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VECTOR SPACES OF REGULAR FUNCTIONAL CONFIGURATIONS*

Introduction

This paper takes as one’ s target an extension to use the methods
of algebra in investigation of regular functional configurations.

The notion of regular configuration is principal in the theory of
conflicts initiated by Z. Pawlak [1]. This notion is extended as regu-
lar functional configuration in [2].

A particular kind of transitivity of connections between the objects
is basic in the definition of regular configuration. For apex configura-
tions this tramsitivity is defined through two-elements group {1,-1} with
ordinary multiplication. A problem posed in this paper consists in in-
vestigation of existence a group defining a transitivity of connections
between the objects for any regular functional configuration. A positive
i)roof gives possibilities to define the notions of finite field of the de-
grees of engagement and vector space of regular functional configura-
tions. The notion of generator of a matrix of regular functional confi-
guration (cf. [3] and [4]) is extended.

1. Classes of determined regular functional configurations

Let X be any finite set composed of n elements, & a measure
of Stieltjes on the set of all real numbers R such that 4(R) = 1
and let N_ = {1,2,...,n}.

*) Research reported here has been partially suported by the Po-
lish Government Grant CPBP 08-15.
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2 1. Nabialek

Let C = (X,u, §) be a determined regular functional configuration
in the sense of [2] and [5]. We have then

(2) fi].(p) 'fjk(p) = fik(p)

for every i,j,keNn, peR and (xi,xj) 6X2, where tﬁ(xi,xj) = fij’

: R——{l;-l} and fij is a measurable function with respect to u.

Let Fy be the set of all measurable functions f : R — {1,-1} .
For any fe Fu we denote by f a class of the measurable functions
equal to f on a set of measure 1 and by T?',u the set of all classes
f such that fe Fy. Denote by 4'3 a mapping of X2 into 'f‘"ﬂ satisfied the
analogous conditions to (1) and (2). By 'Fo and ?'1 we denote the classes
18 R—»{-l}.

It’s evident that if ’ is ordinary multiplication of functions, then

of the constant functions fo : R—-—{l} and f

(f‘:ﬂ,') is an abelian group, Fo is its identity element and the order
of any element f oof %‘,u is 2.
We defme the notion of the degrees of engagement a, ij of a pair

x; X )e X2 in the class (X,u, &) analogously to [2]:

+00

o‘ij =j fij d‘u,

- 00

where the integral is calculated for any function of the class 'f';]

2. Finite fields of degrees of engagement

Consider now any finite subset H of i,u- By (H) denote a subgroup
of (%:u,') generated by H.
The group (H) is finite because the order of any its element is 2.

The order of (H) is Zr, where r<card H. Tt’s known (cf. [6]), that
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Regular functional configurations 3

then (H) is an additive group of a finite field ((H),-,») of characte-
ristic 2 and this field is only one with respect to isomorphismes.
For any §'1,. ‘e ,En of fﬂ it’s possible to define a class of deter-

mined regular functional configuration (X ,p,(s) as follows

Q(xi,xj) - &8
for every i,j eNn.

Denote by Cn(ﬁ) the set

{(X,p,g) :f(xi,xj) - Ei.gj’ Ei’gj e (H) for every 1i,je Nn} .

Definition 1. A subgroup (H) of the group ﬁ(u is called a
standard subgroup of 'l\fu iff

(3) £, e (H),
+o0 +00

(4) if T437, thenf?'d,u# f g du for every f,8 e (H).
- 00 - 00

Lemma 1. For every standard. subgroup (H) of AFja there exists
a finite field isomorphic to ((f),s,*) such that every its element is

a degree of engagement in a class of the set Cn(ﬁ).
+00
Proof. Letg(f) = f f au for every fe (H). From the condi-
- 00

tion (4) @ is an injective mapping of (H) into the interval <-131>.

Let K be the image go[(ﬁ)] and let card X = 2". From the
definition of the set Cn(ﬁ) every number o of K  is a degree of enga-
gement in a class (X,p,a) of Cn(ﬁ)'

We define the composition laws o and #» in the set Kr as follows
-1 -1
xop=olg o) g (B,

Xxfm ;o[go'l(a)%;v'l(ﬁ)l )
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4 1. Nabiatek

where . is ordinary multiplication of functions and % is the multipli-
cation in the field ((H),',%). The mapping ¢ is an isomorphism of
((ﬁ)," , %) onto (Kr,° ,%), hence the lemma is proved.

Definition 2. The field Kr defined in the proof of Lemma 1
is called a finite field of degrees of engagement.

We denote Krfv(ﬁ) iff there exists an isomorphism ¢ of the field
K onto the field ().

Lemma 2. For every re N any finite field of degrees of enga-

gement Kr has the following properties

(5) K, = {1,-1},
(6) K, €K _,
(7 if aeK_ , then -oek_,
T by

(8) 0¢-Kr.

Proof. The conditions (5) and (6) are satisfied because 1 is
the zero and -1 is the identity element of the field Kr'+

[ -]

If xeK , then there exists fe (H) such that o = J' f du and then

£,-Fe (H) from the condition (3). We have J‘ f-Tdu=0and £41 f,
-0

thus the subgroup (H) is not standard.
1t’s possible to show, that for r >1 a field Kr can be defined on
the different sets of degrees of engagement. For r = 2, K2 can be

any set {1,-1,0(,-0(,} where 0 <& <1.

3. Generators of matrices of regular functional configurations

Let (Kr, o, %) be any fixed finite field of degrees of engagement.

n
Let GeKr and O(éKr. Denote G = [gi]nxl'
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Regular functional configurations 5

We define the following composition laws:

GoGu[g

n
13]nxn - [gi ° gj]nxn for every G of Kr’

a0 G = [or °gi]nx1 for every o eK and GeK:.

A matrix M = [a, is a matrix of class of regular functional

u]nxn
configuration (X,y ¢§) iff o, ij are the degrees of engagement in this
class (cf. [4]).

Lemma 3. For every matrix GeK: the matrix GoG is a matrix

of class of a regular functional configuration.

Proof. Let'gl,. cog e K and let Kr~(]-[). Then there exist
the classes f;,...,f e (H) such that f fi du = g, for every ieN .

Hence g ° g is a degree of engagement of the elements X, and x] in
the class (X,‘u $) such that CP(x i, ) = f f for every 1,]eN . There-
fore, the matrix Geo G is a matrix of th1s class

Definition 3. A matrix G eK: is called a generator over the
field Kr of a matrix M of class of regular functional configurations
iff M = GoG.

Denote by M_(K_) the set {M : M = GoG and GeK:}.

Lemma 4. Let MeMn(Kr) and M = G'oG’. The set

{GeKn:G-aoG' and aeK}
r Tr

is the set of all generators of the matrix M.

Proof. U aeK_ and GeK, then (x0G)o(xoG) = GoG, hence
if M= GoG', thenxoG' is a generator of the matrix M over the
field Kr for every aeKr.

f GoG = GG, G = [g] , and G = [8]x1’ then 808 =
= gl'ogi' for every ieN , thus g = (glo g'l)o g; and we have G =aoG',
where o= g1 g'l.
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6 1. Nabiatek

Lemma 5. For every matrix M of Mn(Kr) there exists one ge-
nerator Go = r_gi]nxl and only one such that 8 = 1.

Proof. Let Me,Mn(Kr) and M = Go G, where G' = [g]_ .-
From Lemma 4, g;° G is only one generator Go = [gi]nxl of the ma-
trix M such that g = 1.

Definition 4. The matrix G = [gi](n-l)xl is called a reduced
generator of a matrix M of Mn(Kr)’ Uf M = GeG, G = [g] ;5 8 =1
and §i = §i-1 for every i = 2,3,...,n.

Let A = [a‘ij]kxm’ B = [bij]kxm and aij,bij,%eKr.

We define the following composition laws

(9) A ® B= [aijObij:]kxm,
(10) AxA = D\*aij]kxm'
Theorem. The set Mn(Kr) with the composition laws @

and » defined by (9) and (10) is a vector space isomorphic to the
vector space K:-l over the field Kr'

Proof. Let y: Mn(Kr) —-—K:-l be a mapping such that for
every M of Mn(Kr)’ ¥(M) is a reduced generator of M. From Lem-
mas -3 and 5 the mapping y is bijective.

: 1 o 'y

For every M,M eMn(Kr) we have y(M ® M') = yl( [giogjogiogj]nxn) ,
where g, = gi = 1and then yiM ® M) =G ® G', where G and G’
are the reduced generators of M and M’'.

I AeK , then wlA*M) = ‘P(D\*(Si0 gj)]nxn), where g; = 1. We
have A*(gio gj) = ()*gi)ou*gj), therefore (A *M) =2xy(M).

Tt’s proved that y is an isomorphism of (Mn(Kr), ® , %) onto

the vector space K:-l over the field K_.
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Regular functional configurations 7

4. Vector spaces of determined regular functional configurations

Consider now any standard subgroup (H) of the group 'f"’# and
a finite fie.ld of degrees of engagement Krfv(ﬁ).

Let ¢t Cn(ﬁ)—-—K:_l bhe a mapping such that for every C of
Cn(ﬁ) , ®{C) is a reduced generator of the matrix of C. The mapping
@ is bijective. We define an addition of configurations of Cn(ﬁ) and

a multiplication of configuration by an element of Kr as follows
-1, = —

(11) C1 + C2 =@ (G1 ® G2),

(12) 2°C = gp.l(z*é—),

where C_;l, 52 and G are the reduced generators of matrices of con-
figurations C,, C, and C. From {11) and (12}, the bijective mapping
¢ is an isomorphism of Cn(ﬁ) onto the vector space K:-l over the
field K . Let Cn(ﬁ) and Cm(ﬁ) be two vector spaces of determined

regular functional configurations and let ¢ and y be the isomorphismes

of Cn(ﬁ) and Cm(ﬁ) onto K.l;'l and K:l_l. For every linear mapping
h K:-l—-KI:_l, the mapping lp'lo hogis a linear mapping of the

vector space Cn(ﬁ) onto vector space Cm(ﬁ).
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