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REMARKS ON MULTIPLIERS FOR RIGHT INVERSES IN D-ALGEBRAS

Detailed studies of multipliers with integral operators in convolu-
tional algebras were given recently by Dimovski [2] and Bozhinov [1]
The purpose of the present note is to indicate that some of these re-
sults can be obtained without any topological assumptions in a rather
general form.

Denote by L{X) the set of all linear operators with domains and
ranges in a linear space X over a field ¥ of scalars and by Lo(X)
the set of operators Ae L(X) with dom A = X,

Through the paper we shall admit the following assumptions, de-
noted by (A) for the sake of brevity:

(A) Let X be a D-algebra, i.e. a commutative algebra (over #)
with a right invertible operator De L(X) such that dom D is subalge-

bra of X:
x, yedom D implies xye dom D.

We assume that ker D ¢ {0} Let F be an initial operator for D cor-
responding to a right inverse R of D which has property

(1) 3 YV Rxerx (domR = X).
OdrekerD xeX

(for all notations connected with right invertible operators and their
properties, cf. the author [3]).
Formula (1) implies that

(2) R(xy) = xRy = yRx.
Indeed, R(xy) = r(xy) = xry = xRy. Similarly, R(xy) = R(yx) = yRx.
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Theorem 1. Suppose that (A) holds and that MeLo(X) sa-

tisfies the condition
(3) M(rx) = mx for all xe‘X, where m = Mr.
(i) ¥ MR = RM then M is of thé form
(4) Mx = D(mx) for all xeX;
(ii) f M is of the form (4) then MR = RM if and only if
(5) F(mx) = O for all xeX.

Proof. (i) Suppose that MR = RM. Condition (3) implies that

for all xe X we have

0 = (MR - RM)x = MRx - RMx = M{rx) - RMx = mx - RMx,
i.e. mx = RMx. Hence mxedom D for all xe€e X and Mx = DRMx =
= D(mx). (ii) Suppose that M is of the form (4). Then for all xe X
we have

(MR - RM)x =« M{rx) - RD{imx) = M{rx) - (I-F)(mx) =

=mx - mx + Flmx) = F{mx).

Thus MR = RM if and only if F(mx) = O for all x e X.
Corollary 1. Suppose that (A) holds and that Me LO(X) is

a multiplier, i.e.

(6) Mxy) = xMy = yMx for all x,y e X.

Then M satisfies (i) and (ii) of Theorem 1. Indeed, by (6), we have

M(rx) = xMr = xm = mx for all xe X, i.e. (3) is satisfied.
Theorem 2. Suppose that (A) holds, MeLo(X) satisfies (3)

and MR=RM. Then ker M = {O} if and only if m = Mr is not a zero

divisor.
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Proof. By our assumptions, if Mx = O then D(mx) = O. This
implies that mx = ze ker D. By (5), we get z = Fz = F(mx) = 0.
Hence mx = 0. If m is not a zero divisor, we find x = 0 and
ker M = { 0}. If m is a zero divisor then there exists an x ¢ O
such that RMx = MRx = M(rx) = mx = 0. This implies that Mx «
= DRMx = 0, i..e. O f xe ker M. Hence ker M ¢ {0}

Corollary 2. Suppose that all assumptions of Theorem 2 are

satisfied. Then the equation
(7) Mx = y,

where ye¢ X is arbitrary, has at most a unique solution.

Theorem 1 can be generalized for higher powers of R in the
following manner.

Theorem 3. Suppose that (A) holds, Me LO(X) satisfies (3).
Let ne N be arbitrarily fixed. Then

(1) ¥ MR™ = R™M then Mx = D(mx) for all xe X, where m = Mr
(i.e. M is of the form (4));

(ii) I M is of the form (4) then MR™ = R™M if and only if
Flmx) = O for all xe X (i.e. (5) is satisfied).

Proof. (i) By an easy induction we prove that

(8) R™ = r™ for all xeX, neN .

This implies

0 =« (MR™.R™)x = MR™ - R"Mx = M(rx) - R™Mx =
- rn'lxMr - R™Mx = rn-lmx - R™Mx = Rn'l(mx) - R™Mx.
As before, we conclude that mxe domD for x X and

Mx = D"R™Mx = Dan'l(mx) = Dimx) for xeX.
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(ii) Since M is of the form (4), we find for xe X

(MRP-R®™M)x = M(r™) - R®™D(mx) = r* %Mr - r* 'RD(mx) =

e e PPN ) ™l - ™ e+ Flmx) = Flmx).

Therefore MR™ = R™M if and only if F(mx) = O for all xe X.
Theorem 4. Suppose that condition (A) holds and there exists
a de R such that D satisfies a Duhamel-like condition

(9) D(xy) = xDy + dxFy for all xe X, yedom D.
Then -
(10) ' Flxy) = F(xFy) .for all xeX, yedom D.

Proof. Let xe X, yedom D be arbitrary. By definition of F,
(2) and (9), we find

F(xy) = (I-RD)xy = xy - R[xDy + dxFy] = xy - R(xDy) -
- dR(xFy) = xy - xRdy - drxFy = xFy - drxFy = (1-dr)xFy.
i.e.
(11) Flxy) = (1-dr)xFy for all xeX, yedom D.

If we put in (11) Fy instead of y, we obtain

F(xFy) = (1-dr)xF2%y = (1-dr)xFy = F(xy) .

Formula (11) immediately implies
Corollary 3. Suppose that all assumptions of Theorem 4 are

satisfied. Then

(12) F(zx) = (1-dr)zFx for all zeker D, xedom D.

Corollary 4. Suppose that all assumptions of Theorem 4 are

satisfied and
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(13) (1-dr)x = O for all xeX.
Then
(14) Fl(zx) = 0 for all zeker D, xeX.

Example 1. Suppose that X = C(R ), D = i, R -} )
+ dt 0
(Fx)(t) = x(0). Define the multiplication in X as the convolution
t

(15) (x % y) (1) -f x{t-s)y(s)ds for x,yeX.
0
Clearly, X is a D-algebra, dom D = Cl(R+) is ; subalgebra of X,
ker D 4 {0} Moreover '
t
(Rx)(t) -j x(s)ds = x#r, where r(t)=1.
0
It is also well-known that condition (9) is satisfied with d = 1,
Thus in this case we have 1 - dr = O, i.e. condition (13) is sa-
tisfied.
Note that, by the Titchmarsh theorem, X is an algebra without
zero divisors.
Corollary 5. Suppose that all assumptions of Theorem 4 are

satisfied. Then
(16) Flxy) = F[(Fx)(Fy)] for x,yedom D.

Proof. 1f we put in (10) Fx instead of x, we find F(yFx) =
= F[(Fx)(Fy)]. But, again by (10), we have F[(Fx){(Fy)] =
= F(yFx) = Flxy).

Theorem 5. . Suppose that condition (A) holds, D stisfies (9),
Me LO(X) and MR = RM. Then
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(i) me dom D and Dm = dm. In particular, if d = O then me ker D;

(ii) f 4 40 and equation (7) has a unique solution for every yeX
then Fm ¢ O.

Proof. (i) By definition, m = Mr = D(mr) = mDr + dmFr =
= dmr = drm = dRm (since Dr = O and Fr = r). Hence medom D
and Dm = dm., If d = O then Dm = O.

(ii) By Corollary 2, m is not a zero divisor. If we put in con-
ditionl (5) Dx instead of x, we obtain F(mDx) = O for all xe dom D.
Let ye¢ X be arbitrary and let x e dom D be the unique solution of (7).

Theorem 4 and Corollary 5 together imply that

Fy = FMx = FD{mx) = F(mDx + dmFx) = F{mDx) + dF(mFx) =
= dF(mFx) = dF[(Fm)(Fx)].

if Fm = O then Fy = 0. This is a contradiction with our assumption
that ye X is arbitrary. Hence Fm £ O.

Corollary 6.. Suppose that all assumptions of Theorem 5 are
satisfied. If @ # O then equation (7) can be written in an equivalent

form

(17) (1 - 2£r>mx - 1% y, where yeX is arbitrary.

Proof. By Theorem 5, Dm = dm, Fm # 0. By definition,
Fm = {I-RD)Jm =m - rDm = m - drm = (1 - dr)m. Hence for xe X
we have Mx = D(mx) = xDm + dxFm = x{dm) + dx(1 - dr)m =
=d(2 - dr)mx = 2d(1 - %r)m, which implies (17).

Corollary 7. Suppose that assumptions of Theorem 5 are sa-
tisfied and d # O. If the operator 1 - 4 R is invertible then equa-

2
tion (17) can be written in an equivalent form

1 a\™?
(17") mx=-—za(l-§-R) y for all yeX.
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d
?R)u for

all ue X. This and the invertibility of the operator 1 - %R together
imply (17°).
Proposition 1. Suppose that an operator De L(X) satisfies

condition (9), A,BGLO(X) are multipliers and Az = z for all

Proof. By definition, we have (1- %—r)u - (1-

ze ker D. Then the operator D1 = DA + B also satisfies condi-
tion (9), i.e.

Dl(xy) - yDyx + dyF;x for all xedom D, yeX,
where Fl = FA is a projection onto ker D (in particular, A = 1).
Proof. Since Flz = FAz = Fz =».z for all zeker D, we con-

clude that F1 is a projection onto ker D. By our assumptions, for

all xe dom D, ye X we have
Dl(xy) = DA(xy) + Blxy) = D(yAx) + yBx = yDAx + d(FAx)y +

+ yBx = y(DA +b)x + d(FAx)y = yD;x + dyF,x.

1
Condition (9) can be written in a symmetric form
1 d
(18) Dlxy) = §(ny +yDx) + 5 (xFy + yFx) for all x,ye dom D.

Indeed, the commutativity of X and condition {9) together imply

that for x,ye dom D we have

1
Dixy) = > [Dxy) + D(yx)] = %[ny + dyFx + xDy + dxFy] =
1 d
=3 (xDy + yDx) + = (xFy + yFx).

Formula (18) shows that X is a D-algebra with p =—12-
the non-Leibniz component fD(x,y) a % (xFy + vFx). (cf. [3],
Chapter. 6).

and with
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Note. If dim ker D = 1 then ker D = lin{r} anc Fx = p(x)r
for x e X, where ¢ is a linear functional defined on X and such that
plr) = 1.

Theorem 6. Suppose that all assumptions of Theorem 5 are
satisfied and m = Mr is not a zero divisor. Consider an initial

value problem
(19) Dx - ax =y, Fx = X,

where a,yeX, x € ker D are given. Then x = rv + X is a solution

of (19) if and only if v is a solution of the equation
(20) (1 -ralvay+ ax .

Both equations have simultaneously a unique solution (or not).

Proof. Consider the auxilia;ry problem
(21) Du =y, Fue=x,

where ye X, x € ker D are given. This problem has a unique solu-
tion u = ry + x_. Indeed, write w = u - X . Then Fw = Fu - Fxo =
“x_-x_ =0, D\v-D(u-xo)-Du-on-Du-y. By (9), we
get Mw = Dimw) = mDw + dmFw = mDw = my. By (5), we have
Flmw) = 0. Thus, we obtain mw = mw - Flmw) = (I - F)(mw) =
= RD(mw) = RMw = rMw = rmy. This implies that m(w - ry) « O,
Since m 1is not a zero divisor, we conclude that w - ry = 0, i.e.
w=ryandu-=w+x°-ry+x°.

If v satisfies the equation (20) and x = rv + X then DX =
= Dlrv + x ) = DRv+ Dx = v, Fx = F{rv + x ) = FRv + Fx_=x

) o o o ‘o

and Dx - ax = v - a(rv+x°) = (1 - ar)v - ax =y + ax_ - &x_ =y.
Hence, x is a solution of the problem (19). On the other hand, in

order to solve (19), write u = (1-ra)x. Then we have
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Du = Dx - D(rax) = Dx - DR(ax) = Dx - ax = y,
Fu = F(x - rax) = Fx - FR(ax) = X

Hence, u is a solution of the problem (21), i.e. u = Ty + x _.

)
By (9), we find

Mu = D(mu) = mDu + dmFu = my + dmx = m(y + dxo).
But, by our definition, if we write v = Dx, we get

m(y+dxo) = Mu = M(x-rax) = Mx - M{rax) = D(mx) - D(mrax) =
= mDx + dmFx - mraDx - dmraFx = (m-mra)(Dx+dFx) =
= (m-mra)(v+dx ) = m(l-ra)(vsdx ),
o o

which implies
0= m[(l-»ra)(wdxo) - (y+dx°)] = m[(1-ra)v - y - d(raxo) .
Since m is not a zero divisor, we conclude that
(1-ra)v = ydrax_ = y + ax_Dr + dax Fr = y + D(rax ) =

=y + DR(ax ) = y + ax_

since Dr = 0 and Fr = r, by our assumption that r ker D, This means

that v satisfies (20), Since v = Dx, we have x = Rv + Fx =

=TV +X_. This and $20) together imply that ‘x is a solution of (19).
Theorem 7. Suppose that all assumptions of Theorem 4 are

satisfied and d = 0. Then
(22) r"e ker D for every neN .

Proof. By our assumption that d = 0, we get from (9) that
D(zx) = zDx for all ze ker D, x ¢ X. This implies
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(23) D™(zx) = zD™ for all ze ker D, xeX, neN.

i i Dr = 0. Suppose that D'r" = O
By our assumption, re ker D, i.e. Dr . PP

for an arbitrarily fixed n>2. Then, by (23), we obtain that

Dn+lrn+1 - Dn+1(r°rn) - D™ L rD(D"™) = 0

which proves (22).
Theorem 7 permits us to apply all previous considerations to
higher powers of‘ R™ in another way. Namely, we have
Corollary 8, Suppose that D, R, F satisfy condition (A)

and (9) with d = 0, i.e. we have
D(xy) = xDy for x X,y domD.

Let ne N be arbitrarily fixed. Then the operators D = D", R 0" R" and
n-1
F, = Z R*pD"
k=0
satisfy also condition (A) with r - rr.
Proof. Theorem 7 implies that r, - r’e ker D = ker D",
By the Taylor formu]n, an initial operator F for D - D" correspond-
ing to- R - R"
n-1
Fo=1-RD =1-R"D"- ZRkFDk
k=0

By (8), we have R x = R™ = % = r x for all xe X,
To conclude our considerations, we should point out that the
assumption (1) is, indeed, not very restrictive. This is shown by
Example 2. Suppose that X, D, R, F are defined as in Exam-
ple 1. We have there: r(t) =1 and d = 1. Also, since dim ker D= 1,
we may write ker D = lin {r}. Suppose that R, # R is a right inverse
of D. Then an initial operator F correspondmg to R1 is F 1x - pO)r
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for x€ X, where ¢ is a linear functional defined on X such that ¢(r)=1.
This implies that R,x = Rx - ¢(Rx)r = Rx - plrx)r for x e X.

Consider now the so-called Berg-Dimovski convolution determined

by the functional ¢:
t

(24) ('(x$y)t) - got{f x(t + 7+ 6)y(6)d6] for x,yeX
; r

(ef. [27, {1]), where the suBscript "t" means that the functional @,
acts on the variable r. Again X is a D-algebra with respect to the

multiplication defined by (24). And we also have

t t T
(r;_X)(t) = 9 '[x(e)dﬁ -y)ffx(G)dG -fx(o)ds) -
0 0

t T

=fx(6)d6 -9 fx(G)dG = [Rz - p(r)F] (1) = (R, x)(1).
0 0

This means that again condition (1) is satisfied.
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