

Antoni Sadowski

**A GOURSTAT PROBLEM FOR MANGERON POLYVIBRATING
EQUATION IN R^n , $n \geq 3$**

Introduction

Goursat problems for partial differential equations in R^n -space, where $n \geq 3$, have been extensively examined in the special case when the boundary conditions are given on the planes of coordinates (see [7], [8], [10], [13], [14], [15] and the references in [19]). The papers devoted to the other cases were less numerous and in almost all of them the boundary conditions were given either on one surface or on a set of characteristics (see [1], [9], [11] and [17]). The much harder case of a greater number of non-characteristic surfaces was examined in papers [3]-[6].

In the present paper we extend the results of [3] to the case of R^n , $n \geq 3$.

1. Let $\Omega = \{x(x_1, \dots, x_n) \in R^n : 0 \leq x_i \leq A_i < \infty, 1 \leq i \leq n\}$ be a parallelepiped in R^n -space ($n \in N^*$, $n \geq 3$), m an element of the set N , $(Y, \| \cdot \|)$ a Banach space and $c : \Omega \rightarrow Y$ a given function.

We consider the following partial differential equation

$$(1) \quad L^m u(x) = c(x), \quad x \in \Omega,$$

*) The symbol N denotes the set of all positive integers.

where $L = D_1 \dots D_n$, with $D_i = \frac{\partial}{\partial x_i^i}$, $i = 1, 2, \dots, n$; $L^k = L(L^{k-1})$ for $1 \leq k \leq m$; $L^0 u = u$. Equation (1) is called Mangeron's polyvibrating equation of order nm with n independent variables.

By a solution of equation (1) in Ω we mean a function $u : \Omega \rightarrow Y$ such that $D_{i_1} \dots D_{i_k} L^k u \in C^{m-k-1}$ for $k = 0, 1, \dots, m-1$; $1 \leq i_1 < \dots < i_k \leq n$; $k = 1, 2, \dots, n$, satisfying equation (1) at each point $x \in \Omega$.

Admit the following notation

$$l_i(j) = \begin{cases} j & \text{for } 1 \leq j \leq i-1, 2 \leq i \leq n, \\ j+1 & \text{for } 1 \leq j \leq n-1, 1 \leq i \leq n-1, \end{cases}$$

$\Omega_i = \bigcup_{j=1}^{n-1} \langle 0, A_{l_i(j)} \rangle$ for $i = 1, 2, \dots, n$, and introduce the system of surfaces S_1, S_2, \dots, S_n given by the equations

$$x_i = f_i(x^{(i)})$$

respectively, where $x^{(i)} = (x_1^{(i)}, x_2^{(i)}, \dots, x_{n-1}^{(i)}) \in \Omega_i$; $x_j^{(i)} = x_{l_i(j)}$, $i = 1, 2, \dots, n$; $j = 1, 2, \dots, n-1$.

In this paper we examine a linear Goursat-like problem that consists in finding a solution u of equation (1) in Ω , satisfying on S_i , $i = 1, 2, \dots, n$, the boundary conditions of the form

$$(2) \quad L^r u(x) = N_{i,r}(x^{(i)})$$

$(x \in S_i; x^{(i)} \in \Omega_i)$, where $N_{i,r} : \Omega_i \rightarrow Y$ ($i = 1, 2, \dots, n$; $r = 0, 1, \dots, m-1$) are given functions.

We make the following assumptions

I. The functions $f_i : \Omega_i \rightarrow \langle 0, A_i \rangle$ are of class C^{m-n+2} and satisfy the conditions

$$(3) \quad D_{l_i(j)}^1 f_i(x^{(i)}) = 0$$

$(x^{(i)} \in \Omega_i; i = 1, 2, \dots, n; \text{ when } x_j^i = 0 \text{ for some } j \in N; j \leq n-1;$

$l = 0, 1, \dots, n-2$, where $D_{l_i(j)}^1 = D_{l_i(j)} D_{l_i(j)}^{l-1}$ for $1 \leq l \leq n-2$;
 $D_{l_i(j)}^0 f_i = f_i$.

Moreover, the surfaces S_1, S_2, \dots, S_n satisfy the relation
 $S_p \cap S_q = \{x \in \Omega; x_p = x_q = 0\}$, $p, q = 1, 2, \dots, n$; $p \neq q$.

II. The functions $N_{i,r} : \Omega_i \rightarrow Y$ of class $C^{m-r+n-2}$, satisfy the
 conditions *)

$$(4) \quad N_{i,r}^{(k)}(x^{(i)}) = 0 \quad \text{for } x^{(i)} \in \Omega_i; \prod_{j=1}^{n-1} x_j^i = 0,$$

$k = 0, 1, \dots, m-r+n-3$, $i = 1, 2, \dots, n$; $r = 0, 1, \dots, m-1$,

$$(5) \quad \|N_{i,r}^{(k)}(x^{(i)})\|_k \leq K_1 \left[\min_{1 \leq j \leq n-1} x_j^i \right]^\theta \quad \text{for } x^{(i)} \in \Omega_i$$

$i = 1, 2, \dots, n$; $k = m-r+n-2$; $r = 0, 1, \dots, m-1$, where θ is a positive constant.

III. $c : \Omega \rightarrow Y$ is a function of class C^{n-2} .

In what follows we will use the notation

$$(6) \quad M_j = \max_{1 \leq i \leq n} \max_{|\alpha|=j} \sup_{\Omega_i} |D^\alpha f_i(x^{(i)})|,$$

$j = 1, 2, \dots, m+n-2$, and α is the multi-index with $n-1$ components concerning the differentiation with respect to the coordinates of the point $x^{(i)}$ and let

*) Here and in the sequel, $\|\cdot\|_k$, $k \geq 1$, denotes the norm in the space $L_k(B_1, B_2)$ of k -linear continuous functions, where B_1 and B_2 are Banach spaces. The symbol $\|\cdot\|_0$ is meant as the norm in B_2 .

$$(7) \quad M_k^* = \max_{1 \leq j \leq k} (1, \max M_j), \quad k = 1, 2, \dots, m+n-2.$$

2. Auxiliary theorems

Lemma 1. (cf. Lemma 1 in papers [2] and [3]). Let a function $u : \Omega \rightarrow Y$ be given by

$$(8) \quad u(x) = R_m(x) + \sum_{j=1}^m \sum_{k=1}^n (x_k)^{m-j} \psi_{k,m-j}(x^{(k)}),$$

$x \in \Omega$; $x^{(k)} \in \Omega_k$; $k = 1, 2, \dots, n$, where

$$(9) \quad R_m(x) = [(m-1)!]^{-n} \int_0^{x_1} \dots \int_0^{x_n} \prod_{k=1}^n (x_k - \eta_k)^{m-1} c(\eta_1, \dots, \eta_n) d\eta_1 \dots d\eta_n,$$

$$(10) \quad \psi_{k,m-j}(x^{(k)}) = \left\{ (m-j)! [(m-j-1)!]^{n-1} \right\}^{-1} x$$

$$x \int_0^{x_1^k} \dots \int_0^{x_{n-1}^k} \prod_{l=1}^{n-1} (x_l^k - \eta_l^k)^{m-j-1} \varphi_{k,m-j}(\eta_1^k, \dots, \eta_{n-1}^k) d\eta_1^k \dots d\eta_{n-1}^k$$

for $j = 1, 2, \dots, m-1$; $\psi_{k,0} = \varphi_{k,0}$, where the functions $\varphi_{k,m-j} : \Omega \rightarrow Y$, $k = 1, 2, \dots, n$; $j = 1, 2, \dots, m$, possess continuous derivatives $D_{l_k(i_1)} \dots D_{l_k(i_l)} \varphi_{k,m-j}$, $1 \leq i_1 < \dots < i_l \leq n-1$; $l = 1, 2, \dots, n-1$, of class C^{j-1} , respectively. Under these conditions u is a solution in Ω of equation (1) with $c \in C(\Omega)$.

Conversely, if u is a solution of (1) in Ω , then there are functions $\varphi_{k,m-j} : \Omega \rightarrow Y$, $k = 1, 2, \dots, n$; $j = 1, 2, \dots, m$, possessing the afore-said derivatives of class C^{j-1} such that (8)-(10) are satisfied at each point $x \in \Omega$.

Lemma 2. The following inequality

$$(11) \quad |D^\alpha f_i(x^{(i)})| \leq M_{n-1}^* \left(\min_{1 \leq k \leq n-1} x_k^i \right)^{n-1-|\alpha|}, \quad x^{(i)} \in \Omega_i,$$

$i = 1, 2, \dots, n$; $|\alpha| \leq n-2$, is valid.

Lemma 3. For each number λ_f satisfying the condition

$$(12) \quad 0 < \lambda_f < \left[(m-1)((2n-3)M_1^*) \right]^{m+n-3+\theta}^{-1/\theta}$$

there is a number $\delta = \delta(\lambda_f)$, $0 < \delta < \min(1, \min_{1 \leq i \leq n} A_i)$, such that

$$(13) \quad |D^\alpha f_i(x^{(i)})| \leq \lambda_f \left(\min_{1 \leq j \leq n-1} x_j^i \right)^{n-2-|\alpha|}, \quad |\alpha| \leq n-3$$

holds good for $x^{(i)} \in \Omega_i$; $\min_{1 \leq j \leq n-1} x_j^i < \delta$; $i = 1, 2, \dots, n$.

Lemma 3 is a consequence of Lemma 2.

Lemma 4. The following inequality

$$(14) \quad \|N_{i,r}^{(k)}(x^{(i)})\|_k \leq K_1 [(m+n-2-r-k)!]^{-1} \left(\min_{1 \leq j \leq n-1} x_j^i \right)^{m+n-2-r-k+\theta},$$

$x^{(i)} \in \Omega_i$; $i = 1, 2, \dots, n$; $k = 0, 1, \dots, m+n-2-r$; $r = 0, 1, \dots, m-1$,
holds good.

We prove Lemma 4 by using relations (4) and (5) and on applying the Taylor formula.

Now let us introduce the functions $a_{r,j}^i : \Omega_i \rightarrow \mathbb{R}$ given by

$$(15) \quad a_{r,j}^i(x^{(i)}) = \begin{cases} x_r^j & \text{for } r \neq i, \\ f_i(x^{(i)}) & \text{for } r = i, \end{cases}$$

when $i < j$, $r = 1, 2, \dots, n-1$; $x^{(i)} \in \Omega_i$; $1 \leq i, j \leq n$,

$$(16) \quad a_{r,j}^i(x^{(i)}) = \begin{cases} x_r^j & \text{for } r \neq i-1, \\ f_i(x^{(i)}) & \text{for } r = i-1, \end{cases}$$

when $j < i$, $r = 1, 2, \dots, n-1$; $x^{(i)} \in \Omega_i$; $1 \leq i, j \leq n$.

We consider the function sequences $\{z_{\bar{k}(\alpha)}^v\}$ defined by

$$(17) \quad z_{\bar{k}(\alpha)}^v(x^{(v)}) = (z_{1,\bar{k}(\alpha)}^v(x^{(v)}), \dots, z_{n-1,\bar{k}(\alpha)}^v(x^{(v)}))$$

where

$$(18) \quad z_{r,\bar{k}(\alpha)}^v(x^{(v)}) = a_{r,k_\alpha}^{k_{\alpha-1}}(z_{\bar{k}(\alpha-1)}^v(x^{(v)}))$$

for $\alpha = 2, 3, \dots$; $r = 1, 2, \dots, n-1$, and

$$(19) \quad z_{r,\bar{k}(1)}^v(x^{(v)}) = a_{r,k_1}^v(x^{(v)})$$

for $r = 1, 2, \dots, n-1$ ($\bar{k}(\alpha) = (k_1, \dots, k_\alpha)$; $1 \leq k_1 \leq n$; $k_1 \neq k_{1-1}$; $1 = 1, 2, \dots, \alpha$; $k_0 = v$; $x^{(v)} \in \Omega_v$; $v = 1, 2, \dots, n$).

Lemma 5. There is a number $\alpha_0 \in \mathbb{N}$ such that if $N \ni \alpha > \alpha_0$ or $\min_{1 \leq r \leq n-1} x_r^v \leq \delta$, then ¹⁾

$$(20) \quad \max_{\bar{k}(\alpha)} \min_{1 \leq r \leq n-1} z_{r,\bar{k}(\alpha)}^v(x^{(v)}) \leq \text{const}(\lambda_f)^\alpha \left(\min_{1 \leq r \leq n-1} x_r^v \right)^{n-2}.$$

The validity of Lemma 5 results from Assumption I, Corollary 1 in [18] and Lemma 3.

Using formula (1.43) in [17] one can prove the following lemma (cf. Corollary 1.3 in [17])

¹⁾ Here and in the sequel const denotes a positive constant.

Lemma 6. The inequality

$$(21) \quad \| z_{k(\alpha)}^{(1)}(x^{(y)}) \|_1 \leq 1! [M_1^*(2n-3)]^{\alpha l} [(n-1)^1 M_1^*]^{l-1},$$

$x^{(y)} \in \Omega_y$; $y = 1, 2, \dots, n$; $l = 1, 2, \dots, m+n-2$; $\alpha = 1, 2, \dots$, holds good.

Let $R_{y,k}(x^{(y)}) = [R_k(x)]_{x=f_y(x^{(y)})}$, $x^{(y)} \in \Omega_y$; $y = 1, 2, \dots, n$; $k = 1, 2, \dots, m$, with R_k defined by (9) with the replacement of m by k .

Lemma 7. The inequality

$$(22) \quad \| R_{y,k}^{(r)}(x^{(y)}) \|_r \leq \text{const} \left(\min_{1 \leq j \leq n-1} x_j^y \right)^{k+n-1-r},$$

$x^{(y)} \in \Omega_y$; $y = 1, 2, \dots, n$; $r = 0, 1, \dots, k+n-2$; $k = 1, 2, \dots, m$, is valid.

We omit an inductive proof of this Lemma.

Let

$$(23) \quad \mathcal{X}_{k,m-j} = \left\{ \varphi: \Omega_k \rightarrow Y; \| \varphi^{(r)}(x^{(k)}) \|_r \leq C(\varphi) \min_{1 \leq l \leq n-1} x_l^{k-j+n-2-r+\theta} \right\}$$

for $x^{(k)} \in \Omega_k$; $k = 1, 2, \dots, n$; $r = 0, 1, \dots, j+n-2$; $j = 1, 2, \dots, m$, where $C(\varphi)$ is a positive constant depending in general on the function φ .

For a fixed positive integer s such that $2 \leq s \leq m$ and fixed function $\varphi_{k,m-j} \in \mathcal{X}_{k,m-j}$, $k = 1, 2, \dots, n$; $j = 1, 2, \dots, s-1$, we consider the functions

$$(24) \quad Q_{s,j}(x) = \sum_{k=1}^n (x_k)^{s-j} \int_0^{x_1^k} \dots \int_0^{x_{n-1}^k} \prod_{l=1}^{n-1} (x_r^k - \varrho_r^k)^{s-j-1} \times \\ \times \varphi_{k,m-j}(\varrho_1^k, \dots, \varrho_{n-1}^k) d\varrho_1^k \dots d\varrho_{n-1}^k, \quad x \in \Omega;$$

$$(25) \quad Q_{v,s,j}(x^{(v)}) = [Q_{s,j}(x)]_{x_v=f_v(x^{(v)})},$$

$$x^{(v)} \in \Omega_v; \quad v = 1, 2, \dots, n; \quad j = 1, 2, \dots, s-1; \quad s = 2, 3, \dots, m.$$

We have the following lemma whose inductive proof will be also omitted.

Lemma 8. If $\varphi_{k,m-j} \in \mathcal{X}_{k,m-j}$, then

$$(26) \quad \|Q_{v,s,j}(x^{(v)})\|_r \leq \\ \leq \text{const} \max_{1 \leq k \leq n} C(\varphi_{k,m-j}) \left(\min_{1 \leq l \leq n-1} x_l^{(v)} \right)^{s+n-2-r+\theta},$$

$$x^{(v)} \in \Omega_v; \quad v = 1, 2, \dots, n; \quad j = 1, 2, \dots, s-1; \quad r = 0, 1, \dots, s+n-2; \\ s = 2, 3, \dots, m.$$

3. Solution of the problem (1), (2)

Let us observe that if u is a solution of (1) in Ω , then by Lemma 1, we have

$$(27) \quad L^{m-s}u(x) = R_s^*(x) + \sum_{k=1}^n \varphi_{k,m-s}(x^{(k)}), \quad x \in \Omega,$$

$x^{(k)} \in \Omega_k$; $k = 1, 2, \dots, n$; $s = 1, 2, \dots, m$, where²⁾

²⁾ As usual, we set $\sum_{k=\alpha}^{\beta} a_k = 0$ for $\beta < \alpha$.

$$(28) \quad R_s^*(x) = R_s(x) + \sum_{r=1}^{s-1} \left\{ (s-r)! [(s-r-1)!]^{n-1} \right\}^{-1} \sum_{k=1}^n (x_k)^{s-r} x$$

$$x \int_0^{x_1^k} \cdots \int_0^{x_{n-1}^k} \prod_{j=1}^{n-1} (x_j^{k_j} \ell_j^{k_j})^{m-j-1} \varphi_{k, m-s}(\ell_1^{k_1}, \dots, \ell_{n-1}^{k_{n-1}}) d\ell_1^{k_1} \cdots d\ell_{n-1}^{k_{n-1}}.$$

Imposing on the function u (see (8)) the boundary conditions (2), we obtain a system of linear functional equations, with the unknown functions $\varphi_{k, m-s}$, $k = 1, 2, \dots, n$; $s = 1, \dots, m$, of the form

$$(29) \quad \varphi_{i, m-s}(x^{(i)}) = w_{i, m-s} x^{(i)} - \sum_{\substack{k_1=1 \\ k_1 \neq i}}^n \varphi_{k_1, m-s} z_{\vec{k}(1)}^i(x^{(i)}),$$

$x^{(i)} \in \Omega_i$; $i = 1, 2, \dots, n$; $s = 1, 2, \dots, m$, where

$$(30) \quad w_{i, m-s}(x^{(i)}) = N_{i, m-s}(x^{(i)}) - R_{i, s}^*(x^{(i)}),$$

$$(31) \quad R_{i, s}^*(x^{(i)}) = [R_s^*(x)]_{x_i = f_i(x^{(i)})}$$

and $z_{\vec{k}(1)}^i(x^{(i)}) = (z_{1, \vec{k}(1)}^i(x^{(i)}), \dots, z_{n-1, \vec{k}(1)}^i(x^{(i)}))$ are given by formula (19). Let us denote

$$(32) \quad v_{i, m-s}^\alpha(x^{(i)}) = (-1)^\alpha \sum_{\vec{k}(\alpha)} w_{k_\alpha, m-s}(z_{\vec{k}(\alpha)}^i(x^{(i)})),$$

$x^{(i)} \in \Omega_i$; $i = 1, 2, \dots, n$; $s = 1, 2, \dots, m$; $\vec{k}(\alpha) = (k_1, \dots, k_\alpha)$;
 $1 \leq k_1 \leq n$; $k_1 \neq k_{l-1}$; $l = 1, 2, \dots, \alpha$; $k_0 = i$; $\alpha = 1, 2, \dots$.

We will solve (29) by using the iteration method (see [12]).

Theorem 1 (cf. Theorem 1 in [3]). If Assumptions I-III are satisfied then for each $1 \leq l \leq m$ the system of functions $\{\varphi_{i,m-s}\}$, $i = 1, 2, \dots, n$; $s = 1, 2, \dots, l$, given by

$$(33) \quad \varphi_{i,m-s}(x^{(i)}) = w_{i,m-s}(x^{(i)}) + \sum_{\alpha=1}^{\infty} v_{i,m-s}^{\alpha}(x^{(i)})$$

is a solution of the system of functional equations

$$(34) \quad \varphi_{i,m-s}(x^{(i)}) = w_{i,m-s}(x^{(i)}) - \sum_{\substack{k=1 \\ k_1 \neq i}}^n \varphi_{k_1,m-s} z_{k(1)}^i(x^{(i)}),$$

$x^{(i)} \in \Omega_i$; $i = 1, 2, \dots, n$; $s = 1, 2, \dots, l$, in the set Ω . This is the unique solution of system (34) in the class \mathcal{X}_i of all systems of functions $\{\varphi_{i,m-s}\}$, such that $\varphi_{i,m-s} \in \mathcal{X}_{i,m-s}$ for $i = 1, 2, \dots, n$; $s = 1, 2, \dots, l$ (see (23)).

Proof. Apply mathematical induction with respect to l . Let $l = 1$. We will prove the uniform convergence of the series $\sum_{\alpha=1}^{\infty} v_{i,m-1}^{\alpha}(x^{(i)})$, (where $i = 1, 2, \dots, n$; $r = 0, 1, \dots, n-1$) in the set Ω_i . In virtue of formulas (30), (31) and Lemmas 4 and 7, we have

$$(35) \quad \|w_{i,m-1}^{(r)}(x^{(i)})\|_r \leq \text{const} \left(\min_{1 \leq j \leq n-1} x_j^i \right)^{n-r-1+\theta},$$

$x^{(i)} \in \Omega_i$; $i = 1, 2, \dots, n$; $r = 0, 1, \dots, n-1$.

If $\alpha > \alpha_0$ or $\min_{1 \leq j \leq n-1} x_j^i < \delta$, then the relations (20), (21) and (35) imply the inequality

$$(36) \quad \|v_{i,m-1}^{\alpha}(x^{(i)})\|_r \leq \text{const} \left[(n-1)(\lambda_f)^{n-r-1+\theta} ((2n-3)M_1^*)^r \right]^{\alpha} \times \\ \times \left(\min_{1 \leq j \leq n-1} x_j^i \right)^{n-r-1+\theta},$$

$i = 1, 2, \dots, n; r = 0, 1, \dots, n-1$. If $\alpha \leq \alpha_0$ and $\min_{1 \leq j \leq n-1} x_j^i > \delta$, then

$$(37) \quad \|V_{i,m-1}^{\alpha(r)}(x^{(i)})\|_r \leq \text{const} \left(\min_{1 \leq j \leq n-1} x_j^i \right)^{n-r-1+\theta},$$

$i = 1, 2, \dots, n; r = 0, 1, \dots, n-1$.

As $0 < (n-1)(\lambda_f)^{n-r-1+\theta}((2n-3)M_1^*)^r < 1$ (cf. (12)) for $r = 0, \dots, n-1$, the series appearing in formula (33) with $s = 1$, as well as the series obtained by its differentiation of order $r=1, 2, \dots, n-1$, are uniformly convergent in Ω_i , whence and by (33), (36) and (37) the functions $\varphi_{i,m-1}$, $i = 1, 2, \dots, n$, given by (33) for $s = 1$ belong to the classes $\mathcal{X}_{i,m-1}$ respectively. We will show that $\{\varphi_{i,m-1}\}$, $i = 1, \dots, n$, satisfies the system of functional equations

$$(38) \quad \varphi_{i,m-1}(x^{(i)}) = w_{i,m-1}(x^{(i)}) - \sum_{\substack{k_1=1 \\ k_1 \neq i}}^n \varphi_{k_1,m-1}(z_{\tilde{k}(1)}^i(x^{(i)})).$$

Setting $k_\beta = l_{\beta-1}$ and $\alpha-1 = \mu$ for $\alpha \geq 2$ in (32), we get (cf. (18), (19))

$$z_{\tilde{k}(\alpha)}^i(x^{(i)}) = z_{\tilde{l}(\mu)}^{k_1} \left(z_{\tilde{k}(1)}^i(x^{(i)}) \right),$$

where $\tilde{l}(\mu) = (l_1, \dots, l_\mu)$; $l_j \neq l_{j-1}$; $j = 1, 2, \dots, \mu$; $l_0 = k_1$.

Basing on this relation and using (32), (33), we obtain the following sequence of equalities

$$\varphi_{i,m-1}(x^{(i)}) = w_{i,m-1}(x^{(i)}) - \sum_{\substack{k_1=1 \\ k_1 \neq i}}^n \left\{ w_{k_1,m-1} \left(z_{\tilde{k}(1)}^i(x^{(i)}) \right) \right\} +$$

$$+ \sum_{\mu=1}^{\infty} (-1)^{\mu} \sum_{\overline{l}(\mu)} w_{l_{\mu}, m-1} \left(z_{\overline{l}(\mu)}^k \left(z_{\overline{k}(1)}^i (x^{(i)}) \right) \right) \} =$$

$$= w_{i, m-1} (x^{(i)}) - \sum_{\substack{k=1 \\ k \neq i}}^n \varphi_{k_1, m-1} \left(z_{\overline{k}(1)}^i (x^{(i)}) \right),$$

which imply that the system of functions $\{\varphi_{i, m-1}\}$, $i = 1, 2, \dots, n$, given by (33) satisfies (38) in the set Ω , as required.

Now we shall prove that (38) has exactly one solution such that $\varphi_{i, m-1} \in x_{i, m-1}$ ($i = 1, 2, \dots, n$). To this end let us note that if $\{\varphi_{i, m-1}\}$, $i = 1, 2, \dots, n$, is a solution of (38), then

$$\begin{aligned} \varphi_{i, m-1} (x^{(i)}) &= w_{i, m-1} (x^{(i)}) + \sum_{\alpha=1}^{s-1} v_{i, m-1}^{\alpha} (x^{(i)}) + \\ &+ (-1)^s \sum_{\overline{k}(s)} \varphi_{k_s, m-1} \left(z_{\overline{k}(s)}^i (x^{(i)}) \right), \quad s \geq 1. \end{aligned}$$

As, by assumption, $\varphi_{i, m-1} \in x_{i, m-1}$, Lemma 5 implies that $\sum_{\overline{k}(\alpha)} \varphi_{k_s, m-1} \circ z_{\overline{k}(s)}^i = 0$, when $s \rightarrow \infty$. Thus, the functions $\varphi_{i, m-1}$, $i = 1, 2, \dots, n$, are expressed by formula (33) for $s = 1$, which ends the proof of Theorem 1 for $l = 1$, $m = 1$.

Let us assume that $m \geq 2$ and that Theorem 1 is valid for $1 \leq l \leq l_0$, where $1 \leq l_0 < m$. We will prove that it is also valid for $l = l_0 + 1$, i.e. that

$$(39) \quad \varphi_{i,m-(l_0+1)}(x^{(i)}) = w_{i,m-(l_0+1)}(x^{(i)}) +$$

$$- \sum_{\substack{k_1=1 \\ k_1 \neq i}}^n \varphi_{k_1,m-(l_0+1)} \left(z_{k_1}^{(i)}(x^{(i)}) \right),$$

$x^{(i)} \in \Omega_i$; $i = 1, 2, \dots, n$, possesses exactly one solution $\{\varphi_{i,m-(l_0+1)}\}$, $i = 1, 2, \dots, n$, such that $\varphi_{i,m-(l_0+1)} \in \mathcal{X}_{i,m-(l_0+1)}$, with the functions $\varphi_{i,m-(l_0+1)}$ given by formula (33) for $s = l_0+1$.

By the inductive assumption, definitions (30), (31) and Lemmas 4, 7, 8, the inequality

$$(40) \quad \|w_{i,m-(l_0+1)}(x^{(i)})\|_r \leq \text{const} \left(\min_{1 \leq j \leq n-1} x_j^i \right)^{l_0+n-1-r+\theta},$$

$x^{(i)} \in \Omega_i$; $i = 1, 2, \dots, n$; $r = 0, 1, \dots, l_0+n-1$, holds good.

If $\alpha > \alpha_0$ or $\min_{1 \leq j \leq n-1} x_j^i < \delta$, then inequalities (20), (21), (40) imply

$$(41) \quad \|v_{i,m-(l_0+1)}(x^{(i)})\|_r \leq \text{const} \left[(n-1)(\lambda_f)^{l_0+n-1-r+\theta} ((2n-3)M_1^*)^r \right]^\alpha \times$$

$$\times \left(\min_{1 \leq j \leq n-1} x_j^i \right)^{l_0+n-1-r+\theta},$$

$i = 1, 2, \dots, n$; $r = 0, 1, \dots, l_0+n-1$. And if $\alpha \leq \alpha_0$ and $\min_{1 \leq j \leq n-1} x_j^i \geq \delta$,

$i = 1, 2, \dots, n$; $r = 0, 1, \dots, l_0+n-1$, holds true.

Since $0 < (n-1)(\lambda_f)^{l_0+n-1-r+\theta} ((2n-3)M_1^*)^r < 1$ (cf. (12)) for $r = 0, \dots, l_0+n-1$, we can conclude, analogously as in the case $s = 1$, that the functions $\varphi_{i,m-(l_0+1)}$ ($i = 1, \dots, n$) defined by formula (33) (for $s = l_0+1$) belong to the class $\mathcal{X}_{i,m-(l_0+1)}$, respectively.

Using an argument analogous to that for $l = 1$ one can prove that the system of the said functions is the only solution of (39) such that $\varphi_{i,m-(l_0+1)} \in \mathcal{X}_{i,m-(l_0+1)}$. Hence and from the inductive assumption we can conclude that Theorem 1 is valid for $l = l_0+1$. Using the induction principle we end the proof of Theorem 1.

Lemma 1 and Theorem 1 imply the following theorem.

Theorem 2. If Assumptions I-III are satisfied then the Goursat-like problem (1), (2) possesses a solution (8), where the functions $\psi_{k,m-j}$ are defined by (10) with $\varphi_{k,m-j}$ given by (33) and satisfying the system of functional equations (29). The solution (8) is unique in the set of all solutions u of equation (1) such that the system of functions $\{\varphi_{k,m-j}\}$, $k = 1, 2, \dots, n$; $j = 1, 2, \dots, m$, appearing in (10) belongs to the class \mathcal{X}_m .

REFERENCES

- [1] S.A. Aldashev: On a nonlocal boundary value problem and the Goursat problem for a higher-order equation (in Russian), Izv. Akad. Nauk Kazakh. SSR Ser. Fiz-Mat. 3 (1982), 51-54.
- [2] A. Borzymowski: A Goursat problem for some partial differential equation of order $2p$, Bull. Acad. Pol. Sci.: Math. 32 (1984), 577-580.
- [3] A. Borzymowski, A. Sadowski: A Goursat problem for Mangeron's polyvibrating equation in \mathbb{R}^3 , Applicable Anal. 23 (1987), 319-332.
- [4] A. Borzymowski, A. Sadowski: A boundary value problem for the Mangeron polyvibrating equation, Rend. Mat. 6 (1986), 565-585.
- [5] S.C. Chu: On a mixed boundary value problem for linear third order hyperbolic partial differential equations, Rend. Circ. Mat. Palermo 13 (1964), 199-208.
- [6] S.C. Chu and J.B. Diaz: The Goursat problem for the partial differential equation $u_{xyz} = f(x,y,z,u,u_x, \dots, u_{yz})$, A Mirage, J. Math. Mech. (16) (1967), 709-713.

[7] J. Conlan: An existence theorem for the equation $u_{xyz} = f$, Arch. Rational Mech. Anal. 9 (1962), 64-76.

[8] J. Conlan, J.B. Diaz: Existence of solutions of n-th order hyperbolic partial differential equations, Contrib. Diff. Equations 2 (1963), 277-289.

[9] Z. Denkowski, A. Pelczar: On the existence and uniqueness of solutions of some partial differential functional equations, Ann. Polon. Math. 35 (1978), 261-304.

[10] I.I. Glick: On an analog of the Euler-Cauchy polygon method for the partial differential equation $u_{x_1 \dots x_n} = f(x_1, \dots, x_n, u, u_{x_1}, \dots, u_{x_2 \dots x_n})$, Contrib. Diff. Equations 2 (1963), 1-59.

[11] M.G. Gonzales: Resolucion del problema de Cauchy para ecuaciones en derivadas parciales totalmente hiperbolicas, Collect. Math. 21 (1970), 199-283.

[12] M. Kuczma: Functional equations in a single variable, PWN, Warszawa, 1968.

[13] M. Kwapisz, B. Palczewski, W. Pawelski: Sur l'existence et l'unicité des solutions du certaines équations différentielles du type $u_{xyz} = f(x, y, z, u, u_x, \dots, u_{yz})$, Ann. Polon. Math. 11 (1961), 75-106.

[14] L. Nappi: Un teorema di esistenza e di unicità per il problema di Darboux in n variabili, Matematiche 23 (1968), 224-241.

[15] J. Persson: Global linear Goursat problems for functions of Gevrey-Lednev type, Ann. Scuola Norm. Sup. Pisa, 23 (1969), 387-412.

[16] J. Persson: Non-characteristic Cauchy problems and generalized Goursat problems in R^n . J. Math. Mech. 18 (1969), 1087-1094.

[17] A. Sadowski: Goursat-like boundary value problems for some partial differential equations with the number of independent variables greater than two (in Polish), Doctoral Thesis, Warsaw University of Technology, Warszaw 1986.

- [18] A. Sadowski: Concerning some sequences of iterates in \mathbb{R}^n -space, *Demonstratio Math.* 23 (4) (1990).
- [19] W. Walter: *Differential and integral inequalities*, Springer-Verlag, Berlin, 1970.

INSTITUTE OF MATHEMATICS, TECHNICAL UNIVERSITY
OF WARSAW, PŁOCK BRANCH,
09-400 PŁOCK, POLAND

Received December 19, 1988.