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MULTIPLICATION GROUPS OF QUASIGROUPS: ELEMENTARY COMBINATORICS

1. Preliminaries

Assume that G 1is a set of permutations acting on a set
Q. It might be difficult (or even impossible) to construct a
quasigroup (Q,-) such that all rows and, simultaneously, all
columns of the multiplication table belong to G. If such a
quasigroup exists, it will have certain properties, following
from the structure of G. It is a main purpose of this paper
to exhibit such properties, thus continuing earlier work done
in [9] and [10]. In particular, the results of [10] are ex-
tended, and elementary proofs are presented which have not
been included there. Throughout this paper, it will always be
assumed that G 1is a group of permutations. By this assump-
tion, the techniques of (permutation) group theory will become
available. For the needed group theoretic notations the reader
is referred to Huppert (8] and Wielandt [18). The basic nota-
tions of universal algebra can be found in Burris, Sankappana-
var [5], or in [11]. However, the rest of this section will
give some definitions and facts which are fundamental for this
paper. Let (Q,-) be a groupoid, i.e. Q 1is a set and
(x,Y) — X'y 1is a binary operation on Q. For each element

aeQ, the left multiplication mapping L(a) : Q—> — Q is
defined by xL(a) := a-x and, analogously, the right mul-
tiplication mapping R(a) : Q — Q by xR(a) := x-a (in

general, the image of x under a mapping M will be written as
xM). If all left and right multiplication mappings are permu-
tations of Q, then the groupoid (Q,-) will be called a quasi-
group. In other words, a quasigroup is a groupoid with the
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property that in every row and in every column of the multi-
plication table each element of Q occurs exactly once. The
multiplication group M1t(Q,:) of a gquasigroup (Q, ) is
defined as the permutation group <L(a),R{a) | aeQ>, generated
by all left and all right multiplication mappings. Hence, if G
is a group of permutations, then the motivating question for

this paper can be formulated as follows:

Question. Given a permutation group G acting on a set Q,
which are quasigroups (G, ) with Mlt(Q,-)sG?

On every quasigroup (Q,-) two additional binary opera-
tions / and \ (right division and left division) can be de-

1 and x\y := yL(x)-l. In some situa-

fined by x/y := xR(y)
tions it is advantageous to consider the (universal) algebra
(Q,",/,\) instead of (Q,-) (cf. Birkhoff [3], p. 160). This
becomes obvious in the following proposition which is eaéy to

prove:

Proposition 1. Let (Q,-) be a guasigroup. Then the alge-
bras (Q,M1t(Q,-)) and (Q,-,/,\) have the same congruence
relations. If the base set Q 1is finite, then also (Q, )

has the same congruence relations.

For more detailed information on the close structural
relationship between quasigroups and their multiplication
groups one should consult e.g. Albert ([1] and [2] (whe
introduced the concept of multiplication groups) or the book
of Bruck [4].

A loop is a quasigroup (Q,+) with neutral element, i.e.
with an element eeQ satisfying e+x = x+e = x for all xeQ.
There is a standard method how to convert a quasigroup (Q, )
into a loop: Choose elements a,beQ, and set X+y := (x/a)-
-(b\y). Then + 1is a loop operation on Q with neutral element
e := b-a. The quasigroup operation can be regained from the
ioop operation as x'y = XR+yL, where R and L stand for the
right and the left multiplication mappings R(a) and L(b) of
(Q, ). Hence part a) of the following proposition implies
immediately part b). The proof of part a) is an easy exercise:
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Proposition 2. a) Let (Q,+) be a loop, R and L. permuta-
tions on Q, and let (Q,-) be the quasigroup defined by
x-y := xR+yL. Then M1t (Q, ) is the permutation group
<M1lt(Q,+),R,L> on Q generated by M1lt(Q,+), R and L.

b) For every quasigroup (Q,:) and each eeQ there ex-
ists a loop (Q,+) with neutral element e and Mlt(Q,+) s
S Mlt(q,-).

By part b) of this proposition, in the rest of this paper
the interest is focused on loops: if there exists a quasigroup
with multiplication group contained in a permutation group G,
then there must exist a loop with the same property. Part a)
was used in (9] in order to show that all finite symmetric,
alternating, dihedral, general linear and projective general
linear groups, and the Mathieu groups Mll and M23 occur as
multiplication groups of quasigroups (i.e. the multiplication
groups of these quasigroups are not only contained in the
listed permutation groups, they are even equal to them): in
all cases, the loop (Q,+) can be chosen as an abelian group,
and in most cases as a cyclic group (the exceptions are the
alternating groups of even degree).

2. Main results

The following assumptions and denotations will be used
throughout the rest of this paper: Let G always be a permuta-
tion group acting on a finite set Q, and let e be some (fixed)
element of Q. The different orbits of the stabilizer Ge of e
in G are denoted by Ql={e}, Q2""'Qs' All loops (Q.,+) are
assumed to have e as neutral element.

For loops (Q,+) with M1lt(Q,+)<G, the stabilizer G will
play an important role. This is, basically, due to the follow-
ing simple observation on permutation groups:

Lemma 1, Let G be a permutation group acting on Q. For
A,BeG, let eA=eB. Then QiA=QiB for all orbits Qi of Ge.

The first of the next two lemmas shows, roughly speaking,
that "modulo Ge" there is at most one loop with multiplication
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group contained in G. By the second of these lemmas, all such

loops are commutative and associative "modulo G":

Lemma 2. Let (Q,+) and (Q,-) be loops with M1t (Q,+)
and M1lt(Q,°) contained in G, Then the following holds for
all orbits Qi of Ge and all aeQ:

{a+x | eri} = {a-y | yeQi},
{x+a | x€Q;} = {yea | yeQ;}.

Proof. The left multiplication mappings of (Q,+) and of
(Q,°) are denoted by L+(a) and L (a), respectively. Obvi-

ously, then eL,(a) = eL_(a). Lemma 1 therefore implies
Q;L,(a) = QL (a). This can be written in the form {a+x |
eri} = {a°y | yeQ;}- The second assertion can be proved anal-

ogously, by using right instead of 1left multiplication map-
pings.

Lemma 3. Let (Q,+) be a loop with M1t(Q,+)sG. Then the
following holds for all orbits Qi of Ge and all a,beQ:

a) {a+x | x€Q.} = {y+a | YeQ, },

b1) {(atb)+x | xeQ;} = {a+(b+y) | yeQ;},
b2) {(a+x)+b | x€Q,} {a+(y+b) | YeQi},
b3) {(x+a)+b | X€Q } {y+(a+b) | YeQ;}.

Proof. a) Since eL(a) = eR(a) = a, Lemma 1 yields QiL(a)=

QiR(a) which can be written as {a+x | eri} = {y+a | yeQi}.
bl) From eL(b) = eL(b)L(a) one obtains QiL(a+b) =
QiL(b)L(a), again by Lemma 1. This can be written in the

claimed form.

b2) and b3) can be proved in the same way as bl).

The following numerical values will be used in the rest of
this section: Let f be the least positive integer such that
each non-identity permutation of G fixes at most f elements.
befine n := |Q], n; := [Qil for every orbit Qi of Ge, and
m:= Y} {n; | n/n;>f}.

The last two lemmas can be stated in a stronger form if
the orbit Qi is "small":
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Lemma 4. Let (Q,+) and (Q,°) be loops with M1t (Q, +)
and Mit(Q,e) contained in G. Let Q; be an orbit of Gg with
n/ni>f. Then

a+x = aex, Xx+a = Xeca
for all aeqQ, eri.

Proof. Assume that eri. By the first assertion of Lemma
2, the n-element set Q can be written as the (disjoint) union

of n; sets: Q = |_) {aeQ | a+x=a-y}. Hence there must be an
yEQi
element yeQi such that {aeQ | a+x=a-y} contains at least

n/ni elements and thus, by assumptions, more than f elements.

In other words, the right multiplication mappings R, (x) and
R_(Yy) satisfy aR+(x) = aRo(y) for more than f elements
aeQ, i.e. R+(x)R°(y)-1 fixes more than f elements. Therefore
R+(x)R°(y)-1 = id (the identity mapping on Q) or, equivalent-

ly, R (x) = R _(y). Applying these two mappings to e yields
X = e+x = eR, (Xx) = eR_(y) = ecy =Y. This implies R, (x) =

= R _(x), i.e. a+x = aex for all aeQ. Analogously, one can
show x+a=Xx-a.

Lemma 5., Let (Q,+) be a loop with M1t(Q,+)sG, and let
Qi be an orbit of Ge with n/ni>f. Then
a) a+x=x+a for all aeqQ, eri,
b) (a+b)+x = a+(b+x), (at+x)+b = a+(x+b) and (x+a)+b
= x+(a+b) for all a,beqQ, eri.

Proof. a) Assume that eri. Lemma 3a) implies Q =

= |\ {aeQ | at+x=y+a}. The proof can now be continued like
YeQ,

the proof of Lemma 2: There must be an element yeQi such that
{aeQ | a+x=y+a} contains (strictly) more than f elements.
This can be used in order to show R(x)=L(y) and x=y, which
then implies a+x=x+a for all aeqQ.

b) Let XeQ, and beQ. By Lemma 3bl), Q = |_J {aeQ |

YEQi

(a+b) +x=a+(b+y)}. Again, there exists an element yeQi such
that {aeQ | (a+b)+x=a+(b+y)} contains more than f elements.
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Therefore R(b)R(x) = R(b+y), and applying both mappings to e
yields b+x=b+y. This implies x=y and thus R(b)R(x) =
= R(b+x), i.e. (a+b)+x = a+(b+x) for all aeQ. The other two
equations can be proved in the same way.

The center Z of a loop (Q,+) 1is defined as the set of
all zeQ satisfying a+z=z+a, (a+b)+z = a+(b+z), (a+z)+b = a+
+(z+b) and (z+a)+b = z+(a+b) for all a,beQ. It 1is well
known that (Z,+) is an abelian group which is a normal sub-
loop of (Q,+) (cf. Albert [1] or Bruck ([4]), pp. 57-60).

Lemma 5 states that the set Q' := L_){Qi | n/ni>f} ~ is con-
tained in the center Z. Recall that m was defined as m =
Z{ni | n/ni>f}, i.e. as the cardinality of Q’. Hence the

following theorem holds:

Theorem 1. If (Q,+) 1is a loop with M1t(Q,+)<G, then the
center of (Q,+) contains at least m elements.

The next result was already shown in Albert [1]. The proof
which is presented here uses the fact that the 1-element
orbits Qi belong automatically to the center of (Q,+), due to
Lemma 5:

Theorem 2, Let (Q,+) be a loop with M1lt(Q,+)<G. Then
the center of (Q,+) contains a subloop which 1is isomorphic
to the center Z(G) of G. Moreover, Z(G)sM1lt(Q,+).

Proof. Assume that (Q,+) is a loop with M1t(Q,+)sG. Let
CeZ(G). Then, for all xeQ, xR(eC) = x+eC = eCL(x) = eL(x)C =
= (x+e)C = xC. Hence R(eC) = C (and, analogously, L(eC) = C).
This shows that 2(G)sMlt(Q,+). If CeZ(G) and AeG, then
eCA = eAC = eC. Therefore {eC} 1is a l1l-element orbit of G_.

e
Thus, by Lemma 5, Q:= {eC | CeZ(G)} is contained in the
center of (Q,+). It is an easy exercise to show that Q" is

a subloop of (Q,+), and that Z(G) and Q” are isomorphic (as
loops), via the mapping C +— eC.

By the preceding results, it is no surprise that a 1loop
(Q,+) with Mlt(Q,+)sG is

(i) wuniquely determined, (ii) an abelian group,
provided that G has "sufficiently many sufficiently small"
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orbits:

Theorem 3. a) If m>f, then there is at most one 1loop
(Q,+) with M1lt(Q,+)sG.

b) If mzf, then each loop (Q,+) with M1lt(Q,+)sG is an
abelian group.

Proof. a) Assume that (Q,+) and (Q,-°) are loops with
multiplication groups contained in G. As an immediate conse-
quence of Lemma 4, for each aeQ, the left multiplication map-
pings L+(a) and Lo(a) agree on the m-element set Q =
= L_‘}{Qi | n/n;>f}. Hence L (a) =L (a), since m>f. This
shows that a+x = a.x holds for all a,xeQ.

b) In order to show that (Q,+) is commutative, it is
sufficient to prove that L(a) = R(a) for all aeQ. If aeQ’,
this follows immediately from Lemma 5a). If a¢Q’, then L(a)
and R(a) agree on the (m+1l) - element set Q’uv{a} : for xeQ’,
Lemma 5a) implies xL(a) = xR(a), while aL(a) = aR{(a) trivi-
ally holds. Hence mzf implies L(a) = R(a). Associativity
can be shown in the same way: The associative 1law holds in
(Q,+) if and only if L(a+b) = L(b)L(a) for all a,beQ. If
aeQ’, then this follows directly from Lemma 5b). Now assume
that a¢Q’. Then L(a+b) and L(b)L(a) agree on the m+l
elements of Q‘’v{a}. Again, this implies L(a+b) = L(b)L(a).

Examples. (1) Regular permutation groups yield the most
trivial examples for Theorem 3: If G is a ragular. permutation
group operating on Q, then f£f=0 and m=n. Hence, by Theorem 3,
there exists at most one loop (Q,+) with M1lt(Q,+)sG, and
this loop must be an abelian group. But this is obvious: For
each a+*e, the right multiplication mapping R(a) and the
left multiplication mapping L(a) must both be the unique
fixed point free permutation which maps e to a. Therefore
(Q,+) 1is isomorphic to G. In particular, a loop (Q,+) with
M1t(Q,+)sSG exists if and only if G is an abelian group.

The same holds in the more general situation when G is a
Frobenius group operating on Q. Again, there is at most one
loop (Q,+) with MI1t(Q,+)sG. Such a loop exists if and only
if the Frobenius kernel of G is abelian. In this case, (Q,+)
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is isomorphic to the Frobenius kernel.

(2) For each integer nz3, the dihedral group D, is
defined as the group of symmetries of the regular n-gon. In
particular, Dn is a group of order 2n operating on an
n-element set and containing a cyclic subgroup of order n. If
n>4, then m=n and f=1 (for n odd) or f=2 (for n even).
Hence, by Theorem 3, the cyclic group of order n is the only
loop with multiplication group contained in Dhe The situation

is different for the group D In this case m=f=2, i.e. part

4t
a) of Theorem 3 can be applied but not part b). The following
multiplication tables reprezsent two different 1loops with

multiplication groups contained in D namely the cyclic group

4!
of order 4, and Klein’s four-group. The positions in the
multiplication tables which are not uniguely determined by

Lemma 4 are marked with circles:

e c
aé— 14 b
regular 4-gon
+ +|
e a b c e a b
2 ® ¢ ©® a ©® ¢ ®
b c e a b c e a
c® 2 ® c ® = @
cyclic group Klein’s
of order 4 four-group

Two loops with multiplication groups contained in D,

(3) The general linear group GL(d,q) is defined as the
group of all linear automorphism of a d-dimensional vector
space. over GF(q). Regard GL(d,q) as a permutation group
acting on the non-zero vectors of the underlying vector space.
Let (Q,°) be a loop with M1lt(Q,-)sGL(d,q). By Theorem 2,
M1t (Q, ") contains the center of GL(d,q), i.e. all scalar
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multiplications x 3 Ax, AeGF(q). This shows that certain
subgroups of general linear groups cannot contain multiplica-
tion groups of quasigroups. For instance, a quasigroup with
multiplication group contained in the special 1linear group
SL(d,q) cannot exist, unless q-1 divides d.

It can easily be seen that the loops with M1t (Q, -)sGL(d,q)
are exactly the multiplicative loops of finite semifields (cf.
Dembowski [6] and [10] for more information).

Remarks. (1) The reader may find out which of the results
stated in this section also hold in the infinite case. For
instance, Theorem 2 is valid for infinite loops as well.

(2) In order to show that the inequality of Theorem 3b)
cannot be improved, one should find a permutation group G
with m = £f-1 and a loop (Q,+) which 1is not an abelian
group such that M1t(Q,+)<G. The groups PSL(2,q) might be
good candidates (in their natural permutation representation,
these groups satisfy m = f-1).

(3) The numerical assumptions on the orbits of G which
have been used in this section (e.g. in Theorems 1 and 3) are
certainly a very rough tool. It might prove fruitful to
exploit not only numerical but also structural properties of
G,- A good example of this kind was presented in a recent
paper by Kepka and Niemenmaa [15]: They proved that, if G

e
is a cyclic group, then each loop (Q,+) with M1t (Q,+)sG
must be an abelian group.

(4) If the permutation group G is doubly transitive,

then the methods of this section do not yield any information
on the loops with MI1t(Q,+)sG. In this case one can apply
results on doubly transitive permutation groups, due to the
classification of finite simple groups. This works in particu-
lar for quasigroups of prime order, since the permutation
groups of prime degree are well known (c%. Feit [7] and [10]).

(5) The investigations of this paper were partly motivated
by the results in Johnson [12] and Smith [16] on centralizer
rings of multiplication groups of quasigroups. In particular,
the fundamental Lemmas 2 and 3 reflect properties of the



24 Th. Ihringer

centralizer ring: e.g., Lemma 3bl) states that L~){R(x)|eri}
centralizes L(a). In [13], Johnson and Smith used
centralizer rings of multiplication groups in order to develop
a character theory of finite quasigroups which generalizes the
ordinary character theory of finite groups.

(6) The question which groups occur as multiplication
groups of quasigroups seems to be even more difficult if one
considers abstract groups instead of permutation groups. The
following negative results are known: Hamiltonian groups and
Heineken-Mohamed groups are never isomorphic to multiplication
groups of quasigroups (cf. Kepka [14] or Smith [17]).

3. Further properties of multiplication groups

The following properties are known to hold for all permu-
tation groups which contain the multiplication group of a

quasigroup:
Theorem 4. Let G be a permutation group acting on a
finite set Q, and let (Q, ) be a dﬁasigroup with

M1t (Q,:)SG. Then the following holds for an arbitrary element
eeQ:

a) G is transitive on Q,

b) the (universal) algebra (Q,G) is congruence
permutable, i.e. Hle = H2H1 for all subgroups Hl,H2 of G
with G_sH ,H,,

c) N(Ge) = Ge-Z(G), where N(Ge) denotes the normalizer

of Ge in @,

d) the centralizer ring V(Q,G) of G is commutative,
e) the number of orbits of G, is 1less or equal the
number of conjugacy classes of G.

Sketch of proof, a) follows from the fact that {L(a)|aeQ}
is a transitive subset of G.

b) By Proposition 1, Con(Q,G)sCon(Q,M1t(Q,-)) =
= con(Q,-,/,\). Hence the congruence of (Q,G) permute, since
con(Q,-,/,\) has this property if (Q,*) is a quasigroup
(cf. [11]). By using the transitivity of G, it is straight-
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forward to show that 6 r— {AeG|(e,eA)e8} defines a bijec-
tive mapping from Con(Q,G) onto the set of all subgroups of

G which contain Gor and that 8, and 8, permute if and
only if the corresponding subgroups H, and H, satisfy H.H, =
= H2H1.

c) Obviously, N(Ge)QGe-Z(G). In order to show N(G) s
SGe-Z(G), it may be assumed that there is a loop (Q,+) with
neutral element e and M1lt(Q,+)sG (Proposition 2). Let Ae
eN(G,). For x := eA then G = A 'GA =G,. Hence {x} is
a l-element orbit of Gg- It is an interesting exercise to
show that this implies R, (x)eZ(G) (hint: L, (qA)A™'L, (q) te

€G_). Moreover, AR+(x)_leGe, and thus A= I\R+(x)—1

e R+(x)e

eGe-Z(G). Note that <¢) was already proved by Smith in [17].
d) Was proved by Johnson [12] and by Smith [16].

e) Holds if V(Q,G) is commutative (cf. Wielandt ([18],

p. 87).

It is unknown whether the sum of conditions of the above
theorem is sufficient for a permutation group to contain the
multiplication group of a quasigroup. The following problem
might be interesting in connection with the results of Section
2:

Problem. Find a permutation group G acting on a finite
set Q with m=f such that G does not contain an abelian
subgroup which is regular on Q.

Such a permutation group cannot contain the multiplication
group of a quasigroup: Theorem 3b) would imply each loop (Q,+)
with M1t(Q,+)sG to be an abelian group, and M1lt(Q,+) would
thus be a regular abelian subgroup of Q.
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