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A CLOSED EPIGRAPH THEOREM

1, Various generalizations of the notion of convexity are known
in the literature. One of them is the notion of d-convexity or convexi-
ty in Menger s sense (M-convexity) in a metric space (X,d) (cf.

H. Busemann [1], B.Nl. Coaran [2], Menger [8], [9]). We shall
confine ourselves to the notion of convexity in the so calle& G-space.
In papers of Bell. Coaran [2]-[5] and J. Ger [6] the notion of con-
vex function defined on a metric space was introduced. Below we re-
call those properties of G-spaces which will be useful in the sequel
referring to [1] for further details.

Let (X,p) be a metric space and let x,y,z e X be three pairwise
distinct points. We shall say that y lies between x and z and
write (x y z) if ¢(x,z) = olx,y) + oly,2).

Definition 1 (cf. Busemann [1], Menger [9]). A metric
space (X,p) is called M-convex (convex in Menger s sense) iff for
every two distinct points x,z € X .there exists a point ye X\{x,z}
such that (x y z).

Definition 2 (cf. Busemann [1], Menger [9]). A metric
space (X,Q) is called finitely compact iff every bounded and infinite
subset of X has at least one cluster point.

Alternatively, we say that (X,p) is finitely compact iff every

bounded and closed subset of X is compact.
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2 ]. Ger

H. Busemann [ 1] introduced and investigated the notion of a
G-space defined as follows:

Definition 3 (cf. Busemann [1]). A finitely compact M-con-
vex metric space (X,p) is called a G-space provided that:

1° for every point p € X there exists a positive number r_ such
that for any two points %,y from the ball K(p,rp) centered at p and
with radius rp, there exists a point z € X such that (x y z);

2° for any two distinct points x,y ¢ X and any points 29,2, € X
such that (x y zl), (x y 22) and p(y,zl) = Q(y,zz) one has z; = z,.
Condition 1° is called the axiom of local prolongability, (ALP); condi-
tion 2° expresses the uniqueness of prolongation.

In this paper the symbol X always denotes a G-space; the symbols
R, Q, N will stand for sets of reals, rationals and positive integers,
respectively.

Fix any two distinct points x,y e X. Let 1:[0,9(x,y)]— X be
an isometry such that 1(0) = x, lo{x,y)) = y or 1{elx,y)) = x,
1(0) = y. Then the set T{x ,vy) := 1([0,0(x,y)]) is called a segment
joining the points x and y. Any two distinct points in a G-space
X may be joined by a segment contained in X (cf. [1], [9]). Such
a segment need not be unique. If this segment is unique then there

exists exactly one isometry 1: [O,Q(X ,y)_] ontq

T(x,y) and such that
10) = x and 1(o(x,y)) = y (see [6] Remark 3).

Definition 4 (cf. Busemann [1]). A set D= X is called convex
iff for every two distinct points x,y€ clD the segment T(x,y) is unique
and Tlx,y)c D if x,ye D.

Let us note that if D is convex then the sets clD and intD are
convex, too. (cf. [1]).

Definition 5 (cf. J. Ger [6]). Let x,yeclD, x 4 y. Assume
1:[0,0(x,yl] —= T(x,y) to be an isometry such that 1(0) = x and
1o{x,y)) = y. For every A&[0,1] we define
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A closed epigraph theorem 3

Aax @ (1-2) y = TU(1-A)plx,y)).

Remark (cf. [6] Lemma 1). 1 x,yeclD, x # y, Ae [0,1] and
z=2Ax @ (1-A) y then ¢(z,x) = (1-No(x,y) and ¢(z,y) =
=Aelx,y).

In the whole paper the symbol D denotes a non-empty, open and

convex subset of X.

2. The following theorem holds true in any linear topological
Baire space E: (ef. R. Ger [7]); if f is a J-convex function de-

fined on an open and convex set DOC E and if the set
epi f := {(x,y) eD_xR: f(x)sy}

is closed in Dox R then f is contnuous. The goal of the present
paper is to show that this result carries over the case of G-spaces.
We start with the following

Definition 6 (cf. [6]). A function f:D —=~R is called

M-convex iff

(n fax @ (1-A)y) < Aflx) + (1-2) f(y)

for x,y eD and every A€[0,1]. A function f:D-—=R is JM-convex
(Jensen M-convex) if (1) holds for all x,yeD and A = %— .

Now, we may prove the following

Lemma 1. Tf f:D—=R is JM-convex and if its epigraph
epi f :={ (x,y)e DxR: f(x)sy}

is closed in DxR, then f is M-convex.

Proof. From Theorem in [6] we get the inequality

fax @ (1-Ny) < Aflx) + (1-2) fly)
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valid for every A e[0,1]N Q and all x,y € D. It means that
Ox ® (1-D)y, Aflx) + (1-2) f(y)) e epi £. Let us take an arbitrary

A € (0,1) and let O‘n)ne be a rational sequence such that A =

N

= lim 7\n . Suppose that two distinct points x,y are fixed. From the
T ~—=—00

fact that epi f is closed we obtain

lim (’Anx ® (1-?\n)y, ’/\nf(x) + (1-7\n) fly)) e epi £;

T~ 00
or, equivalently, if 1 is an isometry from [0,0(x,y)] onto T(x,y) we

get (see Definition 5):

lim (I(l-?\n)Q(x,y)), an(x) + (1-1n) f(y)) e eﬁi f.

N-=co

Therefore
(1((1-25) olx,¥)), Xof(x) + (1~7\o) fly)) € epi f,
or, in other words,
(?\ox @ (1-7‘0) ¥s %of(x) + (1-7\0) f(y)) e epi f.
This means that
f(?\ox ® (l-i\o)y) < Aof(x) + (1-7\0) £(y)

and ends the proof.
Lemma 2. Let 2 e (0,1) and x_ € D be arbitrarily fixed points
and let r_ = r(xo) be the number occurring in Definition 3. If the

function ¢:D —= X is given by the formula
(1) plx) a2 x @ (1-A)x , xeD,
then, for every r < T,y we have

go(K(xo,r)) - K(xo,lor) .
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Proof. The mapping ¢ given by the formula (1) is a homeo-
morphism of D onto p(D) (see [6] Lemma 6). We shall show that for

every r& T the following inclusion

Kix_,ar)c ¢lKlx ,r)

holds. The opposite inclusion is fulfilled in view of Remark and formu-
la (1). Let ze K(xo,’)\or)\{xo} be an arbitrarily fixed point and let
T(z,xo) be the segment joining 2z and L From Definition 3 we infer

that there exists exactly one point y such that (x_  z y), ze T(x _,y)

and glx_,y) = 2= @lz,x.) since 9(x_,y) == plz,x )< 5 Ar = 7.
o o o

It means that yeK(xo,r) and Q(z,xo) = )op(xo,y). Therefore (see

Remark) z = Ay @ (1-?\0)7(0 and z = 90(y)€¢(K(xo,r)).

The following main result yields an analogue of the closed epigraph
theorem proved by R. Ger in [7]. The point is that in our case no
algebraic structure in the space considered is assumed. On the other‘
hand one cannot treat our Theorem as a direct generalization of
R. Ger’s result from [7] because he had not assumed the metrizabi-
lity of the underlying linear space and his functions were vector-va-
lued. Both results however yield "convex analogues" of the cléssical
Banach closed graph theorem. .

Theorem. Let f:D—=R be a JM-convex function. If ‘the epi-
graph of f is closed in DxRthen f is continuous in D.

Proof. Fix an xoeD and put
A :={xeD: flx) - flx )sl}.
o

For an arBitra.ry x € D there exists an ne N such that f(x)-f(xo)s 2",

From the fact that f is M-convex (see Lemma 1) we get
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6 J. Ger

1 1 1 1 "
f(—nx ® (1 -—)%, ) - flx )< ;ﬁf(x) (1 - —)fx )-flx <1 .
2 2 2

Therefore, we have
(2) for every xe D there exists an neN such that —ix ® (l-ix)xoez\.

_ 2 2
Let ¢n:ch—-X be a mapping given by the formula

(3 (pn(x) t= zinx @ <1 - —21;>xo, x € clD.

By virtue of (2) we obtain the inclusion

Dc UcpI;I(Aﬂ Dn) where D = gon(ch), neN .
neN
Note that the function ¢  given by (3) has the form (1); consequently
Lemma 2 may be applied. Since D is open and nonempty subset of a
complete metric space, by the classical theorem of Baire, D is of the

second Baire category whence
. -1
(4) int clp_ (AN Dn) P

for some neN . We are goint to show that

int cl(AN Dn.) £ 0.

To this aim we shall first prove the following inclusion

(5) clga;ll(Aﬂ D )= ¢;1(CI(A ND )).

*
) This inequality may also be derived directly from the JM-conve-

xity of f .without using Lemma 1 (see Theorem 1 from [6]) because
the coefficients occurring here are rational.
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A closed epigraph theorem 7

Indeed, take an xe cl¢;l1(Aﬂ D ). Then there exists a sequence
-1

(ak_)keN’ a € AN D, keN , such that x = }(iinwgpn (ak). Let

t= _l(a ). Thenx = lim b, , and ¢ (b)) = a, . From (3) we
by £ Pp oy o b AL
have a, = _zinbk @ (1 - —2—1n—>x°. We have also a, e T(bk,xo) and
olax ) = —lﬁQ(bk,xo). Since lim b = x we have lim a = a and

koo ko0

a--_Lx ® <1 - i)x (see [6] Corollary 1) and from (3) we get
o o) o

a = ¢ (x) or, equivalently, x= ga;l (lim ak) -gw;l(a) € ;0;1 e1(AnD ).

ko0
From Lemma 2 we obtain that ®n is an open mapping, and so

int ¢! (cl(AND )Y g lint (A N DY),

This, (4) and inclusion (5) imply that

P 4t cllg;1(AND e int g1 (elAND N Nint c1(A N D)),

Therefore

U := int cl(AﬂDn) £ 0.

Now, we shall prove that the set AN Dn is closed in D. To show this
let us fix a ze DN\(AN Dn): then (z,f(xo)+1)e (DxR)\ epi f. From
the fact that the set (DxR)\epi f is open we get the existence of

a mneighbourhood Uz of the point z and a number 6§>0 such that
(sz(f(x°)+1-5, f(x°)+1+6)C (DxR)\epi f. So, for every xeU_, we
have (x,f(xo)+1) € (DxR)\epi f whence f(x)>f(x°)+1. Consequently,
x e DA which means that (AN Dh) is closed in D. Moreover

D4 UﬂAnDn - UﬂDﬂcl(AﬂDn) « UND
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8 J. Ger

and UN D is an open, nonempty subset of A. We have shown that
int A ¢ @. The function f is M-convex and upper bounded on A.
From Corollary 2 in [6] we obtain that f is continuous in A.
Corollary. 1 f:D— R is JM-convex and lower semicontinuous
in D then f is M-convex and continuous in D. ‘
The proof follows from Lemma 1, Theorem and the fact that if f
is lower semicontinuous function then epi f is closed (see R. Sikorski

[10], exercise 5, p.131).
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