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COMPLETIONS OF UNIFORM UNIVERSAL ALGEBRAS
AND STRONGLY UNIFORM BCK-ALGEBRAS

Let U be a uniformity on a universal algebra (A; F).
A= (A; F3 U) is called a uniform algebra if each operation fe F is
uniformly continuous on A (with respect to U ). Tt is shown that A is
embeddable, as a dense subalgebra, in a complete uniform algebra of
the same type as J#. U (A;U) is Hausdorff, then # has a Hausdorff
completion £ , Wwhich is unique up to an isomorphism which fixes A
pointwise, and the embedding A=A may be described as a category
reflection.

Special consideration is given to the case of (Hausdorff) uniform
BCK-algebras and to conditions under which their (Hausdorff) comple-

tions are also BCK-algebras.

0. Introduction and preliminaries

We assume a familiarity with the theory of BCK-algebras (as ge-
neral references, we recommend [2] and {3]). The binary operation
on a BCK-.algebra will be denoted by juxtaposition,

Let (A; ., 0) be a BCK-algebra. We denote by 1d{A) (resp.
Con(A)) the complete lattice of all ideals (resp. all { ,0}-congruen-
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2 J.G. Raftery, T. Sturm

ces) of A. If 1¢ 1d(A) and 8 = {(x,y) € AxA: X,y yx el} then 8 €
€ Con(A) and A/@I is a BCK-algebra (see [3, p.12]). Conversely
9 € Con(A) and 8(0) = {xe A: (x,0)€ 6} then B(0) € 1d(A). If A is
a member of a { . ,0} -variety of BCK-algebras then the mappings

lr— Q-I, 8 —= 8(0) are mutually inverse lattice isomorphisms between
1d(A) and Con(A) [2,p.108]. 1t should be noted that the class of all
BCK-algebras is not a { ,0}-variety [8] and that there exist BCK-al-
gebras A for which 1d(A) and Con(A) are not isomorphic [5, Re-
mark 9] .

Throughout this paper, R shall denote the classical linearly or-
dered group of real numbers and w the set of all non-negative inte-
gers. O shall denote both the real zero and the zero element of a
BCK-algebra. f S and T are sets then for each ieT, A shall denote
the i-th projection map ST—> S.

We assume a familiarity with the theory of uniform spaces. In this
regard, our terminology accords with that of [4]. 1t (S,U) is a uni-

form space and U, Ve U , we define
UoV = {(x,y)eSxS: there exists zeS such that (x,z)eU and (z,y)eV};

1U « Us (n+¢1)U = (nU)o U (O<new).

"symmetric base", i.e., a base

Recall that every uniformity has a
consisting of sets U where U = vl {(x,y)e SxS: (y,x)e U} (4, Theo-
rem 6.6]. A uniform space (S,U) is Hausdorff (i.e. the uniform to-
pologj on S induced by U is Hausdorff) if and only if N U= ids -

- {(x,x):xe S}, if and only if ND = idg for any base & for U.

Where products of uniform spaces arise, it will be assumed that
they are endowed with the product uniformity (see [4, pp.180-184]).
In particular ,. if (S,d) is a pseudo-metric space and O<m ¢ w , then
S™ will be considered to have been endowed with the so-called "max-"

pseudo-metric, also denoted by d, i.e.
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Completions of uniform algebras 3

dlx,y) = max{d(x(i) yoyliddilsixg m} (x,y) es™.

The following notational convention will be adopted: Let (S,U) be
a uniform space with DelU . If O<mew and f is an m-ary operation

on S, we define

71D = {(x,y)e S S™ils(x) ,8(3)) € D}

Let t = (F; ar) be a "type" of algebras, i.e. F is a set of ope-

ration symbols and ar: F— w is the arify function., We define

F* - {feF: ar(f)>0)

(i.e., F is the set of all non-constant operation symbols in F),
A structure 4= (A3 F; U) is called a uniform algebra {(resp..a com-
‘plete uniform algebra; a Hausdorff uniform algebra) of type t if:

(i) (A;F) is a universal algebra of type t,

(ii) (A;'U.) is a uniform space (resp. a complete uniform space;
a Hausdorff uniform space) and |

(iii) for each feF, the mapping f, : A&r(f)—-—A is uniformly
continuous in U. (In the absence of any possible confusion we shall
denote f; by ).

In particular, if U is the (pseudo-) metric uniformity induced by
a (pseudo-) metric d on A and (A; F; U) is a uniform algebra of
type t then (A; F; U) will be called a (pseudo-) metric algebra of
type t. Such algebras and their completions were studied in [6].0

1. In this paper, we consider uniform algebras and their comple-
tions. While the results are quite general, they arose out of a consi-
deration of uniformities on BCK-algebras: a uniform BCK -algebra
(A; ., O, U) will be called a strongly uniform BCK-algebra if it sa-
tisfies the following condition: for any Cauchy nets (xr; r€r) and
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4 J.G. Raftery, T. Sturm

(y73 7€) in A such that the nets (xpyz; ye ™) and (ypxz5 gel)
each converge to 0, the net ({xz,yp); 7€) in AxA is éventually

in every element of U . Note that such an algebra also satisfies
(xy,0), (yx,0)eNU = (x,y)enU

for all x,ye A, We cite some examples.

1.1. A structure (As ., O;n) is called a pseudo-normed BCK-al-
gebra if (A; ., 0) is a BCK-algebra and n is a pseudo-norm on A,
that is, a real valued function on A satisfying n(0) = 0 and nix) <
<nlxy) + nly) for all x,yeA. We call n a norm (and (A; ., O; n)
a normed BCK-algebra) if in addition, x = O whenever n(x) = O,
(Pseudo-) normed BCK-algebxjas were introduced and studied in [6]: in
particular if A is interpreted as an algebra of sets and °* as the ope-
' ration of set difference then a pseudo-norm on A has some of the pro-
perties of a measure; on the other hand if A is an implicational calcu-
lus and xy denotes the propositional formula y —e x then pseudo-norms
on A may be interpreted as "falsity-valuations". A (pseudo-) norm n
on a BCK-algebra A defines a (pseudo-) metric dn on A: we set
dn(x,y) = nlxy) + n{yx), x,ye A. In [6, Lemma 2] it was proved that
the BCK-operation - : A2——A is a uniformly continuous mapping, so

(A; ., O3 dn) is a (pseudo-) metric BCK-algebra. The set

d).{{(x,y) e AxA : dn(x,y)<€} : O<te R}

is a symmetric base for the (pseudo-) metric uniformity U on A in-
duced by d_. Now if (xg3 7€l ), (yp; #€) are Cauchy nets in A
and the nets (xa.ya.; 7€) converge to O then for O0<t€eR, and suffi-

ciently large y el we have

dn(xa.ya.,O), dn(ya.xa.,O) < £/2,
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Completions of uniform algebras 5

hence

nlxpyy) + nlyxgl<e,

d (xzyz)<e .

It follows that (As ., O; U) is a strongly uniform BCK-algebra.O

1.2. In [1], Alé and Deeba showed that if (A; ., 0) is a BCK-al-
gebra then UA - {GI:IeId(A)} is a base for a uniformity on A. Actu-
ally J A
€ J,. However, nontrivial uniformities on A may be obtained in the

A
same way if we replace JA by any non-empty subset & of Con(A)

is a base for the discrete uniformity on A, since idA - 9{0

which is closed under finite intersections. We prove a more general
proposition. (First recall that a universal algebra (A; F) (of given
type) is said to be subdirectly reducible if N ConF(A)\{id A} -id,,
where ConF(A) is the complete lattice of all F-congruences on A, in
which case (A; F) may be decomposed nontrivially as a subdirect pro-
duct of algebras of the same type. 1t can be shown that a BCK-al-
gebra (A; ., 0) is subdirectly reducible (as an algebra of type (2,0))
if and only if N 1a(a)\{{o}} = {o}).o

1.3. Proposition. (i) Let (A; F) be an algebra of type t
and let & be a subset of ConF(A) which is closed under finite inter-
sections. Then & is a base for a uniformity % on A and (A; F; U)
is a uniform algebra of type t. U (A; U) is Hausdorff but U is not
discrete then (A; F) is subdirectly reducible.

(ii) Let (A; ., O) be a BCK-algebra and o a non-empty subset
of I A which is closed under finite intersections. Then & is a base
for a uniformity U on A and (A; ., 0,U) is a strongly uniform
BCK-algebra.

Proof. (i) Each element 8 of &#, being an equivalenée rela-
tion on A, satisfies idAge'l - 0 = 28, whgre &4 is a base for a uni-

formity 4 on A. f feF"' with ar(f) = m, then
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6 J.G. Raftery, T. Sturm

5-0{”;1(9): i-l,...,m}

is an element of the product uniformity on A", and since 8 is a con-

. m
gruence relation, we have, for x,ye A,

(x,y)e 8 == (f(x),f(y))e0

whence f is uniformly continuous. If the uniformity on A is not dis-
crete then N Conl_.(f’t)\{idA
(ii) Tt follows from (i) that & is a base for a uniformity U on A

such that (A; ., O, U) is a uniform BCK-algebra. Now let (xp37el)

}geﬂ =1 U and the last assertion follows.

and (y,; 7€) be Cauchy nets in A with (xzyp; rel) and (ypxz; 7€l
each converging to 0. Let SI € &, For sufficiently large y we have
(xzy7, 0), (yp%,,0) € 8 whence (xg,y7) € GI, (since A/GI is a
BCK-algebra). We deduce that (A; ., 0; U) is a strongly uniform
BCK-algebra. O

1.4. A complete Hausdorff uniform BCK-algebra (A; ., 0; U) is
strongly uniform. Indeed if (x3; eT"), (yz3 7 €M are Cauchy nets
in A, then they converge, say to x and y respectively. Since * is
uniformly continuous, the nets (xyyzs 7€), (ypxz3 7€) converge
to xy and yx respectively. If these latter nets also converge to O,
then since (Aj; U) is Hausdorff, we have xy = O = yx, hence x = y.
Therefore the net ((xz,yz); yel") is eventually in every element
of U. O

Another class of strongly uniform BCK-algebras will be identified
in Corollary 14. In section 15 we shall present examples which show
that neither a complete uniform BCI{-algebra nor a Hausdorff uniform
BCK-algebra need. be strongly uniform, and that a Hausdorff strongly
uniform BCX-algebra need not be complete.

UA shall denote the category of all uniform algebras of a given
type t, where for £= (A; F;U) and B= (B; F; 7) in UA,
a map h: £# —38 is a UA-morphism if and only if
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Completions of uniform algebras 7

(i) h: (A; F) —(Bs F) is a homomorphism of algebras, and
(ii) h: (As U) —(B; ¥ ) is a uniformly continuous function.
We shall also consider the following full subcategories of UA:
HA, whose objects are the Hausdorff uniform algebras of type t;
CA, whose objects are the complete uniform algebras of type t3
CHA, whose objects are the complete Hausdorff uniform algebras

of type t.

2. Lemma. Let £= (A; F; U) be a uniform algebra of type t.
Then N U is a congruence relation on (A; F). If A¥ = A/NU, and
U*e {U*: Ue U} where U* = {(X,Y) € A%A¥: (x,y)e U for all xeX,
er} then the canonical surjection A =g : A —= A¥ is an HA-re-
flection of # onto A*= (A*; F; U%).

Proof. Let & be a symmetric basefor U, Then NI =NU.

For each Des , we have id ,CD = D! s0o NU if reflexive and sym-
metric. Transitivity of 1U follows from the fact that each D€ & con-
tains 2E for some E € & , while the uniform continuity of each fe F
ensures that NU is an F-congruence relation on A. There is no dif-
ficulty in checking that #¥is also a uniform algebra of type t and
since NU*a id yu, we have #%e HA. Clearly Ae HomUA(ﬁ,.ﬂ*) .

If 3= (B; F; T)e HA and $¢ Homy ,(#, B), define ¢*:A¥ —B
by ¢"(X) = $(x), where xe Xe A*. $*is properly defined since ¢ is
uniformly continuous and (B,7 ) is Hausdorff. Since ¢ is a UA-mor-
phism, it follows that ¢$*is an HA-morphism, unique such that ¢*A = ¢.
Thus A is an HA-reflection. O

Note that in case # is a pseudo-metric algebra, #£* is the me-
tric identification of # and the above result specializes to [6, Lem-
ma 3].

The following result is an algebraic variant of the "Metrization

Lemma".
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8 J.G. Raftery, T. Sturm

3. Lemma. Let #£= (A; F; U) be a uniform algebra of

type t. Let (Dn; new) be a sequence of elements of U such that:

(1) Dy = AxA,
(2) 3D_,,SD ~ and
(3) n{:ri'l(Dml): i-1,...,m}gf'1(Dn)

for all necw and all fe F* with ar(f) = m. Then there exists a pseudo-

-metric d on A such that
. -n{
{i) Dng {(x,y) e AxA: dlx,y)< 2 }g Dn-l for O<new
(ii) (A; F3; d) is a pseudo-metric algebra of type t.
Proof. The conditions of the Metrization Lemma [4, Lemma 6.12]

hold so there exists a pseudo-metric d on A satisfying (i). Let
fe F¥ with ar(f) = m and let 0<€€ R be given., Choose n e w such that

2 %<6, Letb = 2-n-2. For x,ye A™, we have
dlx,y)lc = alx(i),yli))< 6 (i=1,... ,m)
= x(i),yli))e D .1 (i=1,...,m)

= (fx),f(y))e D
= d{f(x),f{y))<2"< ¢

so f is uniformly continuous in d, and (ii) follows. D
¥ (A,U) is a uniform space and Q is a family of pseudo-metrics

on A, we define V{(d,¢)S AxA by
Vid, 6 ) = {(x,y) e AxA: dlx,y)<¢}
for de Q and O0<g € R. The set
{vid,e): deQ, O<te R}

is a subbase for a uniformity U(Q) on A, Uf U = U(Q), we say that

is generated by Q.
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Completions of uniform algebras 9

4. Corollary. Let #= (A; F; U) be a uniform algebra of
type“; and suppose F' is finite. Then U is generated by the family Q
of all uniformly continuous pseudo-metrics d such that
£yt (Aar(f)

Proof. 1 deQ and O<ge R then V(d,¢) contains an element
of W by [4, Theorem 6.11, p.183]. On the other hand if De U,

,d) — (A,d) is uniformly continuous for each fe F.

define

Dy = AxA, D, =D

and choose E ¢ U such that 3E CD. Noting that for each f el“+ (with
ar(f) = m), f-l(D) is a member of the product uniformity on A", we

may choose Gf 1 .Gf me U such that

’ ?

-1 _ -1
n {n; (Gy ) 2 is1,...,m}cf (D).
Let D, = En(N{G, :i=l,...,ar(f); fe F'}). Then for each fe F",
-1 . -1
n m (DZ): 1=1,...,ar(f)}§f (D), and 3D2g3E_C_ D.

Continuing in this fashion, we obtain a sequence (Dn; new) satisfying
the conditions of Lemma 3. It follows from Lemma 3 that there exists
de Q such that V(4, %)g D, hence the result.D

I £= (A; F; U) is a uniform algebra of a given type and (B; F)
is a subalgebra of (A; F), we call B = (B; F; 'LLB) a uniform sub-
algebra od #, where

Up = {Un (BxB): Ueu} .

5. Theorem. LetA# = (A3 F; U) be a uniform algebra of
type t. Then # is isomorphic to a uniform subalgebra of a product
of pseudo-metric algebras of type t. If # is Hausdorff and F'is
finiite then & is isomorphic to a uniform subalgebra of a product of me-
tric algebras of type t.
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Proof. Let Q be as in Corollary 4. For each de Q, set .ﬂd =
= (A; F; d) and let Aqt .ﬂd—-—«ﬂ; be the metric identification of Ay

Let #'=TM(4,3 deQ), A'=T(£Y; deQ). Define f: £ —~ A by
erdb(x) =x (xe A, de Q).

¢ is clearly a one-to-one F-homomorphism and since U contains each
v(i,¢), U is the smallest uniformity on A making each ™ ¢ (and
hence ¢ itself) uniformly continuous. Now suppose # is Hausdorff

and F' is finite. Then the map p : A —=#" defined by
Taplx) = 2,(x) (xeA, deQ)

is one-to-one (since by Corollary 4, any two distinct points x,ye A
must satisfy d{x,y) # O tor some d € Q), and an F-homomorphism,
Since each 2 q s uniformly continuous, so is y. 0O

It is not clear whether the restriction on F' in the latter assertion
of Theorem 5 may be dropped. We consider Theorem 5 to be of interest
in its own right: in particular it implies that any uniform BCK-algebra
is uniformly BCK-embeddable in a product of pseudo-metric BCK-alge-
bras. As a case of special interest we may consider the strongly uni-
form BCK-algebras whose uniformities are induced by sets of ideals.

Let A, &, U and £= (A; ., O; U) be as in Proposition 1.3(ii) and let

Q= {dn:n is a pseudo-norm on A anc dn:AxA——R is uniformly conti-
nuous}.

We may show that U is generated by Q. If d_€Q then
=1 ={xeA:nt) o}
is an ideal of A [6, Lemma 1] and it is easy to see that 6 CV(dn, €)

, 1=
for each real ¢ > 0. Conversely, given GI €, definen : A-—R by
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0 if xe]
n(x) =

1 otherwise.

By [6, Lemma 1], n is a pseudo-norm on A and

dn(x,y)<1<=n(xy) = n{yx) = O

<> Xy, yx€]

so V(dn,l) = G]. Hence d € Q and U is generated by Q. It follows
in the spirit of Theorem 5 that £ is uniformly embeddable in
T(A; ., O3 dn) : dne Q). Furthermore the metric identification
(A;; ., 0, d:) of a pseudo-normed BCK-algebra (A5 ., O, dn) is
a normed BCK-algebra [6, Theorem 10(ii)] so if (A; U) is Haus-
dorff (i.e. N b = id A) , the method of Theorem 5 may be applied to
prove that J is uniformly embeddable in TI((A:; ., 03 d:) :d e Q).
In summary: a uniform (resp. Hausdorff uniform) BCK-algebra whose
uniformity is induced by a set of ideals is isomorphic to a uniform
subalgebra of a product of pseudo-normed (resp. normed) BCK-al-
gebras.

At the same time the purely topological counterpart of Theorem 5
[4, Theorem 6.16, p.188] plays a key role in the construction of
completions of uniform spaces. Indeed, if (A; U) is a uniform space
embedded in a product of (pseudo-) metric spaces (Ai;di) then the
closure of (A3 U) in a product of (pseudo-) metric completions of the
(Ai;di) is a uniform completion of (A; U) [4, pp.196-197]. Natu-
rally we would like to be able to embed Hausdorff uniform algebras
(A; F; W) into complete Hausdorff uniform algebras in a similar man-
ner without iniposing restrictions on the cardinality of F+, but Theo-
rem 5 will not lead to such a general result. Fortunately we may still
obtain a general embedding theorem if we first consider a (purely to-
pological) completion (A3 U) of the underlying uniform space (A; U)

and extend each operation f to a uniformly continuous operation on A.
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Recall that the closure B of a subset B of a uniform space (A,U)
consists of all points x € A to which some Cauchy net (xz: 7€ ) in B
converges [4, Theorem 6.21]. If A = B then B is called a dense sub-
set of (A, U).

6. Lemma. Let 8= (B;F;’UB) be a uniform subalgebra A =
= (AsF; U). Let fe F with ar(f) = m and suppose that for i=1,...,m
there exists a (Cauchy) net (x43 « €l.) in B which converges to x€A.
Then there exists a (Cauchy) net (zz; 7€ 7 ) in B which converges
o f&\(xl,...,xm).

Proof. Let r'-n(f'i: i=1,...,m) and define, for g, y'e ",

r<g'iff 7 () <z'(i) for i=l,...,m,

Then " is a directed set. For yel" , define
XTB (IXI(I),.--,XU(m)); Za;- f.B(xT),' x-(xl,...,xm).

Let De U and choose E € U such that ﬂ{ﬂ{*l(E): i-l,.._.,m}g
Qf';l(D). For i = 1,...,m, choose @, € I"i such that o(i<.x € l"i =
=»(x°,,xi)eE. Let & = (al,...,o(m). Then
a<gel = (xz,x) e ﬂ{r;l(E); i=1,.., ,m}
= (Zr,fﬁ(x))eD,

and it follows that the net (z43 yeI") converges to £ (x).o

7. Corollary. Let 3= (B;F;'UB) be a uniform subalgebra
of £ = (A;F;U) and let € = (C3F37) be a Hausdorff uniform algebra
of the same type. Let ¢ : (ﬁ;UB) —= (C;7) be a uniformly continuous

function.
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(i) B - (B;F;'Uﬁ) is a uniform subalgebra of +# .

(ii) U ¢|p is an F-homomorphism then so is ¢.

(iii) U T 1is complete then every UA-morphism form B to { may
be extended uniquely to a UA-morphism from Bwer.

(B will be called the closure of B in £).

Proof. (i) follows immediately from the previous lemma.

(ii) Let fe F with ar(f) = m and let x = (xl,... ,xm) e 3™, For
i=1,...,m, choose a Cauchy net (x4; x € l"i) in B converging to x..
Since ¢is uniformly continuous, the net (P(xy); x € Pi) converges to
CP(xi) for each i. Let l"‘ be the directed setTT l"i. For gel,

define x; and z4 as in Lemma 6, and also

}’a' = (¢(xz(1)),-.. ,¢(xa'(m))); Wa- = fc (yao).

By the proof of Lemma 6, (zz; 7€/") converges to f2(x) and (wpszeh)
converges to f, (‘b(xl) e ,¢(xm) ). Since ¢ is uniformly continuous,
the net (¢¥(zz); 7 € ) must converge to d(f, (x)). Now since ¢|B is

an F-homomorphism, we have
Plzz) = dlfg(x,)) = £, (y,) = wy
(7€ 7). Since U is Hausdorff, it follows that

®(f, (x)) = f, (¢'(x1) yeoe ,¢(xm))

and so ¢ is an F-homomorphism.

(iii) Let U be complete and let p : B —=C be a UA-morphism.
By [7, Theorem 39.10], p : (B; 'LLB) —= (C; T ) may be extended uni-
quely to a uniformly continuous function § : (B; uﬁ) ——(C;7T) and

7 is a UA-morphism by (ii). O

8. Theorem. Let # be a uniform algebra of type t. Then
A& is isomorphic to a dense subalg'ebra_» of a complete uniform algebra

A of type t.
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14 J.G. Raftery, T. Sturm

Proof. By Theorem 5, # is isomorphic to a uni"~rm subalgebra
of a product of pseudo-metric algebras of type t, each of which is isomor-
phic to a uniform subalgebra of a complete pseudo-metric algebra of
type t [6, Lemma 4]. The product r of these complete algebras is a
complete uniform algebra of type t and contains the closure £ of the

image of # as a complete uniform subalgebra (by Corollary 7(i)}. O

9. Theorem., Let #& be a Hausdorff uniform algebra of type t.
Then # 1is isomorphic to a dense subalgebra of a complete Hausdorff
uniform algebra £ which is unique in the sense that if # is any com-
plete Hausdorff uniform algebra containing # as a dense uniform sub-
algebra then the identity map on £ extends to a unique isomorphism
from # to 3. The embedding # —— A& is a simple CHA-reflection
of #.

Proof. Let # = (A;F;U). By [4, Theorem 6.28], (A;U) is
uniformly isomorphic to a dense subspace of a complete Hausdorff uni-
form space (A3;U). For each f ¢ F (with ar(f) = m, say), f; is a
uniformly continuous function from A™ to A (with respect to U). Since
(l_\m; U) is a complete Hausdorff uniform space containing A™ as a
dense subspace, it follows from [7, Theorem 39.10] that f 4 may be
extended uniquely to a uniformly continuous function fz: A" — A, so
we obtain a CHA-object # = (A;F;U) and an HA-embedding £ — % .
¥ BeCHA and ¢: £ — B is an HA-morphism then by Corollary 7,
¢ may be extended to a unique CHA-morphism y : £—3, so £ = F
is a simple CHA-reflection. In particular, if # is a dense subalgebra
of B then id A
Since Y|, = idy = idz|,, it follows from Corollary 7 than py= id 5z

extends to CHA-morphism y : # —eBand n 3 £

and similarly yp= idg. Thus y is an isomorphism. O
If M is a class of universal algebras of type t, then a uniform
algebra £ = (A;F;U) will be called a uniform J{ -algebra if (A;F)e A .

Bearing in mind the construction of the (Hausdorff) uniform completion
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Completions of uniform algebras 15

of a (Hausdorff) uniform space described in Theorem 8 and the re-
marks following Theorem 5, the following theorem is an obvious con-
sequence of Lemma 2 and Theorems 8 and 9. The symbols A¥, A and £
are used in the sense of the statements and/or proofs of these three

results.

10, Theorem. Let Ul be a class of universal algebras of
type t and let #£ be a uniform Jl-algebra.

(i} 1f AL is closed under the formation of homomorphic images
then A% is a Hausdorff uniform .-algebra.

(ii) 1f M is closed under the formation of direct products, iso-
morphic images and subalgebras then A is a complete uniform M -al-
gebra.

(iii) f U is closed under the formation of direct products, ho-
momorphic images and subalgebras and # is Hausdorff then A is
a complete Hausdorff uniform M-algebra. O

We shall now consider classes of BCK-algebras and obtain a
BCK-analogue of Theorem 10. Having already noted that the
{. ,O}-quasi-variety of all BCK-algebras is not a variety, we should
not expect the Hausdorff completion of every Hausdorff uniform BCK-al-
gebra to be a BCK-algebra. The situation is better in the case of

strongly uniform Hausdorff BCK-algebras.

11. Lemma. Let B = (B;.,0; ‘UB) be a strongly uniform
BCK-algebra and a uniform subalgebra of the Hausdorff uniform alge-
bra £ = (A;..,O;u) of type (2,0). Then the closure & of 3 in #
satisfies the quasi-identity

Xy = 0 = yx =>x = y.

Proof. Let x,ye B with xy = 0 = yx. Choose nets (x,3 « € f"l)
and (yp; pE f’z) in B, converging to x and y respectively. Let
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F=r xrl, and define (x,p)< (a’, p') iff « < «’ and B <p'. Define
Xa,p = %o Yo, p = I8 (cxef'l, ﬁel"z). Then the nets (xy; 7€7") and
(y,; gel) converge to x and y respectively, and by the proof of
Lemma 6, the nets (xpyp; 7€) and (yzxz; yel’) each converge to O.
Since B is strongly uniform, the net ((x4,yz); 7€) is eventually

in every element of ‘UB (hence in every element of ‘Ug). For D € uﬁ

choose E € Uy such that 3ECD, and 7'el" such that for 3'< gel’,
(x ,Xa‘) [ (XT,Y?) ’ (ya!- ,y) € E-

Then (x,y) e 3EC D, and so (x,y)e n’Uﬁ = idg, i.e., x = 3.0

We omit a routine proof of the following lemma.

_]_._2 Lemma. U UA is the category of all uniform algebras of
type (2,0) then the class of all strongly uniform BCK-algebras is
closed under the formation of UA-direct products, UA-subalgebras

and UA-isomorphic images. O

13. Theorem. Let £= (A;.,0;U) be a uniform BCK-algebra.

(i) & is a complete uniform BCK-algebra. £ is strongly uni-
form if and only if £ is,

(ii) ¥ # is a strongly uniform then £* is a Hausdorff strongly
uniform BCK-algebra.

(iii) f # is Hausdorff then the following conditions are equivalent:

(1) # is strongly uniform;

(2) # is a uniform BCK-algebra;

(3) # is a complete Hausdorff strongly uniform BCK-algebra.

Proof. (i) The class of all BCK-algebras is closed under di-
rect products, subalgebras and isomorphic images, so the first asser-
tion follows from Theorem 10(ii). The second assertion follows from

Lemma 12.
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(ii) Let (Xz; 7€) and (Yy; 7€ ") be Cauchy nets in A* such
that (X;Yr; 7el) and (YpXz; 7€) each converge to Ogw in u*.

Choose x4 € Xz and yz€ Yy for each g€r. Then (xzyz; yel) and
(yzXy3 7€) each converges to O in U. Since # is strongly uniform,
the net {(xg, yz); r€r) is eventually in every element of U, whence
the net ((Xy, Yz); €F) is eventually in every element of U* n

particular, for X,Ye £%, we have

XY = Ogu= YX == (X,Y) eNU* ==X = Y.

Hence A* is a strongly uniform BCK-algebra. #* is Hausdorff by
Lemma 2.

(iii) (1) =>(2). A product of homomorphic images of BCK-alge-
bras is a universal algebra of type (2,0) satisfying the four defining
{. ,O}-identities of a BCK-algebra. # is the closure in such an al-
gebra of an isomorphic image of # and so, by Lemma 11, satisfies

the quasi-identity

xy=0=yx:;.x=y

also. 1t follows that £ is a uniform BCK-algebra.

(2) =>(3). Let #£ be a uniform BCK-algebra. £ is also complete
and Hausdorff by Theorem 9. Therefore £ is strongly uniform by 1.4.
(3) => (1) follows from Lemma 12.0

14. Corollary. Let #£= (A;.,0;U) be a Hausdorff uniform
BCK-algebra and suppose (Aj;.,0) is a member of some { ,O} -variety
of BCK-algebras. Then A# is a strongly uniform BCK-algebra.

Proof. By Theorem 10(iii) & is a (complete Hausdorff) uni-
form BCK-algebra. Now by Theorem 13(iii), # is strongly uniform.O

In the next section we show, inter alia, that we may not drop
from the above corollary the condition that (A;.,0) is a member of

a BCK-variety.
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15. Examples |

15.1. We exhibit a complete uniform BCK-algebra which is not
strongly uniform., (Hence, in 1.4, the condition that (A;.,0;U) be
Hausdorff may not be dropped). We exploit Wronski’s example from
[8]. Let B and C be countably infinite sets such that the sets B, C
and w are mutually disjoint. Order B and C into one-to-one sequences

(bi; iew) and (ci; i € w) respectively. For i,jew , define
ij =mitja ma.x{i-A j,o}

ibj =i . =0
<)

byf = by yr &3 = Sy

b.b -C.C.-jzi
i ij

]
bic]. - cibj = (j+1) = i,

Let A = BUCUw. By [8], (A; ., 0) is a BCK-algebra and 6 =

- B C2Uwze Con(A). By Proposition 1.3,{6} is a base for a uni-
forniity U on A and # = (A;.,0.,U) us a uniform BCK-algebra.

(# is not Hausdorff since NU =8). Now if (xz; 7€) is a Cauchy
net in (A;U) then there exists ye! such that

T<a,Bel =>(xy4,xp)e 6 .
Hence there exists Xe{ B,C,w} such that
T<xelx,eX.

This implies that the net (xz; 7€) converges to any given element
of X. We conclude that # is complete. However, for any i,jew,
we have '

(1) (bi,bj), (ci,cj)e 8,

(2) (bici,O) = (cibi,O) = (1,0)e @,

(3) (bi,ci)¢ 8.
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Now (1) implies that (bi; iecw) and (ci; iew) are Cauchy sequences
in (A3;U) while (2) implies that the sequences (bici; iew) and
(cibi; iew) each converge to 0. However, by (3), the sequence
((bi,ci); i€w) is never in B, so A is not a strongly uniform BCK-al-
gebra. O

15.2. We show that a Hausdorff uniform BCK-algebra need not be
strongly uniform. Let B, C, A, and 6 be exacﬂy as in 15.1. Let
(E,. ,OE) be the direct product BCK-algebra MT({A;.,0): iew). For

each new, define

9, = {(x,y)e ExE : x(i) = y(i) for O<i<n and
(x(i),y(i)) € 8 for all but finitely many. iew}.

It is easily checked that 8 e Con(E) for all new , that 0 -{ ot neo}
is closed under finite intersections and that Nd = idp. It follows
from Proposition 1.3(i) that & is a base for a uniformity U on E
and that £ = (Ej;.,0;U) is a Hausdorff uniform BCK-algebra. Now

consider the sequences (x,; iew) and (y;; iew) defined by

Xl(k) = bo ’

b, for O<k<i
yi(k) -

¢, for k>i

0

(i,k €ew). The constant sequence (xi; i €ew) is obviously Cauchy, while

for any n,i,jew with ngi<j, we have
y; (k) 4 y].(k)@ ick<j,

and hence (yi,yj)e 8 . Tt follows that (y,; iew) is also Cauchy. Now
if n, i ewwith £ i, we have

0 for O<k<i
(e, y. M{K) = (y.x.)(k) =
r i 1 for k>i
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(kew) and since (0,1)e 8, it follows that (xiyi,O), (yixi,O)e 8 . Thus
the sequences (xiyi; iew) and (yixi; i €w) each converge to OE' How-
ever (bo,co) ¢ 8 and therefore there are no n, i €W such that
(xi,yi)e Gn. This implies that & 1is not a strongly uniform BCK-alge-
bra. (Note that by 1.4, (E,U) is not a complete space; more explici-
tly, (y;3 i€w) does not converge). O

15.3. We conclude with an example of Hausdorff strongly uniform
BCK-algebra which is not complete. Let p(w) denote the set of all
subsets of w. Then (p(w),\, @) is a BCK-algebra (and, in fact,

a member of every variety of BCK-algebras). For each n e, define
n) = {zep(w) : z is finite and 0,1,...,n¢ z},
8, =8 - |t el £ xy, yixe ),
Db = {Gn tne w} .
‘It is easily checked that 1(n) is an ideal of p(w) for each new, that
{I(n) : nec.:} (and hence &) is closed under finite intersections and
that N {I(n): new} = {¢} (whence N = id9(m)). It follows from
Proposition 1.3(ii) that & is a base for a (Hausdorff) uniformity u

on ¢(w) and that A= (p(w) ,\ ,9,U) is a Hausdorff strongly uniform
BCK-algebra. Consider the sequence (xn; new) defined by

x ={0,1,...,n} (new).
Given n,m,k e w with n<m<k, we have
x \x = fpeiln);

X\ x -{m+1, m+2,...,k} € In),

and it follows that. (xn; new) is Cauchy. Suppose (xn;- new) converges
to some yeQ (w). For any m ew and for a sufficiently large integer

k>m, we must have x, \ y €l{m), whence mey. Thus y must bew.
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But for each mew, the set w\xm, being infinite, cannot be an ele-
ment of any 1(n). Thus (xn; new) does not converge to w, and hence

does not converge. O
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