

Joanna Ger

A CLOSED EPIGRAPH THEOREM

1. Various generalizations of the notion of convexity are known in the literature. One of them is the notion of d -convexity or convexity in Menger's sense (M -convexity) in a metric space (X, d) (cf. H. Busemann [1], B.П. Солтан [2], Menger [8], [9]). We shall confine ourselves to the notion of convexity in the so called G -space. In papers of B.П. Солтан [2]-[5] and J. Ger [6] the notion of convex function defined on a metric space was introduced. Below we recall those properties of G -spaces which will be useful in the sequel referring to [1] for further details.

Let (X, ρ) be a metric space and let $x, y, z \in X$ be three pairwise distinct points. We shall say that y lies between x and z and write $(x \ y \ z)$ if $\rho(x, z) = \rho(x, y) + \rho(y, z)$.

Definition 1 (cf. Busemann [1], Menger [9]). A metric space (X, ρ) is called M -convex (convex in Menger's sense) iff for every two distinct points $x, z \in X$ there exists a point $y \in X \setminus \{x, z\}$ such that $(x \ y \ z)$.

Definition 2 (cf. Busemann [1], Menger [9]). A metric space (X, ρ) is called finitely compact iff every bounded and infinite subset of X has at least one cluster point.

Alternatively, we say that (X, ρ) is finitely compact iff every bounded and closed subset of X is compact.

H. Busemann [1] introduced and investigated the notion of a G-space defined as follows:

Definition 3 (cf. Busemann [1]). A finitely compact M-convex metric space (X, φ) is called a G-space provided that:

1° for every point $p \in X$ there exists a positive number r_p such that for any two points x, y from the ball $K(p, r_p)$ centered at p and with radius r_p , there exists a point $z \in X$ such that $(x \ y \ z)$;

2° for any two distinct points $x, y \in X$ and any points $z_1, z_2 \in X$ such that $(x \ y \ z_1)$, $(x \ y \ z_2)$ and $\varphi(y, z_1) = \varphi(y, z_2)$ one has $z_1 = z_2$. Condition 1° is called the axiom of local prolongability, (ALP); condition 2° expresses the uniqueness of prolongation.

In this paper the symbol X always denotes a G-space; the symbols $\mathbb{R}, \mathbb{Q}, \mathbb{N}$ will stand for sets of reals, rationals and positive integers, respectively.

Fix any two distinct points $x, y \in X$. Let $I: [0, \varphi(x, y)] \rightarrow X$ be an isometry such that $I(0) = x$, $I(\varphi(x, y)) = y$ or $I(\varphi(x, y)) = x$, $I(0) = y$. Then the set $T(x, y) := I([0, \varphi(x, y)])$ is called a segment joining the points x and y . Any two distinct points in a G-space X may be joined by a segment contained in X (cf. [1], [9]). Such a segment need not be unique. If this segment is unique then there exists exactly one isometry $I: [0, \varphi(x, y)] \xrightarrow{\text{onto}} T(x, y)$ and such that $I(0) = x$ and $I(\varphi(x, y)) = y$ (see [6] Remark 3).

Definition 4 (cf. Busemann [1]). A set $D \subset X$ is called convex iff for every two distinct points $x, y \in \text{cl } D$ the segment $T(x, y)$ is unique and $T(x, y) \subset D$ if $x, y \in D$.

Let us note that if D is convex then the sets $\text{cl } D$ and $\text{int } D$ are convex, too. (cf. [1]).

Definition 5 (cf. J. Ger [6]). Let $x, y \in \text{cl } D$, $x \neq y$. Assume $I: [0, \varphi(x, y)] \rightarrow T(x, y)$ to be an isometry such that $I(0) = x$ and $I(\varphi(x, y)) = y$. For every $\lambda \in [0, 1]$ we define

$$\lambda x \oplus (1-\lambda)y := l((1-\lambda)\rho(x,y)).$$

Remark (cf. [6] Lemma 1). If $x, y \in \text{cl } D$, $x \neq y$, $\lambda \in [0, 1]$ and $z = \lambda x \oplus (1-\lambda)y$ then $\rho(z, x) = (1-\lambda)\rho(x, y)$ and $\rho(z, y) = \lambda\rho(x, y)$.

In the whole paper the symbol D denotes a non-empty, open and convex subset of X .

2. The following theorem holds true in any linear topological Baire space E : (cf. R. Ger [7]); if f is a J -convex function defined on an open and convex set $D_0 \subset E$ and if the set

$$\text{epi } f := \{(x, y) \in D_0 \times \mathbb{R} : f(x) \leq y\}$$

is closed in $D_0 \times \mathbb{R}$ then f is continuous. The goal of the present paper is to show that this result carries over the case of G -spaces. We start with the following

Definition 6 (cf. [6]). A function $f: D \rightarrow \mathbb{R}$ is called **M-convex** iff

$$(1) \quad f(\lambda x \oplus (1-\lambda)y) \leq \lambda f(x) + (1-\lambda) f(y)$$

for $x, y \in D$ and every $\lambda \in [0, 1]$. A function $f: D \rightarrow \mathbb{R}$ is **JM-convex** (Jensen M-convex) if (1) holds for all $x, y \in D$ and $\lambda = \frac{1}{2}$.

Now, we may prove the following

Lemma 1. If $f: D \rightarrow \mathbb{R}$ is JM-convex and if its epigraph

$$\text{epi } f := \{(x, y) \in D \times \mathbb{R} : f(x) \leq y\}$$

is closed in $D \times \mathbb{R}$, then f is M-convex.

Proof. From Theorem in [6] we get the inequality

$$f(\lambda x \oplus (1-\lambda)y) \leq \lambda f(x) + (1-\lambda) f(y)$$

valid for every $\lambda \in [0,1] \cap \mathbb{Q}$ and all $x, y \in D$. It means that $(\lambda x + (1-\lambda)y, \lambda f(x) + (1-\lambda)f(y)) \in \text{epi } f$. Let us take an arbitrary $\lambda_0 \in (0,1)$ and let $(\lambda_n)_{n \in \mathbb{N}}$ be a rational sequence such that $\lambda_0 = \lim_{n \rightarrow \infty} \lambda_n$. Suppose that two distinct points x, y are fixed. From the fact that $\text{epi } f$ is closed we obtain

$$\lim_{n \rightarrow \infty} (\lambda_n x + (1-\lambda_n)y, \lambda_n f(x) + (1-\lambda_n)f(y)) \in \text{epi } f;$$

or, equivalently, if I is an isometry from $[0, \varphi(x, y)]$ onto $T(x, y)$ we get (see Definition 5):

$$\lim_{n \rightarrow \infty} (I((1-\lambda_n)\varphi(x, y)), \lambda_n f(x) + (1-\lambda_n)f(y)) \in \text{epi } f.$$

Therefore

$$(I((1-\lambda_0)\varphi(x, y)), \lambda_0 f(x) + (1-\lambda_0)f(y)) \in \text{epi } f,$$

or, in other words,

$$(\lambda_0 x + (1-\lambda_0)y, \lambda_0 f(x) + (1-\lambda_0)f(y)) \in \text{epi } f.$$

This means that

$$f(\lambda_0 x + (1-\lambda_0)y) \leq \lambda_0 f(x) + (1-\lambda_0)f(y)$$

and ends the proof.

Lemma 2. Let $\lambda_0 \in (0,1)$ and $x_0 \in D$ be arbitrarily fixed points and let $r_0 = r(x_0)$ be the number occurring in Definition 3. If the function $\varphi: D \rightarrow X$ is given by the formula

$$(1) \quad \varphi(x) := \lambda_0 x + (1-\lambda_0)x_0, \quad x \in D,$$

then, for every $r \leq r_0$, we have

$$\varphi(K(x_0, r)) = K(x_0, \lambda_0 r).$$

Proof. The mapping φ given by the formula (1) is a homeomorphism of D onto $\varphi(D)$ (see [6] Lemma 6). We shall show that for every $r < r_0$ the following inclusion

$$K(x_0, \lambda_0 r) \subset \varphi(K(x_0, r))$$

holds. The opposite inclusion is fulfilled in view of Remark and formula (1). Let $z \in K(x_0, \lambda_0 r) \setminus \{x_0\}$ be an arbitrarily fixed point and let $T(z, x_0)$ be the segment joining z and x_0 . From Definition 3 we infer that there exists exactly one point y such that $(x_0 z y)$, $z \in T(x_0, y)$ and $\varphi(x_0, y) = \frac{1}{\lambda_0} \varphi(z, x_0)$ since $\varphi(x_0, y) = \frac{1}{\lambda_0} \varphi(z, x_0) \leq \frac{1}{\lambda_0} \lambda_0 r = r$.

It means that $y \in K(x_0, r)$ and $\varphi(z, x_0) = \lambda_0 \varphi(x_0, y)$. Therefore (see Remark) $z = \lambda_0 y + (1 - \lambda_0)x_0$ and $z = \varphi(y) \in \varphi(K(x_0, r))$.

The following main result yields an analogue of the closed epigraph theorem proved by R. Ger in [7]. The point is that in our case no algebraic structure in the space considered is assumed. On the other hand one cannot treat our Theorem as a direct generalization of R. Ger's result from [7] because he had not assumed the metrizability of the underlying linear space and his functions were vector-valued. Both results however yield "convex analogues" of the classical Banach closed graph theorem.

Theorem. Let $f: D \rightarrow \mathbb{R}$ be a JM-convex function. If the epigraph of f is closed in $D \times \mathbb{R}$ then f is continuous in D .

Proof. Fix an $x_0 \in D$ and put

$$A := \{x \in D: f(x) - f(x_0) \leq 1\}.$$

For an arbitrary $x \in D$ there exists an $n \in \mathbb{N}$ such that $f(x) - f(x_0) \leq 2^n$. From the fact that f is M-convex (see Lemma 1) we get

$$f\left(\frac{1}{2^n}x \oplus \left(1 - \frac{1}{2^n}\right)x_o\right) - f(x_o) \leq \frac{1}{2^n}f(x) + \left(1 - \frac{1}{2^n}\right)f(x_o) - f(x_o) \leq 1^*.$$

Therefore, we have

$$(2) \text{ for every } x \in D \text{ there exists an } n \in \mathbb{N} \text{ such that } \frac{1}{2^n}x \oplus \left(1 - \frac{1}{2^n}\right)x_o \in A.$$

Let $\varphi_n : \text{cl } D \rightarrow X$ be a mapping given by the formula

$$(3) \quad \varphi_n(x) := \frac{1}{2^n}x \oplus \left(1 - \frac{1}{2^n}\right)x_o, \quad x \in \text{cl } D.$$

By virtue of (2) we obtain the inclusion

$$D \subset \bigcup_{n \in \mathbb{N}} \varphi_n^{-1}(A \cap D_n) \quad \text{where} \quad D_n := \varphi_n(\text{cl } D), \quad n \in \mathbb{N}.$$

Note that the function φ_n given by (3) has the form (1); consequently Lemma 2 may be applied. Since D is open and nonempty subset of a complete metric space, by the classical theorem of Baire, D is of the second Baire category whence

$$(4) \quad \text{int cl } \varphi_n^{-1}(A \cap D_n) \neq \emptyset$$

for some $n \in \mathbb{N}$. We are going to show that

$$\text{int cl}(A \cap D_n) \neq \emptyset.$$

To this aim we shall first prove the following inclusion

$$(5) \quad \text{cl } \varphi_n^{-1}(A \cap D_n) \subset \varphi_n^{-1}(\text{cl}(A \cap D_n)).$$

*) This inequality may also be derived directly from the JM-convexity of f without using Lemma 1 (see Theorem 1 from [6]) because the coefficients occurring here are rational.

Indeed, take an $x \in \text{cl}\varphi_n^{-1}(A \cap D_n)$. Then there exists a sequence $(a_k)_{k \in \mathbb{N}}$, $a_k \in A \cap D_n$, $k \in \mathbb{N}$, such that $x = \lim_{k \rightarrow \infty} \varphi_n^{-1}(a_k)$. Let $b_k := \varphi_n^{-1}(a_k)$. Then $x = \lim_{k \rightarrow \infty} b_k$, and $\varphi_n(b_k) = a_k$. From (3) we have $a_k = \frac{1}{2^n} b_k \oplus \left(1 - \frac{1}{2^n}\right)x_0$. We have also $a_k \in T(b_k, x_0)$ and $\varphi(a_k, x_0) = \frac{1}{2^n} \varphi(b_k, x_0)$. Since $\lim_{k \rightarrow \infty} b_k = x$ we have $\lim_{k \rightarrow \infty} a_k = a$ and $a = \frac{1}{2^n} x \oplus \left(1 - \frac{1}{2^n}\right)x_0$ (see [6] Corollary 1) and from (3) we get $a = \varphi_n(x)$ or, equivalently, $x = \varphi_n^{-1}\left(\lim_{k \rightarrow \infty} a_k\right) = \varphi_n^{-1}(a) \in \varphi_n^{-1}(\text{cl}(A \cap D_n))$. From Lemma 2 we obtain that φ_n is an open mapping, and so

$$\text{int } \varphi_n^{-1}(\text{cl}(A \cap D_n)) \subset \varphi_n^{-1}(\text{int cl}(A \cap D_n)).$$

This, (4) and inclusion (5) imply that

$$\emptyset \neq \text{int cl}(\varphi_n^{-1}(A \cap D_n)) \subset \text{int } \varphi_n^{-1}(\text{cl}(A \cap D_n)) \subset \varphi_n^{-1}(\text{int cl}(A \cap D_n)).$$

Therefore

$$U := \text{int cl}(A \cap D_n) \neq \emptyset.$$

Now, we shall prove that the set $A \cap D_n$ is closed in D . To show this let us fix a $z \in D \setminus (A \cap D_n)$; then $(z, f(x_0) + 1) \in (D \times \mathbb{R}) \setminus \text{epi } f$. From the fact that the set $(D \times \mathbb{R}) \setminus \text{epi } f$ is open we get the existence of a neighbourhood U_z of the point z and a number $\delta > 0$ such that $(U_z \times (f(x_0) + 1 - \delta, f(x_0) + 1 + \delta)) \subset (D \times \mathbb{R}) \setminus \text{epi } f$. So, for every $x \in U_z$, we have $(x, f(x_0) + 1) \in (D \times \mathbb{R}) \setminus \text{epi } f$ whence $f(x) > f(x_0) + 1$. Consequently, $x \in D \setminus A$ which means that $(A \cap D_n)$ is closed in D . Moreover

$$\emptyset \neq U \cap A \cap D_n = U \cap D \cap \text{cl}(A \cap D_n) = U \cap D$$

and $U \cap D$ is an open, nonempty subset of A . We have shown that $\text{int } A \neq \emptyset$. The function f is M -convex and upper bounded on A . From Corollary 2 in [6] we obtain that f is continuous in A .

Corollary. If $f: D \rightarrow \mathbb{R}$ is JM-convex and lower semicontinuous in D then f is M -convex and continuous in D .

The proof follows from Lemma 1, Theorem and the fact that if f is lower semicontinuous function then $\text{epi } f$ is closed (see R. Sikorski [10], exercise 5, p.131).

REFERENCES

- [1] H. Busemann: The geometry of geodesic. Academic Press, New York, 1955.
- [2] В.П. Солтан: Введение в аксиоматическую теорию выпуклости. Кишинев, 1984.
- [3] В.П. Солтан: Аксиоматический подход к теории выпуклых функций, Dokl. Akad. Nauk SSSR 254 (1980), 813-816.
- [4] В.П. Солтан, П.С. Солтан: d -выпуклые функции, Dokl. Akad. Nauk SSSR 240 (1979), 555-558.
- [5] В.П. Солтан, В.Д. Ченой: Некоторые классы d -выпуклых функций в графе, Dokl. Akad. Nauk SSSR 273 (1983), 1314-1317.
- [6] J. Ger: Convex functions in metric spaces, Radovi Mat. 2 (1986), 217-236.
- [7] R. Ger: Convex transformations with Banach lattice range, Stochastica 11 (1987), 13-23.
- [8] K. Menger: Ergebnisse eines math. Kolloq., Wien, v.1 (1931).
- [9] K. Menger: Untersuchungen über allgemeine Metrik I, II, III, Math. Ann. 100 (1928), 75-163.
- [10] R. Sikorski: Funkcje rzeczywiste, Tom I. Monografie Mat. 35, PWN (Polish Scientific Publishers), Warszawa 1958.

INSTITUTE OF MATHEMATICS, SILESIAN UNIVERSITY IN KATOWICE,
40-007 KATOWICE, POLAND

Received January 6, 1989.