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A CLOSED EPIGRAPH THEOREM 

1. Various generalizations of the notion of convexity a re known 

in the l i terature. One of them i s the notion of d-convexity or convexi-

ty in Menger s sense (M-convexity) in a metric space ( X , d ) (c f . 

H. Busemann [ l ] , B.II . CojnaH [ 2 ] , Menger [ 8 ] , [ 9 ] ) . We shall 

confine ourselves to the notion of convexity in the so called G-space . 

In p a p e r s of B o l l . C o j i t s h [ 2 ] - [ 5 ] a n d J . G e r [ 6 ] t h e n o t i o n o f c o n -

vex function defined on a metric space was introduced. Below we re -

call those properties of G-spaces which will be useful in the sequel 

re ferr ing to El] for further detai l s . 

Let (X be a metric space and let x , y , z e X be three pairwise 

distinct points. We shall say that y l ies between x and z and 

write Cx y z) if p ( x , z ) = p ( x , y ) + p ( y , z ) . 

D e f i n i t i o n 1 (cf . Busemann E l ] , Menger E 9 ] ) . A metric 

space (X,£>) i s called M-convex (convex in Menger s sense) iff for 

every two distinct points x , z e X there exis ts a point y e X \ { x , z} 

such that (x y z) . 

D e f i n i t i o n 2 (cf . Busemann El] > Menger E9] ) . A metric 

space (X ,9) i s called finitely compact iff every bounded and infinite 

subset of X has at least one cluster point. 

Alternatively, we say that (X i s finitely compact iff every 

bounded and closed subset of X i s compact. 
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2 J. Ger 

H. Busemann [ l ] introduced and investigated the notion of a 

G-space defined a s fol lows: 

D e f i n i t i o n 3 (cf . Busemann L i ] ) « A finitely compact M-con-

vex metric space ( X , p ) i s called a G-space provided that: 

1° for every point p e X there exists a positive number r ^ such 

that for any two points x , y from the ball K ( p c e n t e r e d at p and 

with radius r ^ , there exists a point z e X such that (x y z ) ; 

2 ° for any two distinct points x ,y e X and any-points z ^ z ^ e X 

such that (x y z^) , (x y z a n d p ( y , z ^ ) = one has z^ » z^. 

Condition 1° i s called the axiom of local prolongability, ( A L P ) ; condi-

tion 2 ° expres se s the uniqueness of prolongation. 

In this paper the symbol X always denotes a G - s p a c e ; the symbols 

R, Q , N will stand for set s of r e a l s , rationals and positive integers , 

respectively. 

Fix any two distinct points x , y e X . Let I : [ 0 , 9 ( x , y ) ] — X be 

an isometry such that 1(0) = x , l ( 9 ( x , y ) ) = y or l ( 9 ( x , y ) ) = x , 

1(0) > y . Then the set T ( x , y ) := 1( [0 ,9 (x ,y)] ) i s called a segment 

joining the points x and y . Any two distinct points in a G-space 

X may be joined by a segment contained in X (cf . Ll] , [ 9 ] ) . Such 

a segment need not be unique. If this segment i s unique then there 

exis ts exactly one isometry I : [P ,9 (x ,y ) ] ° n t < ^ - T ( x , y ) and such that 

1(0) = x and 1(9 ( x , y ) ) = y ( s ee [6] Remark 3 ) . 

D e f i n i t i o n 4 (cf . Busemann [ . l ] ) • A set DC X i s called convex 

iff for every two distinct points x , y e clD the segment T ( x , y ) i s unique 

and T ( x , y ) c D if x , y e D. 

Let us note that if D i s convex then the sets clD and intD a re 

convex, too. (c f . L l l ) -

D e f i n i t i o n 5 (cf . J. Ger [ 6 ] ) . L e t x , y e c l D , x ^ y . Assume 

l : [ 0 , 9 ( x , y i l — T ( x , y ) to be an isometry such that 1(0) » x and 

l ( 9 ( x , y ) ) - y . For every we define 
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A closed epigraph theorem 3 

Ax © ( l - A ) y I ( ( l - A ) p ( x , y ) ) . 

K em a r K ( c f . [ 6 ] Lemma 1 ) . If x , y e c l D , x y , Ae [ 0 , l ] and 

z = Ax © (1-A) y then 9 ( z , x ) = ( l - ? 0 9 ( x , y ) a n d 9 ( z , y ) = 

= ; \ p ( x , y ) . 

In the whole paper the symbol D denotes a non-empty, open and 

convex subset of X . 

2. The following theorem holds true in any l inear topological 

B a i r e space Es ( c f . R . Ger [ 7 ] ) ; if f i s a J-convex function de-

fined on an open and convex set DQC E and if the set 

epi f : = { ( x , y ) e D o * R : f ( x ) ^ y | 

is c losed in D X R then f i s continuous. The goal of the present o 
paper i s to show that this resu l t c a r r i e s over the c a s e of G - s p a c e s . 

We start with the following 

D e f i n i t i o n 6 ( c f . [ 6 ] ) . A function f : D R i s called 

M-convex iff 

( I ) f(Ax © ( l -TOy) A f ( x ) + (1-A) f ( y ) 

for x ,y e D and every A € [0> l ] • A function f : D — * - R i s JM-convex 

(Jensen M-convex) if ( I ) holds for a l l x , y e D and A = . 

Now, we may prove the following 

L e m m a 1. If f : D — R i s JM-convex and if i t s epigraph 

epi f : = { ( x , y ) e D X R : f (x )=s ;y } 

i s c losed in DvR , then f i s M-convex . 

P r o o f . From Theorem in [ 6 ] we get the inequality 

f f o x © ( l - ? 0 y ) « Af (x ) + (1-A) f ( y ) 
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4 ; J . Ger 

valid for every ^ 6 QO,l] fl Q and all x , y e D. It means that 

(Tix © ( l~?0y , Af(x) + (1-A) f ( y ) ) e epi f . Let us take an arbi trary 

^ £ ( 0 , 1 ) and let (7 ) >7 be a rational sequence such that = o n neN ^ o 
= lim /\ . Suppose that two distinct points x , y are fixed. From the 

n—oo 
fact that epi f i s closed we obtain 

lim (a x © ( i - a n ) y , + ) f ^ y ^ e e P i f ; 
n—oo 

or , equivalently, if I i s an isometry from [ 0 , 9 ( x , y ) ] onto T ( x , y ) we 

get ( s e e Definition 5 ) : 

lim ( U l - a )<?(x ,y)) , f U ) + f ( y ) ) e epi f . 
n—-eo 

Therefore 

( l ( ( l ~ 7 l 0 ) p ( x , y ) ) , ^ f ( x ) + t l - A 0 ) f ( y ) ) 6 e p i f , 

o r , in other words, 

U x © (1-71 ) y , * f ( x ) + (1-A ) f ( y ) ) e epi f . o ^ o - ' o o J r 

This means that 

f U x © ( l - > )y) s£ 7i f ( x ) + ( l - > ) f ( y ) o o o o 

and ends the proof. 

L e m m a 2. Let ( 0 , 1 ) and x q e D be arbi trar i ly fixed points 

and let r = r ( x ) be the number occurring in Definition 3 . If the o o 
function <p; D — X is given by the formula 

(1 ) ©(x ) -X x © ( l - ^ ) x , x e D, r o o o 

then, for every r ^ r^ , we have 

(f> (K(x , r ) ) - K(x ,-X r ) . ' a rt rt 
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A closed epigraph theorem 5 

P r o o f . The mapping cp given by the formula Cl) is a homeo-

morphism of D onto 90(D) ( see [ 6 ] Lemma 6 ) . We shall show that for 

every r < r^ the following inclusion 

K ( x r ) c OP(K (X , r ) 0 0 r o 

holds. The opposite inclusion i s fulfilled in view of Remark and formu-

la ( 1 ) . Let z 6 K ( x o , ^ o r ) \ j x o | be an arbitrarily fixed point and let 

T ( z , X q ) be the segment joining z and X q . From Definition 3 we infer 

that there exists exactly one point y such that (XQ Z y), z e T ( x Q , y ) 

1 1 1 and o(x ,y) = —- p ( z , x ) since p(x ,y) - — p(z ,x — /\ r = r . t o J % r o T o J ~ o ^ > o o 0 0 
It means that y e K ( x , r ) and o ( z , x ) = p(x ,y ) . Therefore ( see 

J O T O O V O . 

Remark) z = 7iQy © ( l - ? i o ) x o and z = <p{y) 6 Cp (K(X q , r ) ) . 

The following main result yields an analogue of the closed epigraph 

theorem proved by R . Ger in ^7 ] . The point i s that in our case no 

algebraic structure in the space considered i s assumed. On the other 

hand one cannot treat our Theorem as a direct generalization of 

R . Ger s result from [.7] because he had not assumed the metrizabi-

lity of the underlying linear space and his functions were vector-va-

lued. Both results however yield "convex analogues" of the c lass ica l 

Banach closed graph theorem. 

T h e o r e m . Let f : D — R be a JM-convex function. If the epi-

graph of f i s closed in D x R then f i s continuous in D. 
P r o o f . Fix an x 6 D and put o r 

A := j x e D: f ( x ) - f ( x Q ) ^ l } . 

For an arbitrary x e D there exists an n e N such that f ( x ) - f ( x Q ) ^ 2 n . 

From the fact that f is M-convex ( see Lemma 1) we get 
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*) 

rn 

(3 ) 

f ( — x @ ( 1 - — \ x ) - f ( x ) < — f ( x ) + ( l - — \ f ( x ) - f ( x 
V2n V 2 / °J ° 2n \ 2n/ ° 

Therefore, we have 

( 2 ) for everv xe D there exists an n e N such that — x © (1—-|x e A . 
2n V 2/ ° 

Let :c lD—»-X be a mapping given by the formula 

co ( x ) := — x © ( l — — )x , x e c l D . 
2n \ 2 / ° 

By virtue of (2 ) we obtain the inclusion 

D c I I ^ ' H a O D ) where D <p ( c lD ) , neN . LJ *n n n *n 
neN 

Note that the function given by (3 ) has the form Cl ) ; consequently 

Lemma 2 may be applied. Since D is open and nonempty subset of a 

complete metric space, by the classical theorem of Baire, D is of the 

second Baire category whence 

U ) int cl © " 1 ( A n D ) £ 0 

' n n 

for some n e N . We are goint to show that 

int c U A i l D ^ ) 0. 
To this aim we shall f irst prove the following inclusion 

(5 ) cla) _ 1 (An D ) e ffl_1CclCAnD ) ) . 'n n ' n n 

This inequality may also be 
xity of f without using Lemma 1 
the coefficients occurring here are 

derived directly from the JM-conve-
Csee Theorem 1 from [ 6 ] ) because 
rational. 
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A closed epigraph theorem 7 

Indeed, take an x e clcp D ) . Then there exists a sequence r n n 

a^e AflD^, keN , such that x - lim Let 

b^ Then x = lim b^, and ™ a^* From (3) we 
k 

have a^ » © ^ —n~)Xo' ^ i a v e a * s o ^ ^ 

pCa^fX ) « ® i n c e " x w e ^ a v e lun a^ » a and 
2 k-»«> k-~oo 

a - — x © (1 |x (see [6 ] Corollary 1) and from (3) we get 
2 n \ 2n/ ° 

a = o r » equivalently, x- <p a ^ e <p *(cl(AflD )). 
k—oo ' 

From Lemma 2 we obtain that <p is an open mapping, and so 

int ffl"1(cl(AnD ) ) c œ~*(int cKA fi D ) ) . r n n r n n 

This, (4) and inclusion (5) imply that 

0Aint cUffl - 1(AnD ) ) c int ffl"1CcUAn D ))aq>~\mt cl(A 0 D ) ) . ' n n "n n 'n n 

Therefore 

U int cUAOD ) t 0. n 

Now, we shall prove that the set AH D is closed in D. To show this 

let us fix a z e D \ ( A D D ) ; then (z , f (x ) + l ) e ( D * R ) \ e p i f . From n o 
the fact that the set (D*RNepi f i s open we get the existence of 
a neighbourhood U z of the point z and a number 6 >0 such that 
(U * ( f ( x )+l-<5, f(x ) + l + 6 ) c CD*R)\epi f . So , for every x t U , we z o o z 
have (x,f(x )+ l ) 6 (D*R) \ep i f whence f Cx) > f Cx )+1. Consequently, 

x e D \ A which means that (AD D ) is closed in D. Moreover n 

0 / UHAilD - UD DO cl(AD D ) - UDD n n 
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8 J. Ger 

and Ufl D is an open, nonempty subset of A. We have shown that 
int A / 0. The function f is M-convex and upper bounded on A. 
From Corollary 2 in C^l we obtain that f is continuous in A. 

C o r o l l a r y . If f : D — R is JM-convex and lower semicontinuous 
in D then f is M-convex and continuous in D. 

The proof follows from Lemma 1, Theorem and the fact that if f 
is lower semicontinuous function then epi f is closed (see R . Sikorski 
[lO], exercise 5, p .131) . 
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