finite, then also (Q,·) 
has the same congruence relations. 

For more detailed information on the close structural 
relationship between quasigroups and their multiplication 
groups one should consult e.g. Albert [1] and [2] (who 
introduced the concept of multiplication groups) or the book 
of Bruck [4]. 

A loop is a quasigroup (Q,+) with neutral element, i.e. 
with an element eeQ satisfying e+x = x+e = χ for all xeQ. 
There is a standard method how to convert a quasigroup (Q,·) 
into a loop: Choose elements a,beQ, and set x+y := (x/a)· 
'(b\y)· Then + is a loop operation on Q with neutral element 
e := b-a. The quasigroup operation can be regained from the 
loop operation as x-y = xR+yL, where R and L stand for the 
right and the left multiplication mappings R(a) and L(b) of 
(Q,·). Hence part a) of the following proposition implies 
immediately part b). The proof of part a) is an easy exercise: 
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Proposition 2. a) Let (Q,+) be a loop, R and L permuta-
tions on Q, and let (Q,·) be the quasigroup defined by 
x y := xR+yL. Then Mlt(Q,·) is the permutation group 
<Mlt(Q,+),R,L> on Q generated by Mlt(Q,+), R and L. 

b) For every quasigroup (Q,·) and each eeQ there ex-
ists a loop (Q,+) with neutral element e and Mlt(Q,+) £ 
s Mit(q,·). 

By part b) of this proposition, in the rest of this paper 
the interest is focused on loops: if there exists a quasigroup 
with multiplication group contained in a permutation group G, 
then there must exist a loop with the same property. Part a) 
was used in [9] in order to show that all finite symmetric, 
alternating, dihedral, general linear and projective general 
linear groups, and the Mathieu groups M ^ and M 2 3 occur as 
multiplication groups of quasigroups (i.e. the multiplication 
groups of these quasigroups are not only contained in the 
listed permutation groups, they are even equal to them): in 
all cases, the loop (Q,+) can be chosen as an abelian group, 
and in most cases as a cyclic group (the exceptions are the 
alternating groups of even degree). 

2. Main results 

The following assumptions and denotations will be used 
throughout the rest of this paper: Let G always be a permuta-
tion group acting on a finite set Q, and let e be some (fixed) 
element of Q. The different orbits of the stabilizer G e of e 
in G are denoted by Q^ie}, Q2,...,Q . All loops (Q,+) are 
assumed to have e as neutral element. 

For loops (Q,+) with Mlt(Q,+)£G, the stabilizer G e will 
play an important role. This is, basically, due to the follow-
ing simple observation on permutation groups: 

Lemma 1. Let G be a permutation group acting on Q. For 
A,BeG, let eA=eB. Then Q.A=Q.Β for all orbits Q. of G . 

i l ι e 
The first of the next two lemmas shows, roughly speaking, 

that "modulo G " there is at most one loop with multiplication 
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group contained in G. By the second of these lemmas, all such 
loops are commutative and associative "modulo Ge": 

Lemma 2. Let (Q,+) and (Q,°) be loops with Mlt(Q,+) 
and Mlt(Q,°) contained in G, Then the following holds for 
all orbits Q^ of G ß and all aeQ: 

{a+x I xeQi> = {a»y | yeQ^, 

{x+a I xeQi> = {y»a | yeQ^., 
Proof. The left multiplication mappings of (Q,+) and of 

(Q,°) are denoted by L+(a) and Lo(a), respectively. Obvi-
ously, then eL+(a) = eLo(a). Lemma 1 therefore implies 
Q^L+(a) = Q^Lo(a). This can be written in the form {a+x | 
xeQ^} = {a°y | yeQ^}. The second assertion can be proved anal-
ogously, by using right instead of left multiplication map-
pings. 

Lemma 3. Let (Q,+) be a loop with Mlt(Q,+)£G. Then the 
following holds for all orbits Q^ of G ß and all a,beQ: 

a) {a+x I xeQi} = {y+a | yeQi>, 
bl) {(a+b)+x I xeQi} = {a+(b+y) | yeQ^, 
b2) {(a+x)+b I xeQi} = {a+(y+b) | yeQi>, 
b3) {(x+a)+b I xeQi} = {y+(a+b) | yeQ^. 

Proof, a) Since eL(a) = eR(a) = a, Lemma 1 yields Q^L(a)= 
= Q^R(a) which can be written as {a+x | xeQ^} = {y+a | yeQ^}. 

bl) From eL(b) = eL(b)L(a) one obtains Ç^Lfa+b) = 
= Q^L(b)L(a), again by Lemma 1. This can be written in the 
claimed form. 

b2) and b3) can be proved in the same way as bl). 

The following numerical values will be used in the rest of 
this section: Let f be the least positive integer such that 
each non-identity permutation of G fixes at most f elements. 
Define η := |Q|, n^ := for every orbit Q^ of Ge, and 
m:= I {ni | n/n^f}. 

The last two lemmas can be stated in a stronger form if 
the orbit Q^ is "small": 
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Lemma 4. Let (Q,+) and (Q,°) be loops with Mlt(Q,+) 
and Mlt(Q,o) contained in G. Let Q^ be an orbit of G g with 
n/ni>f. Then 

a+x = a°x, x+a = x°a 
for all aeQ, xeQ^. 

Proof. Assume that xeQ^. By the first assertion of Lemma 
2, the n-element set Q can be written as the (disjoint) union 
of n^ sets: Q = l̂ J {aeQ | a+x=a«y}. Hence there must be an 

yeQj^ 
element yeQ^ such that {aeQ | a+x=a»y} contains at least 
n/n^ elements and thus, by assumptions, more than f elements. 
In other words, the right multiplication mappings R+(x) and 
Ro(y) satisfy aR+(x) = aRo(y) for more than f elements 

aeQ, i.e. R+(x)Ro(y) 1 fixes more than f elements. Therefore 

R+(x)Ro(y) 1 = id (the identity mapping on Q) or, equivalent-

ly* R+(x) = R„(y)· Applying these two mappings to e yields 

χ = e+x = eR+(x) = eRo(y) = e°y = y. This implies R+(x) = 
= Ro(χ), i.e. a+x = a»x for all aeQ. Analogously, one can 
show x+a=x»a. 

Lemma 5. Let (Q,+) be a loop with Mlt(Q,+)SG, and let 
Q. be an orbit of G with n/n.>f. Then ι e ι 

a) a+x=x+a for all aeQ, xeQ^, 
b) (a+b)+x = a+(b+x), (a+x)+b = a+(x+b) and (x+a)+b = 

= x+(a+b) for all a,beQ, xeQ^. 
Proof, a) Assume that xeQ^. Lemma 3a) implies Q = 

= {aeQ I a+x=y+a}. The proof can now be continued like 
Y ^ 

the proof of Lemma 2 : There must be an element yeQ^ such that 
{aeQ I a+x=y+a> contains (strictly) more than f elements. 
This can be used in order to show R(x)=L(y) and x=y, which 
then implies a+x=x+a for all aeQ. 

b) Let xeQ. and beQ. By Lemma 3bl), Q = l̂ J {aeQ | 
yeQi 

(a+b)+x=a+(b+y)}. Again, there exists an element yeQ^ such 
that {aeQ | (a+b)+x=a+(b+y)> contains more than f elements. 
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Therefore R(b)R(x) = R(b+y), and applying both mappings to e 
yields b+x=b+y. This implies x=y and thus R(b)R(x) = 
= R(b+x), i.e. (a+b)+x = a+(b+x) for all aeQ. The other two 
equations can be proved in the same way. 

The center Ζ of a loop (Q,+) is defined as the set of 
all zeQ satisfying a+z=z+a, (a+b)+z = a+(b+z), (a+z)+b = a+ 
+(z+b) and (z+a)+b = z+(a+b) for all a,beQ. It is well 
known that (Z,+) is an abelian group which is a normal sub-
loop of (Q,+) (cf. Albert [1] or Bruck [4], pp. 57-60). 
Lemma 5 states that the set Q' := {Q^ | n/n^>f> is con-
tained in the center Z. Recall that m was defined as m = 

I n/n^>f}, i.e. as the cardinality of Q' . Hence the 
following theorem holds: 

Theorem 1. If (Q,+) is a loop with Mlt(Q,+)£G, then the 
center of (Q,+) contains at least m elements. 

The next result was already shown in Albert [1]. The proof 
which is presented here uses the fact that the 1-element 
orbits Q^ belong automatically to the center of (Q,+), due to 
Lemma 5 : 

Theorem 2. Let (Q,+) be a loop with Mlt(Q,+)£G. Then 
the center of (Q,+) contains a subloop which is isomorphic 
to the center Z(G) of G. Moreover, Z(G)£Mlt(Q,+). 

Proof. Assume that (Q,+) is a loop with Mlt(Q,+)£G. Let 
CeZ(G). Then, for all xeQ, xR(eC) = x+eC = eCL(x) = eL(x)C = 
= (x+e)C = xC. Hence R(eC) = C (and, analogously, L(eC) = C). 
This shows that Ζ(G)£Mlt(Q,+). If CeZ(G) and A e G

e# t h e n 

eCA = eAC = eC. Therefore {eC} is a 1-element orbit of Ge> 

Thus, by Lemma 5, Q":= {eC | CeZ(G)} is contained in the 
center of (Q,+). It is an easy exercise to show that Q" is 
a subloop of (Q,+), and that Z(G) and Q" are isomorphic (as 
loops), via the mapping C ι—> eC. 

By the preceding results, it is no surprise that a loop 
(Q,+) with Mit(Q,+)£G is 

(i) uniquely determined, (ii) an abelian group, 
provided that G has "sufficiently many sufficiently small" 
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orbits: 

Theorem 3. a) If m>f, then there is at most one loop 

(Q,+) with Mit(Q,+)£G. 

b) If msf, then each loop (Q,+) with Mlt(Q,+)SG is an 

abelian group. 

Proof, a) Assume that (Q,+) and (Q,<>) are loops with 

multiplication groups contained in G. As an immediate conse-

quence of Lemma 4, for each aeQ, the left multiplication map-

pings L +(a) and L o(a) agree on the m-element set Q' = 

= l^J {Q^ I n/n^>f}. Hence L +(a) = L o(a) , since m>f. This 

shows that a+x = a°x holds for all a,xeQ. 

b) In order to show that (Q,+) is commutative, it is 

sufficient to prove that L(a) = R(a) for all aeQ. If aeQ' , 

this follows immediately from Lemma 5a). If aeQ' , then L(a) 

and R(a) agree on the (m+1) - element set Q'u{a} : for xeQ' , 

Lemma 5a) implies xL(a) = xR(a), while aL(a) = aR(a) trivi-

ally holds. Hence maf implies L(a) = R(a). Associativity 

can be shown in the same way: The associative law holds in 

(Q,+) if and only if L(a+b) = L(b)L(a) for all a,beQ. If 

aeQ' , then this follows directly from Lemma 5b). Now assume 

that aiQ' . Then L(a+b) and L(b)L(a) âgree on the m+1 

elements of Q'u{a}. Again, this implies L(a+b) = L(b)L(a). 

Examples. (1) Regular permutation groups yield the most 

trivial examples for Theorem 3: If G is a regular permutation 

group operating on Q, then f=0 and m=n. Hence, by Theorem 3, 

there exists at most one loop (Q,+) with Mlt(Q,+)£G, and 

this loop must be an abelian group. But this is obvious: For 

each a*e, the right multiplication mapping R(a) and the 

left multiplication mapping L(a) must both be the unique 

fixed point free permutation which maps e to a. Therefore 

(Q,+) is isomorphic to G. In particular, a loop (Q,+) with 

Mit(Q,+)£G exists if and only if G is an abelian group. 

The same holds in the more general situation when G is a 

Frobenius group operating on Q. Again, there is at most one 

loop (Q,+) with Mit(Q,+)£G. Such a loop exists if and only 

if the Frobenius kernel of G is abelian. In this case, (Q,+) 
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is isomorphic to the Frobenius kernel. 
(2) For each integer na3, the dihedral group 

defined as the group of symmetries of the regular 
η 

n-gon. 
particular, D is group of order 2n operating on 

is 
In 
an 

n-element set and containing a cyclic subgroup of order n. If 
n>4, then m=n and f=l (for η odd) or f=2 (for η even). 
Hence, by Theorem 3, the cyclic group of order η is 
loop with multiplication group contained in Dn· The 
is different for the group D4: In this case m=f=2, 

the only 
situation 
i.e. part 

a) of Theorem 3 can be applied but not part b). The following 
multiplication tables represent two different loops with 
multiplication groups contained in D4, namely the cyclic group 
of order 4, and Klein's four-group. The positions In the 
multiplication tables which are not uniquely determined by 
Lemma 4 are marked with circles: 

c 

regular 4-gon 

+ 
e a b c 
a (b) c © 
b e e a 
c (e) a © 
cyclic group 
of order 4 

a 
© 
c 
© 
Klein's 

four-group 

b c 
c © 
e a 
a (S) 

Two loops with multiplication groups contained in D4 

(3) The general linear group GL(d,q) is defined as the 
group of all linear automorphism of a d-dimensional vector 
space, over GF(q). Regard GL(d,q) as a permutation group 
acting on the non-zero vectors of the underlying vector space. 
Let (Q,·) be a loop with Mit(Q,·)SGL(d,q). By Theorem 2, 
Mit(Q,·) contains the center of GL(d,q), i.e. all scalar 
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multiplications χ ι—-» λχ, XeGF(q). This shows that certain 
subgroups of general linear groups cannot contain multiplica-
tion groups of quasigroups. For instance, a guasigroup with 
multiplication group contained in the special linear group 
SL(d,q) cannot exist, unless q-1 divides d. 

It can easily be seen that the loops with Mit(Q,·)£GL(d,q) 
are exactly the multiplicative loops of finite semifields (cf. 
Dembowski [6] and [10] for more information). 

Remarks. (1) The reader may find out which of the results 
stated in this section also hold in the infinite case. For 
instance, Theorem 2 is valid for infinite loops as well. 

(2) In order to show that the inequality of Theorem 3b) 
cannot be improved, one should find a permutation group G 
with m = f-1 and a loop (Q,+) which is not an abelian 
group such that Mlt(Q,+)£G. The groups PSL(2,q) might be 
good candidates (in their natural permutation representation, 
these groups satisfy m = f-1). 

(3) The numerical assumptions on the orbits of Gg which 
have been used in this section (e.g. in Theorems 1 and 3) are 
certainly a very rough tool. It might prove fruitful to 
exploit not only numerical but also structural properties of 
Ge· A good example of this kind was presented in a recent 
paper by Kepka and Niemenmaa [15]: They proved that, if Ge 
is a cyclic group, then each loop (Q,+) with Mlt(Q,+)SG 
must be an abelian group. 

(4) If the permutation group G is doubly transitive, 
then the methods of this section do not yield any information 
on the loops with Mlt(Q,+)£G. In this case one can apply 
results on doubly transitive permutation groups, due to the 
classification of finite simple groups. This works in particu-
lar for quasigroups of prime order, since the permutation 
groups of prime degree are well known (cf. Feit [7] and [10]). 

(5) The investigations of this paper were partly motivated 
by the results in Johnson [12] and Smith [16] on centralizer 
rings of multiplication groups of quasigroups. In particular, 
the fundamental Lemmas 2 and 3 reflect properties of the 
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centralizer ring: e.g., Lemma 3bl) states that î J {R(x)|xeQ^} 
centralizes L(a). In [13], Johnson and Smith used 
centralizer rings of multiplication groups in order to develop 
a character theory of finite quasigroups which generalizes the 
ordinary character theory of finite groups. 

(6) The question which groups occur as multiplication 
groups of quasigroups seems to be even more difficult if one 
considers abstract groups instead of permutation groups. The 
following negative results are known: Hamiltonian groups and 
Heineken-Mohamed groups are never isomorphic to multiplication 
groups of quasigroups (cf. Kepka [14] or Smith [17]). 

3. Further properties of multiplication groups 

The following properties are known to hold for all permu-
tation groups which contain the multiplication group of a 
quasigroup: 

Theorem 4. Let G be a permutation group acting on a 
finite set Q, and let (Q,·) be a quasigroup with 
Mit(Q,· ) £G. Then the following holds for an arbitrary element 
eeQ: 

a) G is transitive on Q, 
b) the (universal) algebra (Q,G) is congruence 

permutable, i.e. H
1
H
2
 = H 2 H i f o r a i l s u b 9 r o u P s Hi» H2 o f G 

with G ^ H ^ H ^ 

c) N(Ge) = G -Z(G), where N(G£) denotes the normalizer 
of G e in G, 

d) the centralizer ring V(Q,G) of G is commutative, 
e) the number of orbits of G g is less or equal the 

number of conjugacy classes of G. 

Sketch of proof, a) follows from the fact that {L(a)|aeQ} 
is a transitive subset of G. 

b) By Proposition 1, Con(Q,G)£Con(Q,Mlt(Q,·)) = 
= Con(Q,·,/,\). Hence the congruence of (Q,G) permute, since 
Con(Q,-,/,\) has this property if (Q,·) is a quasigroup 
(cf. [11]). By using the transitivity of G, it is straight-
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forward to show that θ ι—> {AeG|(e,eA)€0} defines a bijec-
tive mapping from Con(Q,G) onto the set of all subgroups of 
G which contain G e, and that θ^ and θ 2 permute if and 
only if the corresponding subgroups H^ and H 2 satisfy H^HJ = 
= H2H1. 

c) Obviously, N(G£)2Ge·Ζ(G). In order to show N(G)s 
SGe"Z(G), it may be assumed that there is a loop (Q,+) with 
neutral element e and Mlt(Q,+)£G (Proposition 2). Let Ae 
eN(G ). For χ := eA then G = A - 1G A = G . Hence {x} is e χ e e 
a 1-element orbit of G . It is an interesting exercise to 

- 1 - 1 show that this implies R+(x)eZ(G) (hint: L+(qA)A L +(q) e 

eGe). Moreover, AR +(x) - 1eG e, and thus A = AR +(x) _ 1R +(x)e 
eGe'Z(G). Note that c) was already proved by Smith in [17]. 

d) Was proved by Johnson [12] and by Smith [16]. 
e) Holds if V(Q,G) is commutative (cf. Wielandt [18], 

p. 87). 

It is unknown whether the sum of conditions of the above 
theorem is sufficient for a permutation group to contain the 
multiplication group of a quasigroup. The following problem 
might be interesting in connection with the results of Section 
2: 

Problem. Find a permutation group G acting on a finite 
set Q with mïf such that G does not contain an abelian 
subgroup which is regular on Q. 

Such a permutation group cannot contain the multiplication 
group of a quasigroup: Theorem 3b) would imply each loop (Q,+) 
with Mit(Q,+)SG to be an abelian group, and Mlt(Q,+) would 
thus be a regular abelian subgroup of Q. 
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