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FRATTINI EXTENSIONS OF UNARY ALGEBRAS

Introduction

In the present work, we study the Frattini extensions of
unary algebras, prove that every such algebra has a unique (up
to isomorphism) minimal Frattini extension, and derive some
consequences of that fact in the class of unary algebras and
in the class of finite relative Stone lattices.

A none-empty finite poset (T,=) is a (rooted) tree if it
has a unique minimal element and every principal order ideal
is a chain. Note that tree (T,s) is a special kind of meet -
semilattice.

As in [2]) T can be endowed with a unary algebra structure
by defining

R x if x is minimal in (T,s)
f(x) =
the immediate predecessor of x otherwise.
f" is defined recursively by fn(x)=f(fn-1(x)), and fo(x)=x,

VxeT.
It should be noted that with each unary operation £ in a
(non void) set is associated a quasi order = given by
asfb < 3newo = Nu{0} : a=fn(b).

The results obtained in [2] enable us to state:

1. Theorém. For a finite tree (T,=), the map f: T—>T
defined above is the only possible map on T such that s
equals =, that is, the associated quasi order coincides with

the initial one (and is therefore a partial order on T).

Note: An analogous statement holds for a finite disjoint
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union of trees (also called a forest).

So, each tree can be viewed both as a semilattice S=(T,A)
and as a unary algebra U=(T,f) where f induces the same
order as A induces. Note that the subalgebras of U are exactly
the non void order ideals of S; they form a distributive
sublattice of the lattice of subalgebras of S.

From now on, unary algebra will stand for mono-unary
algebra. Recall that every such finite algebra is a disjoint
union of connected subalgebras.

2. Theorem [5]. Every mono-unary algebra is a disjoint
union of connected mono-unary algebras, in a unique way. Every
connected mono-unary algebra (A,f) has s subuniverse C with
(C,f) 1isomorphic either to a finite cycle, or to w with the
successor function. The set A-C can be given the order of a
disjoint union of (rooted) trees so that f acts on A-C ., by
mapping the root of each tree into C and mapping each other
element of A-C into its unique predecessor.

So, each connected component is either I) a cycle, or II)
a (not necessarily rooted) tree, or III) a union of rooted
trees with roots in a cycle.

Of course I) and II) can be viewed as "degenerate"
instances of III); a connected component of type I, consisting
of a cycle only, will be called an isolated cycle. The
connected component to which an element x belongs will be
denoted Cx.‘

Consider now the quasi order =c associated with (A, 1),
and the equivalence relation: aRb & asfb and bsfa. The
quotient set A = A/R 1is partially ordered by x=<y iff X<y
for x,yeA; each class of R is a singleton or a cycle, and if
X = {x}, then X is maximal in (&,s) iff x is maximal in
(A, sg) .

. Note that R is a congruence relation on (A,f). So, to
each unary algebra we associate a homomorphic image A-.that has

no non-trivial cycles.

3. Theorem. Let (A,f}) be a finite unary algebra, and a

be a maximal element in (&,=<), i.e. a = {a} and a = f(x)
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for all x*a, or a is an isolated cycle; Then A-a is a
maximal subalgebra of (A,f), and every maximal subalgebra can
be obtained in this way.

Proof. We want to show that B is a maximal subalgebra of
(A,f) iff i) B = A-{a}, with a maximal, or ii) B = A-C, with
C an isolated cycle. Certainly if we have i) then B is maximal
subalgebra of A, since x#a = f(x)=a; if we have 1ii) then
again B is a maximal subalgebra of A, since C is an isolated
cycle, and <Bu{xi}> = A, inec. Now let ‘B = A-X be a maxi-
mal subalgebra. If X = {xi} then certainly azx; = f(a):xi;
if |X|>1, then inex, <A-(X-{x;})>>B, so <A-(X-{xj})> = A;
therefore <x4>=X, and X is cycle. The fact that A-X is a
subalgebra ensures that X is an isolated cycle.

Note that if A is infinite, the situation remains essen-
tially the same, as long as there are maximal elements, or
isolated cycles. If this is not a case, then A contains no
proper maximal subalgebras. -

Recall that the intersection of all proper maximal subal-
gebras of A is called the Frattini subalgebra of A. It is the
set of all non-generators of A and it coincides with A exactly
when there are no maximal subalgebras. So the results above
enable us to state the following:

4. Theorem. The Frattini subalgebra of a unary algebra is
the set of elements x such that

a) Cx 1is not an isolated cycle, and

b) Jy#x : f(y)=x.

Suppose A is the Frattini subalgebra of a unary algebra B.
We will then write A=¢(B) and call B a Frattini extension of
A. The existence of a Frattini extension for every unary
algebra is stated as follows:

S. Theorem. Let A be a unary algebra. There exists a unary
algebra B such that A=o0(B). Moreover, the algebras of minimal
cardinality satisfying this condition are all isomorphic.

Proof. We want to construct a Frattini extension B of A,
with minimal cardinality. Theorem 4 shows that what we need to
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do is to adjoin an element to each maximal element in the
connected components of type II and III, and an element to
each isolated cycle.

Note that, if there are no maximal elements and no isolat-
ed cycles, then A=s(A).

The minimal Frattini extension (unique up to isomorphism)
of a unary algebra A will be denoted A*. The procedure
described above to obtain A* from A ensures the following:

6. Corollary. The cardinality of the minimal Frattini
extension A* of a unary algebra A is given by :

|A*| = |A] + |{isolated cycles in A}| + |maximal elements
in all connected components of type II) and III) |

or equivalently:
|A*| = |A| + |maximal elements of (A, =s)|.

If we iterate the application of ¢ to a finite algebra A,

the situation is as follows: for xeA, let n, denote the
minimum integer that takes x into a cycle, that is,
n, = min {n : £f%(x) is in a cycle} = height of x in (3&,s).

Then the following result is a straightforward consequence of
Theorem 3.

7. Theorem. Let A be a finite unary algebra. Then zn(A)

is void iff n 2= max n_+1.
Xe€A

The map * defired in the class of wunary algebras by
A — A* has the following properties:

8. Theorem., Let (A,f), (B,g) be unary algebras. Then:
1) a*s8* = A=B.
2) If A is a subalgebra of B, then A* is isomorphic to
a subalgebra of B*.
3) If B is any Frattini extension of A, then N
isomorphic to a subalgebra of B.

Proof., 1) Suppose w* : A* — B* is an isomorphism. Then
as.b & w*(a)sgw*(b)', since a=f"b & " (a)=¢" (£ (b))=g™"*(b).
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, . L ok T T
Consider the maximal classes in A : X is maximal in A iff

W*(x) is maximal in B*. It is easily verified that w* x =

* 2(A)
= wlA : A-—- B is an isomorphism.

2) Take a subalgebra A of B. We know how to construct A*
and B*. To prove that a* is isomorphic to a subalgebra of B*,
we only need to consider again the elements in maximal classes
of A : if X = {x} 1is maximal in A and also in B, then there
must exist an element covering x both in B* and in A*, that
is, an element y=#x s.t. its image, under f, is x, both in A*
and in B*; if X = {x} and X is maximal in A but not maximal
in B, then there is y#*x in B s.t. Y covers X in B. But since
X is maximal in A, there must be an element covering x also in
A*. Now suppose X is a cycle. Then either it is also an iso-
lated cycle in B, or there is an element y¢x in B such that
g(y)eX; the same reasoning as before applies, again bearing in
mind the construction of A* ana B*.

3) Let o(B)=A, and construct A*. Since A satisfies condi-
tions a) and b) of Theorem 3 relative to B, for each
xXeMax(A,s), dyeB, y*x : g(y)ex; for each xeMax(A,=s), pick

such one y(x). Then A v | _ | _J_ y(x)] = A% ¢ B. since A is a
xXeMaxA
subalgebra of B, we have only to consider the elements in

A*-A and to verify that, for each such x, its image in AY s
the same as in B. But this is immediately ensured by our
choice of the elements y(x),xeMaxA.

Note: It is sufficient to consider any unary algebra
consisting of isolated cycles to see that the map #* is not
surjective. We can in fact describe those unary algebras that
are minimal Frattini extensions: they are those algebras
(A, £) such that |A| = |e(a)] + |maximal elements of
(2(AY,s)|, by Corollary 6 above. So, for example,
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is a minimal Frattini extension (5=4+1), whereas
NS
NS
is not (5#2+1).

It was first noted in [4, p. 110] that a distributive
lattice L is isomorphic to the lattice of subuniverses Sub A
of a unary algebra. (A, £) precisely when the set of filters
containing a given prime filter in L, forms a chain under set
inclusion. In the finite case, that condition is equivalent to
the fact that each interval in L is a Stone lattice, that is,
L is a (finite) relative Stone lattice ([1], [6]);

Following [2]), [3], we will call an RS lattice a finite
distributive lattice such that each closed interval is Stone.

An element x of a unary algebra (A, £) is fixed when
f(x)=x. (i.e. {x} is a trivial cycle in (A,f)).

9. Theorem [2]. A finite poset P with more than one
element is an RS lattice with n atoms if and only if it is
isomorphic to Sub A, for some finite unary algebra (A,f) with
n fixed points and no non-trivial cycles. Moreover, for each
RS lattice L there is exactly one unary algebra A without non-

-trivial cycles such that L = Sub A.

'In the class of all finite unary algebras, consider now
the equivalence relation ~ defined by U,~U, < Sub UlsSub u,.
Then each equivalence class of ~ contains exactly one algebra
without non trivial cycles, and therefore there is an onto,
one-one correspondance between the equivalence classes of
unary algebras and the class of all RS lattices.

The representation of an RS lattice L mentioned in Theorem 9
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above is obtained by endowing the poset of Jjoin irreducibles
J(L) with a unary algebra structure. Under this representa-
tion, the unary subalgebras correspond exactly to the non void
order ideals of (J(L),s).

We can now use the preceeding results on unary algebras to

prove the following:

10. Theorem, Given any RS lattice L, there exists a unique
up to isomorphism RS lattice L, such that:

1) L = (Ax : X is a coatom in L,1.

2) L is a homomorphic image of Ll'
3) If L, is an RS lattice satisfying L=z(Ax, x is a coatom

in L,] then L, is a homomorphic image of L,.

Proof. 1) Take the unary algebra A=(J(L),f) that repre-
sents L, that is, L=zSub A; in the case of unary algebras with
no cycles, forming A* is equivalent to adjoining new maximal
elements on each top of each tree. We thus get another unary
algebra A*, also without cycles. Take leSub,Af. Then, the
subalgebras of A (that is, the elements of L) are certainly
contained in A, and A corresponds exactly to the meet of the

coatoms in L that is, to the intersection of maximal subal-

ll
. *
gebras in A .

2) Since J(L) is embedded in the carrier of A*, by
Birkhoff’s duality, the corresponding lattices L. and L., must

1
be such that L is a homomorphic image of Ll.
3) Suppose L=(A coatom of L2]' Then 1Sub A=A corre-
sponds to the meet of the coatoms of Lz' that is, to the in-
tersection of the maximal subalgebras in A2=(J(L2),f). So

A=n(A2), and therefore A* is a subalgebra of A by Theorem

2’
%*
8.3. So, the carrier of A is order embedded in J(Lz), and by

duality there is an homomcrphism from L, onto Sub A* = Ll'

call a finite lattice L, an extension of a 1lattice L if
Lz (A coatoms in L;1. Note that an extension of an RS lattice
does not have to be an RS lattice. In fact the extension of
minimal cardinality of any lattice L (obtained just by adjoin-

ing a new 1) is RS iff L is a chain. However:
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11. Corollary. Every RS lattice L has up to isomorphism a

unique RS lattice extension of minimal cardinality.

its
the

(1]

(2]

{31]

(4]
(5]

(6]

Proof. Consider the unary algebra A = (J(L),f) and take

f . . * * ,
minimal Frattini extension A . By Theorem 10, Sub A is
minimal RS extension of L.
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