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FRATTINI EXTENSIONS OF UNARY ALGEBRAS 

Introduction 

In the present work, we study the Frattini extensions of 
unary algebras, prove that every such algebra has a unique (up 
to isomorphism) minimal Frattini extension, and derive some 
consequences of that fact in the class of unary algebras and 
in the class of finite relative Stone lattices. 

A non-empty finite poset (T,s) is a (rooted) tree if it 
has a unique minimal element and every principal order ideal 
is a chain. Note that tree (T,s) is a special kind of meet -
semilattice. 

As in [2] Τ can be endowed with a unary algebra structure 
by defining 

: if χ is minimal in (T,s) 
f(x) = 

the immediate predecessor of χ otherwise. 

f n is defined recursively by fn(x)=f(fn_1(x)), and f°(x)=x, 
VxeT. 

It should be noted that with each unary operation f in a 
(non void) set is associated a quasi order given by 

asfb <=> 3nelN0 = INu{0} : a=fn(b) . 

The results obtained in [2] enable us to state: 

1. Theorem. For a finite tree (T,s), the map f : Τ —» Τ 
defined above is the only possible map on Τ such that s f 

equals s, that is, the associated quasi order coincides with 
the initial one (and is therefore a partial order on T). 

Note: An analogous statement holds for a finite disjoint 
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union of trees (also called a forest). 
So, each tree can be viewed both as a semilattice S=(T,A) 

and as a unary algebra U=(T,f) where f induces the same 
order as Λ induces. Note that the subalgebras of U are exactly 
the non void order ideals of S; they form a distributive 
sublattice of the lattice of subalgebras of S. 

From now on, unary algebra will stand for mono-unary 
algebra. Recall that every such finite algebra is a disjoint 
union of connected subalgebras. 

2. Theorem [5], Every mono-unary algebra is a disjoint 
union of connected mono-unary algebras, in a unique way. Every 
connected mono—unary algebra (A,f) has s subumverse C with 
(C,f) isomorphic either to a finite cycle, or to ω with the 
successor function. The set A-c can be given the order of a 
disjoint union of (rooted) trees so that f acts on A-C. by 
mapping the root of each tree into C and mapping each other 
element of Α-C into its unique predecessor. 

So, each connected component is either I) a cycle, or II) 
a (not necessarily rooted) tree, or III) a union of rooted 
trees with roots in a cycle. 

Of course I) and II) can be viewed as "degenerate" 
instances of III); a connected component of type I, consisting 
of a cycle only, will be called an isolated cycle. The 
connected component to which an element χ belongs will be 
denoted Cx. 

Consider now the quasi order associated with (A,f), 
and the equivalence relation: aRb a¿fb and bsfa. The 
quotient set A = A/R is partially ordered by x^y iff x^fy 
for x,yeA; each class of R is a singleton or a cycle, and if 
χ = {χ}, then χ is maximal in (Ä,s) iff χ is maximal in 
(A,sf). 

Note that R is a congruence relation on (A,f). So, to 
each unary algebra we associate a homomorphic image A~that has 
no non-trivial cycles. 

3. Theorem. Let (A,f) be a finite unary algebra, and ä 
be a maximal element in (Ä,^), i.e. ä = {a} and a * f(x) 
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for all x*a, or a is an isolated cycle. Then A-a is a 
maximal subalgebra of (A,f), and every maximal subalgebra can 
be obtained in this way. 

Proof. We want to show that Β is a maximal subalgebra of 
(A,f) iff i) Β = A-{a}, with a maximal, or ii) Β « Α-C, with 
C an isolated cycle. Certainly if we have i) then Β is maximal 
subalgebra of A, since x*a f(x)*a; if we have ii) then 
again Β is a maximal subalgebra of A, since C is an isolated 
cycle, and <BU{x^}> = A, Vx^eC. Now let Β = A-X be a maxi-
mal subalgebra. If X = {x^} then certainly a*x^ f(a)*x^; 
if IXJ >1, then V X^X, <A-(X-ix^)>dB, so <Α-(Χ-{χ^})> = A; 
therefore <x^>=X, and X is cycle. The fact that A-X is a 
subalgebra ensures that X is an isolated cycle. 

Note that if A is infinite, the situation remains essen-
tially the same, as long as there are maximal elements, or 
isolated cycles. If this is not a case, then A contains no 
proper maximal subalgebras. 

Recall that the intersection of all proper maximal subal-
gebras of A is called the Frattini subalgebra of A. It is the 
set of all non-generators of A and it coincides with A exactly 
when there are no maximal subalgebras. So the results above 
enable us to state the following: 

4. Theorem. The Frattini subalgebra of a unary algebra is 
the set of elements χ such that 

a) Cx is not an isolated cycle, and 
b) 3y*x : f(y)=x. 

Suppose A is the Frattini subalgebra of a unary algebra B. 
We will then write Α=β(Β) and call Β a Frattini extension of 
A. The existence of a Frattini extension for every unary 
algebra is stated as follows: 

5. Theorem. Let A be a unary algebra. There exists a unary 
algebra Β such that A=0(B). Moreover, the algebras of minimal 
cardinality satisfying this condition are all isomorphic. 

Proof. We want to construct a Frattini extension Β of A, 
with minimal cardinality. Theorem 4 shows that what we need to 
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do is to adjoin an element to each maximal element in the 
connected components of type II and III, and an element to 
each isolated cycle. 

Note that, if there are no maximal elements and no isolat-
ed cycles, then A=e(A). 

The minimal Frattini extension (unique up to isomorphism) 
of a unary algebra A will be denoted A*. The procedure 
described above to obtain A from A ensures the following: 

6. Corollary. The cardinality of the minimal Frattini 
extension A* of a unary algebra A is given by : 

I A*I = |A| + I{isolated cycles in A>| + |maximal elements 
in all connected components of type II) and III) | 

or equivalently: 
|A*| = |A| + Imaximal elements of (A,s)|. 
If we iterate the application of 0 to a finite algebra A, 

the situation is as follows: for xeA, let η χ denote the 
minimum integer that takes χ into a cycle, that is, 
η χ = min {η : fn(x) is in a cycle} = height of χ in (X,s). 

Then the following result is a straightforward consequence of 
Theorem 3. 

7. Theorem. Let A be a finite unary algebra. Then 0Π(Α) 
is void iff η s max η +1. 

xeA 
The map * defined in the class of unary algebras by 

A —» A has the following properties: 
8. Theorem. Let (A,f), (B,g) be unary algebras. Then: 

1) A*sB* => AsB. 
2) If A is a subalgebra of B, then A* is isomorphic to 

a subalgebra of B*. 
3) If Β is any Frattini extension of A, then A is 

isomorphic to a subalgebra of B. * * * 
Proof. 1) Suppose ψ : A —» Β is an isomorphism. Then 

asfb ψ* (a) ( b) ι since a=fnb 0*(a)=^*(fn(b) )=gn^*(b) . 
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* — . * Consider the maximal classes in A : χ is maximal in A iff 
~* . . ~~* . * Φ (χ) is maximal in Β . It is easily verified that ψ, = 

* |°(A ) 
= : A —» Β is an isomorphism. 

2) Take a subalgebra A of Β. We know how to construct A* * * * 
and Β . To prove that A is isomorphic to a subalgebra of Β , 
we only need to consider again the elements in maximal classes 
of Ä : if χ = {χ} is maximal in Ä and also in B, then there 

* * 
must exist an element covering χ both m Β and in A , that 
is, an element y*x s.t. its image, under f, is x, both in A* 
and in Β ; if χ = {χ} and χ is maximal in Ä but not maximal 
in B, then there is y*x in Β s.t. y covers χ in B. But since 
χ is maximal in Ä, there must be an element covering χ also in 
A*. Now suppose χ is a cycle. Then either it is also an iso-
lated cycle in B, or there is an element y^x in Β such that 
g(y)ex; the same reasoning as before applies, again bearing in * * mind the construction of A and Β . 

* 
3) Let 0(B)=A, and construct A . Since A satisfies condi-

tions a) and b) of Theorem 3 relative to B, for each 
xeMax(A,3), 3yeB, y*x : g(y)ex; for each xeMax(A,s), pick 
such one y(x) . Then Α υ [_ y(x)| = A* £ B. Since A is a 

*-xeMaxA > 
subalgebra of Β, we have only to consider the elements in 
* . . . * . A -A and to verify that, for each such x, its image in A is 

the same as in B. But this is immediately ensured by our 
choice of the elements y(x),xeMaxA. 

Note: It is sufficient to consider any unary algebra 
consisting of isolated cycles to see that the map * is not 
surjective. We can in fact describe those unary algebras that 
are minimal Frattini extensions: they are those algebras 
(A,f) such that |A| = |a(A)| + |maximal elements of 
(0(A),s)I, by Corollary 6 above. So, for example, 
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e I 
0 1 O /χ 

o -. • ι • •) e 

is a minimal Frattini extension (5=4+1), whereas 
o o Ν ^ 

« o χ / 
Ρ 

is not (5^2+1). 
It was first noted in [4, p. 110] that a distributive 

lattice L is isomorphic to the lattice of subuniverses Sub A 
of a unary algebra (A,f) precisely when the set of filters 
containing a given prime filter in L, forms a chain under set 
inclusion. In the finite case, that condition is equivalent to 
the fact that each interval in L is a Stone lattice, that is, 
L is a (finite) relative Stone lattice ([1], [6]); 

Following [2], [3], we will call an RS lattice a finite 
distributive lattice such that each closed interval is Stone. 

An element χ of a unary algebra (A,f) is fixed when 
f(x)=x. (i.e. {χ} is a trivial cycle in (A,f)). 

9. Theorem [2]. A finite poset Ρ with more than one 
element is an RS lattice with η atoms if and only if it is 
isomorphic to Sub A, for some finite unary algebra (A,f) with 
η fixed points and no non-trivial cycles. Moreover, for each 
RS lattice L there is exactly one unary algebra A without non-
-trivial cycles such that L s Sub A. 

In the class of all finite unary algebras, consider now 
the equivalence relation - defined by S u b U^ssSub U2· 
Then each equivalence class of ~ contains exactly one algebra 
without non trivial cycles, and therefore there is an onto, 
one-one correspondance between the equivalence classes of 
unary algebras and the class of all RS lattices. 

The representation of an RS lattice L mentioned in Theorem 9 
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above is obtained by endowing the poset of join irreducibles 
J(L) with a unary algebra structure. Under this representa-
tion, the unary subalgebras correspond exactly to the non void 
order ideals of (J(L),s). 

We can now use the preceeding results on unary algebras to 
prove the following: 

10. Theorem. Given any RS lattice L, there exists a unique 
up to isomorphism RS lattice such that: 

1) L S (AX : χ is a coatom in L^]· 
2) L is a homomorphic image of L^. 
3) If L 2 is an RS lattice satisfying LS(AX, χ is a coatom 

in L 2] then L^ is a homomorphic image of L 2· 

Proof. 1) Take the unary algebra A=(J(L),f) that repre-
sents L, that is, LsSub A; in the case of unary algebras with 

* . . . no cycles, forming A is equivalent to adjoining new maximal 
elements on each top of each tree. We thus get another unary 

* * 

algebra A , also without cycles. Take I^ssub A . Then, the 
subalgebras of A (that is, the elements of L) are certainly 
contained in A, and A corresponds exactly to the meet of the 
coatoms in L , that is, to the intersection of maximal subal-* 
gebras in A . 

* 
2) Since J(L) is embedded in the carrier of A , by 

Birkhoff's duality, the corresponding lattices L and L^ must 
be such that L is a homomorphic image of L^. 

3) Suppose Ls(Λ coatom of I^]· T h e n 1sub A = A corre-
sponds to the meet of the coatoms of L2, that is, to the in-
tersection of the maximal subalgebras in A =(J(L_),f). So 

* . A=0(A_), and therefore A is a subalgebra of A_, by Theorem 
* . . 8.3. So, the carrier of A is order embedded in J(L2), and by 

* 
duality there is an homomcrphism from L 2 onto Sub A = L^. 

Call a finite lattice an extension of a lattice L if 
LS(A coatoms in L^]. Note that an extension of an RS lattice 
does not have to be an RS lattice. In fact the extension of 
minimal cardinality of any lattice L (obtained just by adjoin-
ing a new 1) is RS iff L is a chain. However: 
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11. Corollary. Every RS lattice L has up to isomorphism a 
unique RS lattice extension of minimal cardinality. 

Proof. Consider the unary algebra A = (J(L),f) and take 
. . . . * * its minimal Frattini extension A . By Theorem 10, Sub A is 

the minimal RS extension of L. 
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