

James G. Raftery, Teo Sturm

**COMPLETIONS OF UNIFORM UNIVERSAL ALGEBRAS
AND STRONGLY UNIFORM BCK-ALGEBRAS**

Let \mathcal{U} be a uniformity on a universal algebra $(A; F)$. $\mathcal{A} = (A; F; \mathcal{U})$ is called a uniform algebra if each operation $f \in F$ is uniformly continuous on A (with respect to \mathcal{U}). It is shown that \mathcal{A} is embeddable, as a dense subalgebra, in a complete uniform algebra of the same type as \mathcal{A} . If $(A; \mathcal{U})$ is Hausdorff, then \mathcal{A} has a Hausdorff completion $\bar{\mathcal{A}}$, which is unique up to an isomorphism which fixes A pointwise, and the embedding $\mathcal{A} \rightarrow \bar{\mathcal{A}}$ may be described as a category reflection.

Special consideration is given to the case of (Hausdorff) uniform BCK-algebras and to conditions under which their (Hausdorff) completions are also BCK-algebras.

0. Introduction and preliminaries

We assume a familiarity with the theory of BCK-algebras (as general references, we recommend [2] and [3]). The binary operation on a BCK-algebra will be denoted by juxtaposition.

Let $(A; ., 0)$ be a BCK-algebra. We denote by $\text{Id}(A)$ (resp. $\text{Con}(A)$) the complete lattice of all ideals (resp. all $\{., 0\}$ -congru-

AMS (MOS) 1980 Subject Classification: 03G25, 08A99, 98B99, 54E15, 54E52, 54H99.

ces) of A . If $I \in \text{Id}(A)$ and $\theta_I = \{(x, y) \in A \times A : x, y \in I\}$ then $\theta_I \in \text{Con}(A)$ and A/θ_I is a BCK-algebra (see [3, p.12]). Conversely if $\theta \in \text{Con}(A)$ and $\theta(0) = \{x \in A : (x, 0) \in \theta\}$ then $\theta(0) \in \text{Id}(A)$. If A is a member of a $\{\cdot, 0\}$ -variety of BCK-algebras then the mappings $I \mapsto \theta_I$, $\theta \mapsto \theta(0)$ are mutually inverse lattice isomorphisms between $\text{Id}(A)$ and $\text{Con}(A)$ [2, p.108]. It should be noted that the class of all BCK-algebras is not a $\{\cdot, 0\}$ -variety [8] and that there exist BCK-algebras A for which $\text{Id}(A)$ and $\text{Con}(A)$ are not isomorphic [5, Remark 9].

Throughout this paper, \mathbb{R} shall denote the classical linearly ordered group of real numbers and ω the set of all non-negative integers. 0 shall denote both the real zero and the zero element of a BCK-algebra. If S and T are sets then for each $i \in T$, π_i shall denote the i -th projection map $S^T \rightarrow S$.

We assume a familiarity with the theory of uniform spaces. In this regard, our terminology accords with that of [4]. If (S, \mathcal{U}) is a uniform space and $U, V \in \mathcal{U}$, we define

$$U \circ V = \{(x, y) \in S \times S : \text{there exists } z \in S \text{ such that } (x, z) \in U \text{ and } (z, y) \in V\};$$

$$1_U = U; (n+1)U = (nU) \circ U \quad (0 < n \in \omega).$$

Recall that every uniformity has a "symmetric base", i.e., a base consisting of sets U where $U = U^{-1} = \{(x, y) \in S \times S : (y, x) \in U\}$ [4, Theorem 6.6]. A uniform space (S, \mathcal{U}) is Hausdorff (i.e. the uniform topology on S induced by \mathcal{U} is Hausdorff) if and only if $\cap \mathcal{U} = \text{id}_S = \{(x, x) : x \in S\}$, if and only if $\cap \mathcal{B} = \text{id}_S$ for any base \mathcal{B} for \mathcal{U} .

Where products of uniform spaces arise, it will be assumed that they are endowed with the product uniformity (see [4, pp.180-184]). In particular, if (S, d) is a pseudo-metric space and $0 < m \in \omega$, then S^m will be considered to have been endowed with the so-called "max" pseudo-metric, also denoted by d , i.e.

$$d(x, y) = \max \{ d(x(i), y(i)) : 1 \leq i \leq m \} \quad (x, y) \in S^m.$$

The following notational convention will be adopted: Let (S, \mathcal{U}) be a uniform space with $D \in \mathcal{U}$. If $0 < m \in \omega$ and f is an m -ary operation on S , we define

$$f^{-1}(D) = \{ (x, y) \in S^m \times S^m : (f(x), f(y)) \in D \}.$$

Let $t = (F; ar)$ be a "type" of algebras, i.e. F is a set of operation symbols and $ar: F \rightarrow \omega$ is the arity function. We define

$$F^+ = \{ f \in F : ar(f) > 0 \}$$

(i.e., F is the set of all non-constant operation symbols in F).

A structure $\mathcal{A} = (A; F; \mathcal{U})$ is called a uniform algebra (resp. a complete uniform algebra; a Hausdorff uniform algebra) of type t if:

- (i) $(A; F)$ is a universal algebra of type t ,
- (ii) $(A; \mathcal{U})$ is a uniform space (resp. a complete uniform space; a Hausdorff uniform space) and
- (iii) for each $f \in F$, the mapping $f_A : A^{ar(f)} \rightarrow A$ is uniformly continuous in \mathcal{U} . (In the absence of any possible confusion we shall denote f_A by f).

In particular, if \mathcal{U} is the (pseudo-) metric uniformity induced by a (pseudo-) metric d on A and $(A; F; \mathcal{U})$ is a uniform algebra of type t then $(A; F; \mathcal{U})$ will be called a (pseudo-) metric algebra of type t . Such algebras and their completions were studied in [6]. \square

1. In this paper, we consider uniform algebras and their completions. While the results are quite general, they arose out of a consideration of uniformities on BCK-algebras: a uniform BCK-algebra $(A; ., 0, \mathcal{U})$ will be called a strongly uniform BCK-algebra if it satisfies the following condition: for any Cauchy nets $(x_\gamma; \gamma \in \Gamma)$ and

$(y_\gamma; \gamma \in \Gamma)$ in A such that the nets $(x_\gamma y_\gamma; \gamma \in \Gamma)$ and $(y_\gamma x_\gamma; \gamma \in \Gamma)$ each converge to 0, the net $((x_\gamma, y_\gamma); \gamma \in \Gamma)$ in $A \times A$ is eventually in every element of \mathcal{U} . Note that such an algebra also satisfies

$$(xy, 0), (yx, 0) \in \cap \mathcal{U} \Rightarrow (x, y) \in \cap \mathcal{U}$$

for all $x, y \in A$. We cite some examples.

1.1. A structure $(A; ., 0; n)$ is called a pseudo-normed BCK-algebra if $(A; ., 0)$ is a BCK-algebra and n is a pseudo-norm on A , that is, a real valued function on A satisfying $n(0) = 0$ and $n(x) \leq n(xy) + n(y)$ for all $x, y \in A$. We call n a norm (and $(A; ., 0; n)$ a normed BCK-algebra) if in addition, $x = 0$ whenever $n(x) = 0$. (Pseudo-) normed BCK-algebras were introduced and studied in [6]: in particular if A is interpreted as an algebra of sets and \cdot as the operation of set difference then a pseudo-norm on A has some of the properties of a measure; on the other hand if A is an implicational calculus and xy denotes the propositional formula $y \rightarrow x$ then pseudo-norms on A may be interpreted as "falsity-valuations". A (pseudo-) norm n on a BCK-algebra A defines a (pseudo-) metric d_n on A : we set $d_n(x, y) = n(xy) + n(yx)$, $x, y \in A$. In [6, Lemma 2] it was proved that the BCK-operation $\cdot : A^2 \rightarrow A$ is a uniformly continuous mapping, so $(A; ., 0; d_n)$ is a (pseudo-) metric BCK-algebra. The set

$$\mathcal{D} = \left\{ \{(x, y) \in A \times A : d_n(x, y) < \varepsilon\} : 0 < \varepsilon \in \mathbb{R} \right\}$$

is a symmetric base for the (pseudo-) metric uniformity \mathcal{U} on A induced by d_n . Now if $(x_\gamma; \gamma \in \Gamma)$, $(y_\gamma; \gamma \in \Gamma)$ are Cauchy nets in A and the nets $(x_\gamma y_\gamma; \gamma \in \Gamma)$ converge to 0 then for $0 < \varepsilon \in \mathbb{R}$, and sufficiently large $\gamma \in \Gamma$ we have

$$d_n(x_\gamma y_\gamma, 0), d_n(y_\gamma x_\gamma, 0) < \varepsilon/2,$$

hence

$$n(x_\gamma y_\gamma) + n(y_\gamma x_\gamma) < \varepsilon ,$$

i.e.

$$d_n(x_\gamma y_\gamma) < \varepsilon .$$

It follows that $(A; \dots, 0; u)$ is a strongly uniform BCK-algebra. \square

1.2. In [1], Aló and Deeba showed that if $(A; \dots, 0)$ is a BCK-algebra then $\mathcal{I}_A = \{\theta_I : I \in \text{Id}(A)\}$ is a base for a uniformity on A . Actually \mathcal{I}_A is a base for the discrete uniformity on A , since $\text{id}_A = \theta_{\{0\}} \in \mathcal{I}_A$. However, nontrivial uniformities on A may be obtained in the same way if we replace \mathcal{I}_A by any non-empty subset \mathcal{W} of $\text{Con}(A)$ which is closed under finite intersections. We prove a more general proposition. (First recall that a universal algebra $(A; F)$ (of given type) is said to be subdirectly reducible if $\cap \text{Con}_F(A) \setminus \{\text{id}_A\} = \text{id}_A$, where $\text{Con}_F(A)$ is the complete lattice of all F -congruences on A , in which case $(A; F)$ may be decomposed nontrivially as a subdirect product of algebras of the same type. It can be shown that a BCK-algebra $(A; \dots, 0)$ is subdirectly reducible (as an algebra of type $(2, 0)$) if and only if $\cap \text{Id}(A) \setminus \{\{0\}\} = \{0\}$). \square

1.3. Proposition. (i) Let $(A; F)$ be an algebra of type t and let \mathcal{W} be a subset of $\text{Con}_F(A)$ which is closed under finite intersections. Then \mathcal{W} is a base for a uniformity \mathcal{U} on A and $(A; F; \mathcal{U})$ is a uniform algebra of type t . If $(A; \mathcal{U})$ is Hausdorff but \mathcal{U} is not discrete then $(A; F)$ is subdirectly reducible.

(ii) Let $(A; \dots, 0)$ be a BCK-algebra and \mathcal{W} a non-empty subset of \mathcal{I}_A which is closed under finite intersections. Then \mathcal{W} is a base for a uniformity \mathcal{U} on A and $(A; \dots, 0, \mathcal{U})$ is a strongly uniform BCK-algebra.

Proof. (i) Each element θ of \mathcal{W} , being an equivalence relation on A , satisfies $\text{id}_A \subseteq \theta^{-1} = \theta = 2\theta$, where \mathcal{W} is a base for a uniformity \mathcal{U} on A . If $f \in F^+$ with $\text{ar}(f) = m$, then

$$\bar{\theta} = \cap \left\{ \pi_i^{-1}(\theta) : i=1, \dots, m \right\}$$

is an element of the product uniformity on A^m , and since θ is a congruence relation, we have, for $x, y \in A^m$,

$$(x, y) \in \bar{\theta} \implies (f(x), f(y)) \in \theta$$

whence f is uniformly continuous. If the uniformity on A is not discrete then $\cap \text{Con}_F(A) \setminus \{ \text{id}_A \} \subseteq \mathcal{A} = \cap \mathcal{U}$ and the last assertion follows.

(ii) It follows from (i) that \mathcal{A} is a base for a uniformity \mathcal{U} on A such that $(A; ., 0, \mathcal{U})$ is a uniform BCK-algebra. Now let $(x_\gamma; \gamma \in \Gamma)$ and $(y_\gamma; \gamma \in \Gamma)$ be Cauchy nets in A with $(x_\gamma y_\gamma; \gamma \in \Gamma)$ and $(y_\gamma x_\gamma; \gamma \in \Gamma)$ each converging to 0. Let $\theta_1 \in \mathcal{A}$. For sufficiently large γ we have $(x_\gamma y_\gamma, 0), (y_\gamma x_\gamma, 0) \in \theta_1$, whence $(x_\gamma, y_\gamma) \in \theta_1$, (since A/θ_1 is a BCK-algebra). We deduce that $(A; ., 0; \mathcal{U})$ is a strongly uniform BCK-algebra. \square

1.4. A complete Hausdorff uniform BCK-algebra $(A; ., 0; \mathcal{U})$ is strongly uniform. Indeed if $(x_\gamma; \gamma \in \Gamma), (y_\gamma; \gamma \in \Gamma)$ are Cauchy nets in A , then they converge, say to x and y respectively. Since \cdot is uniformly continuous, the nets $(x_\gamma y_\gamma; \gamma \in \Gamma), (y_\gamma x_\gamma; \gamma \in \Gamma)$ converge to xy and yx respectively. If these latter nets also converge to 0, then since $(A; \mathcal{U})$ is Hausdorff, we have $xy = 0 = yx$, hence $x = y$. Therefore the net $((x_\gamma, y_\gamma); \gamma \in \Gamma)$ is eventually in every element of \mathcal{U} . \square

Another class of strongly uniform BCK-algebras will be identified in Corollary 14. In section 15 we shall present examples which show that neither a complete uniform BCK-algebra nor a Hausdorff uniform BCK-algebra need be strongly uniform, and that a Hausdorff strongly uniform BCK-algebra need not be complete.

UA shall denote the category of all uniform algebras of a given type t , where for $\mathcal{A} = (A; F; \mathcal{U})$ and $\mathcal{B} = (B; F; \mathcal{V})$ in UA , a map $h: \mathcal{A} \rightarrow \mathcal{B}$ is a UA -morphism if and only if

(i) $h: (A; F) \rightarrow (B; F)$ is a homomorphism of algebras, and
(ii) $h: (A; U) \rightarrow (B; \gamma)$ is a uniformly continuous function.

We shall also consider the following full subcategories of UA :

HA , whose objects are the Hausdorff uniform algebras of type t ;

CA , whose objects are the complete uniform algebras of type t ;

CHA , whose objects are the complete Hausdorff uniform algebras of type t .

2. Lemma. Let $\mathcal{A} = (A; F; U)$ be a uniform algebra of type t . Then $\cap U$ is a congruence relation on $(A; F)$. If $A^* = A/\cap U$, and $U^* = \{U^*: U \in U\}$ where $U^* = \{(X, Y) \in A^* \times A^*: (x, y) \in U \text{ for all } x \in X, y \in Y\}$ then the canonical surjection $\lambda = \lambda_{\mathcal{A}}: A \rightarrow A^*$ is an HA -reflection of \mathcal{A} onto $\mathcal{A}^* = (A^*; F; U^*)$.

Proof. Let \mathfrak{D} be a symmetric base for U . Then $\cap \mathfrak{D} = \cap U$. For each $D \in \mathfrak{D}$, we have $\text{id}_A \subseteq D = D^{-1}$ so $\cap U$ is reflexive and symmetric. Transitivity of $\cap U$ follows from the fact that each $D \in \mathfrak{D}$ contains $2E$ for some $E \in \mathfrak{D}$, while the uniform continuity of each $f \in F$ ensures that $\cap U$ is an F -congruence relation on A . There is no difficulty in checking that \mathcal{A}^* is also a uniform algebra of type t and since $\cap U^* = \text{id}_{A^*}$, we have $\mathcal{A}^* \in HA$. Clearly $\lambda \in \text{Hom}_{UA}(\mathcal{A}, \mathcal{A}^*)$.

If $\mathcal{B} = (B; F; \gamma) \in HA$ and $\phi \in \text{Hom}_{UA}(\mathcal{A}, \mathcal{B})$, define $\phi^*: A^* \rightarrow B$ by $\phi^*(X) = \phi(x)$, where $x \in X \in A^*$. ϕ^* is properly defined since ϕ is uniformly continuous and (B, γ) is Hausdorff. Since ϕ is a UA -morphism, it follows that ϕ^* is an HA -morphism, unique such that $\phi^*\lambda = \phi$. Thus λ is an HA -reflection. \square

Note that in case \mathcal{A} is a pseudo-metric algebra, \mathcal{A}^* is the metric identification of \mathcal{A} and the above result specializes to [6, Lemma 3].

The following result is an algebraic variant of the "Metrization Lemma".

3. Lemma. Let $\mathcal{A} = (A; F; \mathcal{U})$ be a uniform algebra of type t . Let $(D_n; n \in \omega)$ be a sequence of elements of \mathcal{U} such that:

- (1) $D_0 = A \times A$,
- (2) $3D_{n+1} \subseteq D_n$ and
- (3) $\cap \left\{ \pi_i^{-1}(D_{n+1}): i=1, \dots, m \right\} \subseteq f^{-1}(D_n)$

for all $n \in \omega$ and all $f \in F^+$ with $\text{ar}(f) = m$. Then there exists a pseudo-metric d on A such that

- (i) $D_n \subseteq \{(x, y) \in A \times A: d(x, y) < 2^{-n}\} \subseteq D_{n-1}$ for $0 < n \in \omega$
- (ii) $(A; F; d)$ is a pseudo-metric algebra of type t .

Proof. The conditions of the Metrization Lemma [4, Lemma 6.12] hold so there exists a pseudo-metric d on A satisfying (i). Let $f \in F^+$ with $\text{ar}(f) = m$ and let $0 < \varepsilon \in \mathbb{R}$ be given. Choose $n \in \omega$ such that $2^{-n} < \varepsilon$. Let $\delta = 2^{-n-2}$. For $x, y \in A^m$, we have

$$\begin{aligned} d(x, y) < \delta &\implies d(x(i), y(i)) < \delta \quad (i=1, \dots, m) \\ &\implies (x(i), y(i)) \in D_{n+1} \quad (i=1, \dots, m) \\ &\implies (f(x), f(y)) \in D_n \\ &\implies d(f(x), f(y)) < 2^{-n} < \varepsilon \end{aligned}$$

so f is uniformly continuous in d , and (ii) follows. \square

If (A, \mathcal{U}) is a uniform space and Q is a family of pseudo-metrics on A , we define $V(d, \varepsilon) \subseteq A \times A$ by

$$V(d, \varepsilon) = \{(x, y) \in A \times A: d(x, y) < \varepsilon\}$$

for $d \in Q$ and $0 < \varepsilon \in \mathbb{R}$. The set

$$\{V(d, \varepsilon): d \in Q, 0 < \varepsilon \in \mathbb{R}\}$$

is a subbase for a uniformity $\mathcal{U}(Q)$ on A . If $\mathcal{U} = \mathcal{U}(Q)$, we say that Q is generated by \mathcal{U} .

4. Corollary. Let $\mathcal{A} = (A; F; \mathcal{U})$ be a uniform algebra of type t and suppose F^+ is finite. Then \mathcal{U} is generated by the family Q of all uniformly continuous pseudo-metrics d such that $f_{\mathcal{A}}: (A^{\text{ar}(f)}, d) \rightarrow (A, d)$ is uniformly continuous for each $f \in F$.

Proof. If $d \in Q$ and $0 < \varepsilon \in \mathbb{R}$ then $V(d, \varepsilon)$ contains an element of \mathcal{U} by [4, Theorem 6.11, p.183]. On the other hand if $D \in \mathcal{U}$, define

$$D_0 = A \times A, \quad D_1 = D$$

and choose $E \in \mathcal{U}$ such that $3E \subseteq D$. Noting that for each $f \in F^+$ (with $\text{ar}(f) = m$), $f^{-1}(D)$ is a member of the product uniformity on A^m , we may choose $G_{f,1} \dots G_{f,m} \in \mathcal{U}$ such that

$$\cap \{ \pi_i^{-1}(G_{f,i}) : i=1, \dots, m \} \subseteq f^{-1}(D).$$

Let $D_2 = E \cap (\cap \{ G_{f,i} : i=1, \dots, \text{ar}(f); f \in F^+ \})$. Then for each $f \in F^+$,

$$\cap \{ \pi_i^{-1}(D_2) : i=1, \dots, \text{ar}(f) \} \subseteq f^{-1}(D), \text{ and } 3D_2 \subseteq 3E \subseteq D.$$

Continuing in this fashion, we obtain a sequence $(D_n : n \in \omega)$ satisfying the conditions of Lemma 3. It follows from Lemma 3 that there exists $d \in Q$ such that $V(d, \frac{1}{4}) \subseteq D$, hence the result. \square

If $\mathcal{A} = (A; F; \mathcal{U})$ is a uniform algebra of a given type and $(B; F)$ is a subalgebra of $(A; F)$, we call $\mathcal{B} = (B; F; \mathcal{U}_B)$ a uniform subalgebra of \mathcal{A} , where

$$\mathcal{U}_B = \{ U \cap (B \times B) : U \in \mathcal{U} \}.$$

5. Theorem. Let $\mathcal{A} = (A; F; \mathcal{U})$ be a uniform algebra of type t . Then \mathcal{A} is isomorphic to a uniform subalgebra of a product of pseudo-metric algebras of type t . If \mathcal{A} is Hausdorff and F^+ is finite then \mathcal{A} is isomorphic to a uniform subalgebra of a product of metric algebras of type t .

Proof. Let Q be as in Corollary 4. For each $d \in Q$, set $\mathcal{A}_d = (A; F; d)$ and let $\lambda_d: \mathcal{A}_d \rightarrow \mathcal{A}_d^*$ be the metric identification of \mathcal{A}_d . Let $\mathcal{A}' = \prod(\mathcal{A}_d; d \in Q)$, $\mathcal{A}'' = \prod(\mathcal{A}_d^*; d \in Q)$. Define $\phi: \mathcal{A} \rightarrow \mathcal{A}'$ by

$$\pi_d \phi(x) = x \quad (x \in A, d \in Q).$$

ϕ is clearly a one-to-one F -homomorphism and since \mathcal{U} contains each $V(d, \varepsilon)$, \mathcal{U} is the smallest uniformity on A making each $\pi_d \phi$ (and hence ϕ itself) uniformly continuous. Now suppose \mathcal{A} is Hausdorff and F^+ is finite. Then the map $\psi: \mathcal{A} \rightarrow \mathcal{A}''$ defined by

$$\pi_d \psi(x) = \lambda_d(x) \quad (x \in A, d \in Q)$$

is one-to-one (since by Corollary 4, any two distinct points $x, y \in A$ must satisfy $d(x, y) \neq 0$ for some $d \in Q$), and an F -homomorphism.

Since each λ_d is uniformly continuous, so is ψ . \square

It is not clear whether the restriction on F^+ in the latter assertion of Theorem 5 may be dropped. We consider Theorem 5 to be of interest in its own right: in particular it implies that any uniform BCK-algebra is uniformly BCK-embeddable in a product of pseudo-metric BCK-algebras. As a case of special interest we may consider the strongly uniform BCK-algebras whose uniformities are induced by sets of ideals.

Let $A, \mathcal{A}, \mathcal{U}$ and $\mathcal{A} = (A; ., 0; \mathcal{U})$ be as in Proposition 1.3(ii) and let

$$Q = \left\{ d_n : n \text{ is a pseudo-norm on } A \text{ and } d_n: A \times A \rightarrow \mathbb{R} \text{ is uniformly continuous} \right\}.$$

We may show that \mathcal{U} is generated by Q . If $d_n \in Q$ then

$$J = J_n = \{x \in A : n(x) = 0\}$$

is an ideal of A [6, Lemma 1] and it is easy to see that $\Theta_J \subseteq V(d_n, \varepsilon)$ for each real $\varepsilon > 0$. Conversely, given $\Theta_J \in \mathcal{A}$, define $n: A \rightarrow \mathbb{R}$ by

$$n(x) = \begin{cases} 0 & \text{if } x \in J \\ 1 & \text{otherwise.} \end{cases}$$

By [6, Lemma 1], n is a pseudo-norm on A and

$$\begin{aligned} d_n(x, y) < 1 &\iff n(xy) = n(yx) = 0 \\ &\iff xy, yx \in J \end{aligned}$$

so $V(d_n, 1) = \theta_J$. Hence $d_n \in Q$ and \mathcal{U} is generated by Q . It follows in the spirit of Theorem 5 that \mathcal{A} is uniformly embeddable in $\Pi((A; \dots, 0; d_n) : d_n \in Q)$. Furthermore the metric identification $(A_n^*; \dots, 0, d_n^*)$ of a pseudo-normed BCK-algebra $(A; \dots, 0, d_n)$ is a normed BCK-algebra [6, Theorem 10(ii)] so if $(A; \mathcal{U})$ is Hausdorff (i.e. $\cap \mathcal{O} = \text{id}_A$), the method of Theorem 5 may be applied to prove that \mathcal{A} is uniformly embeddable in $\Pi((A_n^*; \dots, 0; d_n^*) : d_n \in Q)$. In summary: a uniform (resp. Hausdorff uniform) BCK-algebra whose uniformity is induced by a set of ideals is isomorphic to a uniform subalgebra of a product of pseudo-normed (resp. normed) BCK-algebras.

At the same time the purely topological counterpart of Theorem 5 [4, Theorem 6.16, p.188] plays a key role in the construction of completions of uniform spaces. Indeed, if $(A; \mathcal{U})$ is a uniform space embedded in a product of (pseudo-) metric spaces $(A_i; d_i)$ then the closure of $(A; \mathcal{U})$ in a product of (pseudo-) metric completions of the $(A_i; d_i)$ is a uniform completion of $(A; \mathcal{U})$ [4, pp.196-197]. Naturally we would like to be able to embed Hausdorff uniform algebras $(A; F; \mathcal{U})$ into complete Hausdorff uniform algebras in a similar manner without imposing restrictions on the cardinality of F^+ , but Theorem 5 will not lead to such a general result. Fortunately we may still obtain a general embedding theorem if we first consider a (purely topological) completion $(\bar{A}; \bar{\mathcal{U}})$ of the underlying uniform space $(A; \mathcal{U})$ and extend each operation f to a uniformly continuous operation on \bar{A} .

Recall that the closure \tilde{B} of a subset B of a uniform space (A, \mathcal{U}) consists of all points $x \in A$ to which some Cauchy net $(x_\gamma : \gamma \in \Gamma)$ in B converges [4, Theorem 6.21]. If $A = \tilde{B}$ then B is called a dense subset of (A, \mathcal{U}) .

6. Lemma. Let $\mathcal{B} = (B; F; \mathcal{U}_B)$ be a uniform subalgebra $\mathcal{A} = (A; F; \mathcal{U})$. Let $f \in F$ with $\text{ar}(f) = m$ and suppose that for $i = 1, \dots, m$ there exists a (Cauchy) net $(x_\alpha : \alpha \in \Gamma_i)$ in B which converges to $x_i \in A$. Then there exists a (Cauchy) net $(z_\gamma : \gamma \in \Gamma)$ in B which converges to $f_{\mathcal{A}}(x_1, \dots, x_m)$.

Proof. Let $\Gamma = \prod \Gamma_i : i=1, \dots, m$ and define, for $\gamma, \gamma' \in \Gamma$,

$$\gamma < \gamma' \text{ iff } \gamma(i) < \gamma'(i) \text{ for } i=1, \dots, m.$$

Then Γ is a directed set. For $\gamma \in \Gamma$, define

$$x_\gamma = (x_{\gamma(1)}, \dots, x_{\gamma(m)}); \quad z_\gamma = f_{\mathcal{B}}(x_\gamma); \quad x = (x_1, \dots, x_m).$$

Let $D \in \mathcal{U}$ and choose $E \in \mathcal{U}$ such that $\cap \left\{ \pi_i^{-1}(E) : i=1, \dots, m \right\} \subseteq f_{\mathcal{A}}^{-1}(D)$. For $i = 1, \dots, m$, choose $\alpha_i \in \Gamma_i$ such that $\alpha_i < x \in \Gamma_i \Rightarrow (x_\alpha, x_i) \in E$. Let $\alpha = (\alpha_1, \dots, \alpha_m)$. Then

$$\begin{aligned} \alpha < \gamma \in \Gamma &\Rightarrow (x_\gamma, x) \in \cap \left\{ \pi_i^{-1}(E) : i=1, \dots, m \right\} \\ &\Rightarrow (z_\gamma, f_{\mathcal{A}}(x)) \in D, \end{aligned}$$

and it follows that the net $(z_\gamma : \gamma \in \Gamma)$ converges to $f_{\mathcal{A}}(x)$. \square

7. Corollary. Let $\mathcal{B} = (B; F; \mathcal{U}_B)$ be a uniform subalgebra of $\mathcal{A} = (A; F; \mathcal{U})$ and let $\mathcal{C} = (C; F; \mathcal{V})$ be a Hausdorff uniform algebra of the same type. Let $\phi : (\tilde{B}; \mathcal{U}_{\tilde{B}}) \rightarrow (C; \mathcal{V})$ be a uniformly continuous function.

(i) $\tilde{B} = (B; F; u_{\tilde{B}})$ is a uniform subalgebra of \mathcal{A} .
(ii) If $\phi|_B$ is an F -homomorphism then so is ϕ .
(iii) If \mathcal{C} is complete then every UA-morphism from \mathcal{B} to \mathcal{C} may be extended uniquely to a UA-morphism from $\tilde{\mathcal{B}}$ to \mathcal{C} .
($\tilde{\mathcal{B}}$ will be called the closure of \mathcal{B} in \mathcal{A}).

Proof. (i) follows immediately from the previous lemma.

(ii) Let $f \in F$ with $ar(f) = m$ and let $x = (x_1, \dots, x_m) \in \tilde{\mathcal{B}}^m$. For $i = 1, \dots, m$, choose a Cauchy net $(x_\alpha; \alpha \in \Gamma_i)$ in B converging to x_i . Since ϕ is uniformly continuous, the net $(\phi(x_\alpha); \alpha \in \Gamma_i)$ converges to $\phi(x_i)$ for each i . Let Γ be the directed set $\prod \Gamma_i$. For $\gamma \in \Gamma$, define x_γ and z_γ as in Lemma 6, and also

$$y_\gamma = (\phi(x_{\gamma(1)}), \dots, \phi(x_{\gamma(m)})); \quad w_\gamma = f_{\mathcal{C}}(y_\gamma).$$

By the proof of Lemma 6, $(z_\gamma; \gamma \in \Gamma)$ converges to $f_{\mathcal{A}}(x)$ and $(w_\gamma; \gamma \in \Gamma)$ converges to $f_{\mathcal{C}}(\phi(x_1), \dots, \phi(x_m))$. Since ϕ is uniformly continuous, the net $(\phi(z_\gamma); \gamma \in \Gamma)$ must converge to $\phi(f_{\mathcal{A}}(x))$. Now since $\phi|_B$ is an F -homomorphism, we have

$$\phi(z_\gamma) = \phi(f_{\mathcal{A}}(x_\gamma)) = f_{\mathcal{C}}(\phi(x_1), \dots, \phi(x_m))$$

($\gamma \in \Gamma$). Since \mathcal{C} is Hausdorff, it follows that

$$\phi(f_{\mathcal{A}}(x)) = f_{\mathcal{C}}(\phi(x_1), \dots, \phi(x_m))$$

and so ϕ is an F -homomorphism.

(iii) Let \mathcal{C} be complete and let $\varrho : \mathcal{B} \rightarrow \mathcal{C}$ be a UA-morphism. By [7, Theorem 39.10], $\varrho : (B; u_B) \rightarrow (C; \tau)$ may be extended uniquely to a uniformly continuous function $\tilde{\varrho} : (\tilde{B}; u_{\tilde{B}}) \rightarrow (C; \tau)$ and $\tilde{\varrho}$ is a UA-morphism by (ii). \square

8. Theorem. Let \mathcal{A} be a uniform algebra of type t . Then \mathcal{A} is isomorphic to a dense subalgebra of a complete uniform algebra $\hat{\mathcal{A}}$ of type t .

Proof. By Theorem 5, \mathcal{A} is isomorphic to a uniform subalgebra of a product of pseudo-metric algebras of type t , each of which is isomorphic to a uniform subalgebra of a complete pseudo-metric algebra of type t [6, Lemma 4]. The product \mathcal{C} of these complete algebras is a complete uniform algebra of type t and contains the closure $\hat{\mathcal{A}}$ of the image of \mathcal{A} as a complete uniform subalgebra (by Corollary 7(i)). \square

9. Theorem. Let \mathcal{A} be a Hausdorff uniform algebra of type t . Then \mathcal{A} is isomorphic to a dense subalgebra of a complete Hausdorff uniform algebra $\bar{\mathcal{A}}$ which is unique in the sense that if \mathcal{B} is any complete Hausdorff uniform algebra containing \mathcal{A} as a dense uniform subalgebra then the identity map on \mathcal{A} extends to a unique isomorphism from $\bar{\mathcal{A}}$ to \mathcal{B} . The embedding $\mathcal{A} \rightarrow \bar{\mathcal{A}}$ is a simple CHA-reflection of \mathcal{A} .

Proof. Let $\mathcal{A} = (A; F; \mathcal{U})$. By [4, Theorem 6.28], $(A; \mathcal{U})$ is uniformly isomorphic to a dense subspace of a complete Hausdorff uniform space $(\bar{A}; \bar{\mathcal{U}})$. For each $f \in F$ (with $ar(f) = m$, say), $f_{\mathcal{A}}$ is a uniformly continuous function from A^m to A (with respect to \mathcal{U}). Since $(\bar{A}^m; \bar{\mathcal{U}})$ is a complete Hausdorff uniform space containing A^m as a dense subspace, it follows from [7, Theorem 39.10] that $f_{\mathcal{A}}$ may be extended uniquely to a uniformly continuous function $f_{\bar{\mathcal{A}}} : \bar{A}^m \rightarrow \bar{A}$, so we obtain a CHA-object $\bar{\mathcal{A}} = (\bar{A}; F; \bar{\mathcal{U}})$ and an HA-embedding $\mathcal{A} \rightarrow \bar{\mathcal{A}}$. If $\mathcal{B} \in \text{CHA}$ and $\phi : \mathcal{A} \rightarrow \mathcal{B}$ is an HA-morphism then by Corollary 7, ϕ may be extended to a unique CHA-morphism $\psi : \bar{\mathcal{A}} \rightarrow \mathcal{B}$, so $\mathcal{A} \rightarrow \bar{\mathcal{A}}$ is a simple CHA-reflection. In particular, if \mathcal{A} is a dense subalgebra of \mathcal{B} then id_A extends to CHA-morphism $\psi : \bar{\mathcal{A}} \rightarrow \mathcal{B}$ and $\eta : \mathcal{B} \rightarrow \bar{\mathcal{A}}$. Since $\eta \psi|_{\mathcal{A}} = \text{id}_{\mathcal{A}} = \text{id}_{\bar{\mathcal{A}}}|_{\mathcal{A}}$, it follows from Corollary 7 that $\eta \psi = \text{id}_{\bar{\mathcal{A}}}$ and similarly $\psi \eta = \text{id}_{\mathcal{B}}$. Thus ψ is an isomorphism. \square

If \mathcal{M} is a class of universal algebras of type t , then a uniform algebra $\mathcal{A} = (A; F; \mathcal{U})$ will be called a uniform \mathcal{M} -algebra if $(A; F) \in \mathcal{M}$. Bearing in mind the construction of the (Hausdorff) uniform completion

of a (Hausdorff) uniform space described in Theorem 8 and the remarks following Theorem 5, the following theorem is an obvious consequence of Lemma 2 and Theorems 8 and 9. The symbols \mathcal{A}^* , $\hat{\mathcal{A}}$ and $\bar{\mathcal{A}}$ are used in the sense of the statements and/or proofs of these three results.

10. Theorem. Let \mathcal{U} be a class of universal algebras of type t and let \mathcal{A} be a uniform \mathcal{U} -algebra.

(i) If \mathcal{U} is closed under the formation of homomorphic images then \mathcal{A}^* is a Hausdorff uniform \mathcal{U} -algebra.

(ii) If \mathcal{U} is closed under the formation of direct products, isomorphic images and subalgebras then $\hat{\mathcal{A}}$ is a complete uniform \mathcal{U} -algebra.

(iii) If \mathcal{U} is closed under the formation of direct products, homomorphic images and subalgebras and \mathcal{A} is Hausdorff then $\bar{\mathcal{A}}$ is a complete Hausdorff uniform \mathcal{U} -algebra. \square

We shall now consider classes of BCK-algebras and obtain a BCK-analogue of Theorem 10. Having already noted that the $\{., 0\}$ -quasi-variety of all BCK-algebras is not a variety, we should not expect the Hausdorff completion of every Hausdorff uniform BCK-algebra to be a BCK-algebra. The situation is better in the case of strongly uniform Hausdorff BCK-algebras.

11. Lemma. Let $\mathcal{B} = (B; ., 0; \mathcal{U}_B)$ be a strongly uniform BCK-algebra and a uniform subalgebra of the Hausdorff uniform algebra $\mathcal{A} = (A; ., 0; \mathcal{U})$ of type $(2, 0)$. Then the closure $\tilde{\mathcal{B}}$ of \mathcal{B} in \mathcal{A} satisfies the quasi-identity

$$xy = 0 = yx \implies x = y.$$

Proof. Let $x, y \in \tilde{\mathcal{B}}$ with $xy = 0 = yx$. Choose nets $(x_\alpha; \alpha \in \Gamma_1)$ and $(y_\beta; \beta \in \Gamma_2)$ in B , converging to x and y respectively. Let

$\Gamma = \Gamma_1 \times \Gamma_2$ and define $(\alpha, \beta) < (\alpha', \beta')$ iff $\alpha < \alpha'$ and $\beta < \beta'$. Define $x_{\alpha, \beta} = x_\alpha$, $y_{\alpha, \beta} = y_\beta$ ($\alpha \in \Gamma_1$, $\beta \in \Gamma_2$). Then the nets $(x_\gamma; \gamma \in \Gamma)$ and $(y_\gamma; \gamma \in \Gamma)$ converge to x and y respectively, and by the proof of Lemma 6, the nets $(x_\gamma y_\gamma; \gamma \in \Gamma)$ and $(y_\gamma x_\gamma; \gamma \in \Gamma)$ each converge to 0. Since \mathcal{B} is strongly uniform, the net $((x_\gamma, y_\gamma); \gamma \in \Gamma)$ is eventually in every element of \mathcal{U}_B (hence in every element of $\mathcal{U}_{\tilde{B}}$). For $D \in \mathcal{U}_{\tilde{B}}$ choose $E \in \mathcal{U}_B$ such that $3E \subseteq D$, and $\gamma' \in \Gamma$ such that for $\gamma' < \gamma \in \Gamma$,

$$(x, x_\gamma), (x_\gamma, y_\gamma), (y_\gamma, y) \in E.$$

Then $(x, y) \in 3E \subseteq D$, and so $(x, y) \in \cap \mathcal{U}_{\tilde{B}} = \text{id}_{\tilde{B}}$, i.e., $x = y$. \square

We omit a routine proof of the following lemma.

12. Lemma. If UA is the category of all uniform algebras of type $(2, 0)$ then the class of all strongly uniform BCK-algebras is closed under the formation of UA-direct products, UA-subalgebras and UA-isomorphic images. \square

13. Theorem. Let $\mathcal{A} = (A; ., 0; \mathcal{U})$ be a uniform BCK-algebra.

(i) \mathcal{A} is a complete uniform BCK-algebra. \mathcal{A} is strongly uniform if and only if \mathcal{A} is.

(ii) If \mathcal{A} is a strongly uniform then \mathcal{A}^* is a Hausdorff strongly uniform BCK-algebra.

(iii) If \mathcal{A} is Hausdorff then the following conditions are equivalent:

(1) \mathcal{A} is strongly uniform;

(2) \mathcal{A} is a uniform BCK-algebra;

(3) \mathcal{A} is a complete Hausdorff strongly uniform BCK-algebra.

Proof. (i) The class of all BCK-algebras is closed under direct products, subalgebras and isomorphic images, so the first assertion follows from Theorem 10(ii). The second assertion follows from Lemma 12.

(ii) Let $(X_\gamma; \gamma \in \Gamma)$ and $(Y_\gamma; \gamma \in \Gamma)$ be Cauchy nets in \mathcal{A}^* such that $(X_\gamma Y_\gamma; \gamma \in \Gamma)$ and $(Y_\gamma X_\gamma; \gamma \in \Gamma)$ each converge to $0_{\mathcal{A}^*}$ in \mathcal{U}^* . Choose $x_\gamma \in X_\gamma$ and $y_\gamma \in Y_\gamma$ for each $\gamma \in \Gamma$. Then $(x_\gamma y_\gamma; \gamma \in \Gamma)$ and $(y_\gamma x_\gamma; \gamma \in \Gamma)$ each converges to 0 in \mathcal{U} . Since \mathcal{A} is strongly uniform, the net $((x_\gamma, y_\gamma); \gamma \in \Gamma)$ is eventually in every element of \mathcal{U} , whence the net $((X_\gamma, Y_\gamma); \gamma \in \Gamma)$ is eventually in every element of \mathcal{U}^* . In particular, for $X, Y \in \mathcal{A}^*$, we have

$$XY = 0_{\mathcal{A}^*} = YX \implies (X, Y) \in \cap \mathcal{U}^* \implies X = Y.$$

Hence \mathcal{A}^* is a strongly uniform BCK-algebra. \mathcal{A}^* is Hausdorff by Lemma 2.

(iii) (1) \implies (2). A product of homomorphic images of BCK-algebras is a universal algebra of type $(2, 0)$ satisfying the four defining $\{., 0\}$ -identities of a BCK-algebra. $\bar{\mathcal{A}}$ is the closure in such an algebra of an isomorphic image of \mathcal{A} and so, by Lemma 11, satisfies the quasi-identity

$$xy = 0 = yx \implies x = y$$

also. It follows that $\bar{\mathcal{A}}$ is a uniform BCK-algebra.

(2) \implies (3). Let $\bar{\mathcal{A}}$ be a uniform BCK-algebra. $\bar{\mathcal{A}}$ is also complete and Hausdorff by Theorem 9. Therefore $\bar{\mathcal{A}}$ is strongly uniform by 1.4. (3) \implies (1) follows from Lemma 12. \square

14. Corollary. Let $\mathcal{A} = (A; ., 0; \mathcal{U})$ be a Hausdorff uniform BCK-algebra and suppose $(A; ., 0)$ is a member of some $\{., 0\}$ -variety of BCK-algebras. Then \mathcal{A} is a strongly uniform BCK-algebra.

Proof. By Theorem 10(iii) $\bar{\mathcal{A}}$ is a (complete Hausdorff) uniform BCK-algebra. Now by Theorem 13(iii), \mathcal{A} is strongly uniform. \square

In the next section we show, inter alia, that we may not drop from the above corollary the condition that $(A; ., 0)$ is a member of a BCK-variety.

15. Examples

15.1. We exhibit a complete uniform BCK-algebra which is not strongly uniform. (Hence, in 1.4, the condition that $(A; ., 0; \mathcal{U})$ be Hausdorff may not be dropped). We exploit Wroński's example from [8]. Let B and C be countably infinite sets such that the sets B , C and ω are mutually disjoint. Order B and C into one-to-one sequences $(b_i; i \in \omega)$ and $(c_i; i \in \omega)$ respectively. For $i, j \in \omega$, define

$$i_j = i \circ j = \max\{i \circ j, 0\}$$

$$i b_j = i_{c_j} = 0$$

$$b_i j = b_{i+j}, c_i j = c_{i+j}$$

$$b_i b_j = c_i c_j = j \circ i$$

$$b_i c_j = c_i b_j = (j+1) \circ i.$$

Let $A = B \cup C \cup \omega$. By [8], $(A; ., 0)$ is a BCK-algebra and $\Theta = B^2 \cup C^2 \cup \omega^2 \in \text{Con}(A)$. By Proposition 1.3, $\{\Theta\}$ is a base for a uniformity \mathcal{U} on A and $\mathcal{A} = (A; ., 0, \mathcal{U})$ is a uniform BCK-algebra. (\mathcal{A} is not Hausdorff since $\cap \mathcal{U} = \Theta$). Now if $(x_\gamma; \gamma \in \Gamma)$ is a Cauchy net in $(A; \mathcal{U})$ then there exists $\gamma \in \Gamma$ such that

$$\gamma < \alpha, \beta \in \Gamma \implies (x_\alpha, x_\beta) \in \Theta.$$

Hence there exists $X \in \{B, C, \omega\}$ such that

$$\gamma < \alpha \in \Gamma \implies x_\alpha \in X.$$

This implies that the net $(x_\gamma; \gamma \in \Gamma)$ converges to any given element of X . We conclude that \mathcal{A} is complete. However, for any $i, j \in \omega$, we have

- (1) $(b_i, b_j), (c_i, c_j) \in \Theta,$
- (2) $(b_i c_i, 0) = (c_i b_i, 0) = (1, 0) \in \Theta,$
- (3) $(b_i, c_i) \notin \Theta.$

Now (1) implies that $(b_i; i \in \omega)$ and $(c_i; i \in \omega)$ are Cauchy sequences in $(A; U)$ while (2) implies that the sequences $(b_i c_i; i \in \omega)$ and $(c_i b_i; i \in \omega)$ each converge to 0. However, by (3), the sequence $((b_i, c_i); i \in \omega)$ is never in θ , so \mathcal{A} is not a strongly uniform BCK-algebra. \square

15.2. We show that a Hausdorff uniform BCK-algebra need not be strongly uniform. Let B , C , A , and θ be exactly as in 15.1. Let $(E, ., 0_E)$ be the direct product BCK-algebra $\prod((A, ., 0); i \in \omega)$. For each $n \in \omega$, define

$$\theta_n = \{(x, y) \in E \times E : x(i) = y(i) \text{ for } 0 \leq i \leq n \text{ and } (x(i), y(i)) \in \theta \text{ for all but finitely many } i \in \omega\}.$$

It is easily checked that $\theta_n \in \text{Con}(E)$ for all $n \in \omega$, that $\omega = \{\theta_n : n \in \omega\}$ is closed under finite intersections and that $\cap \omega = \text{id}_E$. It follows from Proposition 1.3(i) that ω is a base for a uniformity U on E and that $\mathcal{E} = (E, ., 0; U)$ is a Hausdorff uniform BCK-algebra. Now consider the sequences $(x_i; i \in \omega)$ and $(y_i; i \in \omega)$ defined by

$$x_i(k) = b_0,$$

$$y_i(k) = \begin{cases} b_0 & \text{for } 0 \leq k \leq i \\ c_0 & \text{for } k > i \end{cases}$$

$(i, k \in \omega)$. The constant sequence $(x_i; i \in \omega)$ is obviously Cauchy, while for any $n, i, j \in \omega$ with $n \leq i < j$, we have

$$y_i(k) \neq y_j(k) \iff i \leq k \leq j,$$

and hence $(y_i, y_j) \in \theta_n$. It follows that $(y_i; i \in \omega)$ is also Cauchy. Now if $n, i \in \omega$ with $\leq i$, we have

$$(x_i y_i)(k) = (y_i x_i)(k) = \begin{cases} 0 & \text{for } 0 \leq k \leq i \\ 1 & \text{for } k > i \end{cases}$$

$(k \in \omega)$ and since $(0,1) \in \theta$, it follows that $(x_i y_i, 0), (y_i x_i, 0) \in \theta_n$. Thus the sequences $(x_i y_i; i \in \omega)$ and $(y_i x_i; i \in \omega)$ each converge to 0_E . However $(b_0, c_0) \notin \theta$ and therefore there are no $n, i \in \omega$ such that $(x_i, y_i) \in \theta_n$. This implies that \mathcal{E} is not a strongly uniform BCK-algebra. (Note that by 1.4, (E, \mathcal{U}) is not a complete space; more explicitly, $(y_i; i \in \omega)$ does not converge). \square

15.3. We conclude with an example of Hausdorff strongly uniform BCK-algebra which is not complete. Let $\wp(\omega)$ denote the set of all subsets of ω . Then $(\wp(\omega), \setminus, \emptyset)$ is a BCK-algebra (and, in fact, a member of every variety of BCK-algebras). For each $n \in \omega$, define

$$\begin{aligned} I(n) &= \{z \in \wp(\omega) : z \text{ is finite and } 0, 1, \dots, n \notin z\}, \\ \theta_n &= \theta_{I(n)} = \{(x, y) \in \wp(\omega) \times \wp(\omega) : x \setminus y, y \setminus x \in I(n)\}, \\ \mathcal{D} &= \{\theta_n : n \in \omega\}. \end{aligned}$$

It is easily checked that $I(n)$ is an ideal of $\wp(\omega)$ for each $n \in \omega$, that $\{I(n) : n \in \omega\}$ (and hence \mathcal{D}) is closed under finite intersections and that $\bigcap \{I(n) : n \in \omega\} = \{\emptyset\}$ (whence $\bigcap \mathcal{D} = \text{id}_{\wp(\omega)}$). It follows from Proposition 1.3(ii) that \mathcal{D} is a base for a (Hausdorff) uniformity \mathcal{U} on $\wp(\omega)$ and that $\mathcal{A} = (\wp(\omega), \setminus, \emptyset, \mathcal{U})$ is a Hausdorff strongly uniform BCK-algebra. Consider the sequence $(x_n; n \in \omega)$ defined by

$$x_n = \{0, 1, \dots, n\} \quad (n \in \omega).$$

Given $n, m, k \in \omega$ with $n \leq m < k$, we have

$$\begin{aligned} x_m \setminus x_k &= \emptyset \in I(n); \\ x_k \setminus x_m &= \{m+1, m+2, \dots, k\} \in I(n), \end{aligned}$$

and it follows that $(x_n; n \in \omega)$ is Cauchy. Suppose $(x_n; n \in \omega)$ converges to some $y \in \wp(\omega)$. For any $m \in \omega$ and for a sufficiently large integer $k > m$, we must have $x_k \setminus y \in I(m)$, whence $m \in y$. Thus y must be ω .

But for each $m \in \omega$, the set $\omega \setminus x_m$, being infinite, cannot be an element of any $I(n)$. Thus $(x_n; n \in \omega)$ does not converge to ω , and hence does not converge. \square

Acknowledgement: The second author was partially supported by South African FRD Grant 883-474-10.

REFERENCES

- [1] R.A. Aló, E.Y. Deeba: A note on uniformities of a BCK-algebra, *Math. Japon.*, 30 (1985), 237-240.
- [2] W.H. Cornish: On Iséki's BCK-algebras, *Lecture Notes in Pure and Appl. Math.* Vol. 74, 101-122, Marcel Dekker, New York, 1982.
- [3] K. Iséki, S. Tanaka: An introduction to the theory of BCK-algebras, *Math. Japon.*, 23 (1978), 1-26.
- [4] J.L. Kelly: *General Topology*. Van Nostrand, Princeton, 1955.
- [5] J.G. Raftery, T. Sturm: On ideal and congruence lattices of BCK-semilattices, *Math. Japon.*, 32 (1987), 465-474.
- [6] J.G. Raftery, T. Sturm: On completions of pseudo-normed BCK-algebras and pseudo-metric universal algebras, to appear in *Mathematica Japonica*, 33 (1988).
- [7] S. Willard: *General Topology*. Addison Wesley, 1968.
- [8] A. Wroński: BCK-algebras do not form a variety, *Math. Japon.*, 28 (1983), 211-213.

DEPARTMENT OF MATHEMATICS AND APPLIED MATHEMATICS,
UNIVERSITY OF NATAL, SCOTTSVILLE, PIETERMARITZBURG 3201,
REPUBLIC OF SOUTH AFRICA;

DEPARTMENT OF MATHEMATICS AND APPLIED MATHEMATICS,
UNIVERSITY OF NATAL, DURBAN 4001, REPUBLIC OF SOUTH
AFRICA

Received December 13, 1988.

