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ON A CLASS OF HOMOGENEOUS CONFORMALLY
RECURRENT MANIFOLDS

1. Introduction

Let (M,g) be a Riemannian manifold with a (possibly indefinite)
i,0..1

metric g. A tensor field T P ...; of type (p,q) om M will be
called recurrent if 1 Q

h,...h i,...1
(1) Tl P TtoP .

tl...t P T
q 1"""Yq
LIRS ey
=T ¢ . kT ) ,
1° q’ ]1'- ]q

where the comma denotes covariant differentiation with respect to g.
Relation (1) states that at any point x ¢ M such that T(x) 4 O there
exists a (unique) covariant vector z (called the recurrence vector

of T) which satisfies the condition

i... i

1 i . 1°--1L
(2) T P . k(x) =z, T P . (x).
URERE Y Jpeeedg

A Riemannian manifold (M,g) will be called recurrent (Ricci-re-
A St g sttt
current) if its curvature tensor (Ricci tensor) is recurrent. Through-
out this paper we assume that the Ricci tensor of a Ricci-recurrent

manifold is not parallel.

- 435 -



2 A. Gebarowski

According to Adati and Miyazawa [1], an n-dimensional (n>4)
Riemannian manifold (M,g) will be called conformally recurrent if

its Weyl conformal curvature tensor

1
(3) Chijk = Rhijk ~ 72 (ginhk - 8iRnj * SRy T EniRi)
+ 1—)-(——)-R (81185 = 8,8.)
n-1){n-2 hk™ij ik®hj
is recurrent.
1f Chijk 1= 0 everywhere on M and dim M>4, then (M,g) is
’
said to be conformally symmetric [2]. Such a manifold is called
essentially conformally symmetric if it is neigher conformally flat
(Chijk hijk,1
of conformally recurrent manifolds contains all conformally symmetric

= 0) nor locally symmetric (R = 0). Clearly, the class
as well as recurrent manifolds of dimension n>4. The existence of
essentially conformally recurrent manifolds, i.e. of conformally re-
current manifolds which lie beyond the two classes mentioned above,
has been established in [8].

Let (M,vg) be an n-dimensional Riemannian manifold whose metric
g need not be definite. f g is another metric on M, and there
exists a function p on M such that g = (exp 2p)g, then g and g

are said to be conformally related or conformal to each other. A spe-

cial class of conformally recurrent manifolds which is a natural exten-
sion of the class of essentially conformally symmetric ones have been
defined and studied by W. Roter in his.paper [11]. Namely, a con-
formally recurrent manifold (M,g) is called simple (s.c.r. in short)
if its metric is locally conformal to a non-conformally flat conformally
symmetric one, i.e. if for each point x ¢ M there exists a neighbour-
hood V of x and a function p on V such that § = (exp 2p)g is

a non-conformally flat conformally symmetric metric. In [11] W. Roter

gave a characterization of s.c.r. manifolds (Theorem 1) and proved
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Homogeneous conformally recurrent manifolds 3

(Theorem 5) that every non-locally symmetric s.c.r. manifold is Ricci-

-recurrent or it admits a unique recurrent absolute exterior 2-form w

satisfying
(4) Chijk ™ ®hi%k
with |e| = 1, rank w= 2 and orid']. - 0.

- Although the Ricci-recurrent ones do not exhaust the whole class
of essentially s.c.r. manifolds (see [5]), they form a remarkable sub-
class.

We shall restrict our consideration to manifolds which are essen-
tially s.c.r. and whose Weyl conformal curvature tensor is not of the
form (4). Tn [11] W. Roter proved the existence and gave a complete-
local description (at generic points) of those manifolds. The present
paper deals with a global classification problem for homogeneous s.c.r.
manifolds of class C* or analytic. First we consider homogeneous
s.c.r. manifolds M" (determined in Theorem 1), which are universal
in the sense that the pseudo-Riemannian universal coverings of their
homogeneous open submanifolds exhaust, up to isometry, all simply
connected homogeneous s.c.r. manifolds of the considered type. Next
using the same method as in [3] we obtain some information about the
global structure of essentially s.c.r. manifolds. We prove there (Theo-
rem 3) that such a manifold is always diffeomorphic to a product
RZXM, M being flat and homogeneous.

Throughout this paper, by a manifold we shall mean a connected
paracompact manifold either of class C” or analytic. Concerning Rie-

mannian manifolds, we shall often write M instead of (M,g).

2. The general form of universal models

In this section each Latin index runs over 1,2,...,n, and each
Greek index - over 2,3,...,n-1. Given a pseudo-Riemannian manifold
(M,g), by a 1ocA’§} isometry of M we shall mean any isometry between
open connected subsets of M. First we formulate certain important
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4 A. Gebarowski

examples of simply connected, complete, essentially simple conformally
recurrent manifolds whose Weyl conformal curvature tensor is not of
the form (4) described as follows.

Theorem 1. (i) Let M denote the Euclidean n-space (n3>4)

endowed with the metric g given by

o 2
§ijdx1dxj - dlaxl) + kpudxdax# + 2 aclax®,

where the function ¢ is defined by
1 n 1 1 A
& (x R | ) = (Alx )kA# + Blx )ch#)x x#,

A, B being a non-constant analytic functions on R and [k, alr fe, #]
non-zero symmetric matrices such that [k, ,] is non-singular and
KM cpu = 0, Tank ¢, >1 with k*] - [k“‘]'l. Then M is a simply
connected, complete, analytic, n-dimensional simple conformally recur-
rent manifold whose Weyl conformal curvature tensor is not of the
form (4).

(ii) In the Cartesian coordinates, any local isometry f = (fl, e D)

of M is of the form
fl(xl,... XY - 5x1 +T
a1 n Al a1
(5) § r(x ,....,x)=Hﬂx + CMx), 2=2,...,n-1
fn(xl,...,xn) - -sk,wéz (xl) [H:xv + %—Cp(xl)] +EXT & z
where [H},] is an (n-2)x(n-2) matrix and z, ¢, T are real numbers
satisfying the conditions

(6) 1] = 1, A(t) = Alet + T),

v
) a) K HyH = &y,
(7
b) ¢;,Blt) = Blst + T) ¢, H3H,
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Homogeneous conformally recurrent manifolds 5

for any real t, and the functions C), A= 2,3,...,n-1, form a solu-

tion of the following system of ordinary differential equations
(8) EMt) = AEM) + BOOKY ¢, ET(D),
with E* (1) = HACT(1).

(iii) Conversely, given z, &, T and A, c? satisfying (6)-(8),
formulae (5) define a global isometry of M onto itself.

Proof. (i) From Roter s consideration (cf. o1, proof of
Th.7) it follows that M is a non-conformally symmetric s.c.r. Ricci-
-recurrent manifold whose Weyl conformal curvature tensor is not of
the form (4). By an explicit computation we verify that the geodesic
equations for M reduce to a system of linear differential equations,
so that M is complete.

(ii) Let f be a local isometry of (M,g). The differential dx!

is the unique (up to a constant factor) parallel covariant vector field

in M (cf. [9] p.54). Hence f"‘dx1 = E,dxl, ¢ being a non-zero con-
stant. Raising indices, we obtain f, . 6-1 d_je. af" - &-1
D 3t n

i .
and anf = O for i<n. One can explicity compute that, the essential
components of Riceci tensor R and VR are

Rll = (n-2)A, Vlel = (n-2) VjA

(see [11], formulae (36)) so that the relation f'VR = VR yields
f1 - xlof = So(xl). Moreover, f leaves invariant the orthogonal com-

plement D of a_n’ which is an integrable codimension one distri-
ax

bution on M. This parallel (n-1)-plane field determines a foliation
whose leaves are totally geodesic submanifolds of M. Any leaf o« of D
is given by xl = const and inherits from M a symmetric connection
{(as a totally geodesic submanifold}, which is flat since dxz,. .o ,dxn are

parallel along o« (see [7], pp.56-59) so that x2,... X" are affine co-
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6 A. Ggbarowski

ordinates for « . Our local isometry f, whenever defined, sends

(local) leaves of D affinely into leaves. Thus, f* and f" are affine

functions of xz,. .o ,xn, and f 1is of the form
ity ™ =),

(9) f}‘(xl,...,xn) = f},(xl)x” + Cx(xl),
fn(xl,...,xn) = f:(xl)x” s e Cn(xl),

with

(10) det[x1)] 4 o.

Comparing now the components of g with those transformed by f,

we obtain
- . -1..1
1-§,= g,, = & o),
which implies fl(xl,. CoxXT) = ex’ + T for some real T.

Next we have

— _ v, 1 1 v, 1y 4,1 1
0=8;, = (£*g)yy = kpﬂf?(x )xeff(x )+ LIe (I (x7) + eft;(x ).
The right-hand side of this equality is a polynomial in variables

x%,. . oL, so that Ky, B3 (xDE5(x!) < 0, hence £} = 0 by (10) i.e.
fz is constant, say fz,‘(xl) - H‘ﬁ, and

(11) Fx) = -6 Mk, Pl HHy.

»
It is also easy to see that k, , = (f*ﬁ)ly - ka HAHZ' which implies
(7)(a). Evaluating the equality f*§ = g for the component 'g'll we obtain
certain equality between polynomials in variables x*, 2= 2,...,n-1,

namely
[A(xl)k“‘+ B(x1) czy]xzx/‘ = 52[A(&x1 + T)kyy + Blex! + T) Cvt] .

) [H;}i"lx” + 21-[3\’(3‘1’(33))(A + Cg(xl)Cr(xl)} + 2£f‘2(x1)x” +
+ 26 by 4 k;‘ﬂéa(xl)é#(xl),
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Homogeneous conformally recurrent manifolds 7

and by comparing their coefficients and using (7) a) we get
(12) AlxlYky, + BlxD) ru= 6 [A(6x1+T)k7w+ Blex1+T) corHrg]
(13) f'n(xl) + 6 A(£x1+T)k + B(t,xl+T) Cpr HvCT(xl) =0,
U yT vy 7]
(14) 25C™ () + kMéA HE# ety + 62[A(5x1+T)km- +
+ Blex+T) epr) € HcT ey = 0.
klﬂ

Transvecting (12) with k* and taking account of

M H

(15) Alt) = CzA(Ct + T)

cpru =0 and

T
=k , we have

for any real t. Using the very same argument as in [4] (proof of
Theorem 2) we obtain |£| = 1 and (15) implies (6). Obvious conse-
quence of (12) is formula (7) bj.

Combining (11) with (13) and taking into account (6)and 7 a) b)

we obtain

HET(1) = AMMHC () + BIOK" ¢y HECS (1),

which by setting E (1) = H’}Cx(t) yields (8).
From (14) and (8) it follows immediately that

aC™() +5 ek, S (D)) at = AC™) + kg, B (OB () at - 0

hence
(1) = - 5 ek SO 4 2
for some real z. 1In view of (11), this completes the proof of asser-
tion (ii).
(iii) As for the inverse one, we can immediately verify that for-
mulae (5) together with (€)-(8) define global isometry of M onto itself.

This completes the proof.



8 A. Gebarowski

In the sequel we shall need the following lemmas:
Lemma 1 (see [3], Lemma 1). Let (M,g) and (M,g) be two
homogeneous pseudo-Riemannian manifolds, locally isometric to each

other. If M is simply connected and M has the property

(16)  .any local isometry of M can be extended to a global isometry

of M onto itself,

then there exists an isometric immersion f: M —= M such that

(i) the image f(M) is homogeneous (as an open submanifold of M),

(ii) f: M—= f{M) is a covering.

As mentioned in the introduction the name "universal model” for
M™ can now be justified as follows.

Theorem 2. Any simply connected homogeneous s.c.r. manifold
whose Weyl conformal curvature tensor is not of the form (4) is iso-
metric to the pseudo-Riemannian universal covering of an open homoge-
neous submanifold of universal model.

Proof. Our argument is a replica of the proof of Theorem 2 in
[3]. To prove the statement, observe that any homogeneous simply con-
nected s.c.r. manifold whose Weyl conformal curvature tensor is not
of the form (4) is locally isometric to a universal model M (cf. [11]
Theorem 7). Theorem 1 implies clearly that M enjoys the property
(16). By Lemma 1, there exists an isometric immersion f: M—f(M)cM

which is nothing but the universal covering projection. This completes

the proof.

3. Some global properties

We are now going to derive some consequences of the above re-
sults. Tt will be convenient to adopt the following notations and con-
ventions. Each element h of the isometry group 1{M) determined in
Theorem 1 will be identified with quintuples h = (¢, T, H, C(t), z)
where (as we know) ¢ belongs to the multiplicative group 22 - { -1,1} ’
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Homogeneous conformally recurrent manifolds 9

T satisfies (6) and so its range is a discrete subset of R, H =

- [Hz]eG the group of all (n-2)x(n-2) matrices satisfying (7), the
curve t —e C(t) = [Cz(t),.. . ,Cn-l(t)] in R™-2 is an element of the
vector space V of all solutions of (8) and =z is an arbitrary real

number. On the space V we define the exterior 2-form by
l °2\ A .
©(C;,C,) = 5k [E)ch ) - .

Differentiating Q(EI,EZ) and taking into account (8) we get

1 --) .
dokEy ,E,)/at = 5 kau[E (OED) - EJ(0ES(W)] - o,

which implies that w is a constant independént of t. The 2-form o is

the group operation of 1{M), namely
(6,,T,,H,,C (1),2.)(e,,T ), H,,C (1) ,2,) =

- B152' 61T2 + Tl’ HIHZ’ HlCz(t) + Cl(t'.zt + T2),

61620(H1C2(t), Cl({,zt + Tz)) *Egzy ¥ z]] .

where the courves t —-H,C,(t) and t -———Cl(ezt + T,) are easily seen
to lie in space V again.

Points of our manifold M, whose underlying set is just Rn’ will
be described as triples (x,w,u), x,ueR, we Rn-2’ so that for an

isometry h = (¢,T,H,C(t),z)e 1{M) we have
(17) hix,w,u) = (ex + T, Hw + C(x), <£<C(x), Hw +-;—C(x)> +Eéu+ z),

< 5'> being the (possibly indefinite) inner product in R™? determined

by ka'u.
Going on to a further study of the homogeneous s.c.r. manifolds

we start with the following auxiliary fact (see [3], Lemma 4):
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10 A. Gebarowski

Lemma 2. Given real vector spaces V and W with a not ne-
cessarily definite inner product in W, let G be a Lie group transfor-

mations of VxWxV, each of which is of the form

(18) (vl,w,vz)—~(£v1+T, Aw + C(vl), P(vl)w+cv + S(Vl))

2

for some linear isometry A of W, |¢l =1, TeV and Cw-mappi.ngs
C: V—W, P: V—L(W,V) and St V-—V. Then

(i) any open orbit U of G is diffeomorphic to the product VXU XV,
U° being an open subset of W on which a certain group Go of affine
isometries acts transitivelys

(ii) any open orbit of G coincides with VxWxV whenever the inmer
product in W is definite.

Using Lemma 2, we now proceed to prove

Theorem 3. Let (M,g) be an n-dimensional simply connected
homogeneous s.c.r. manifold whose Weyl conformal curvature tensor
is not of the form (4). Then M is diffeomorphic to szMl, where M,
is a simply connected homogeneous flat pseudo-Riemannian manifold with
a metric of index k, k = index g - 1.

Proof. By Theorem 2, M is the universal covering of an open
homogeneous submanifold U of a universal model M. Let G be a group
of isometries acting on U transitively. G may be assumed to be con-
nected (if necessary we take its connected component of the identity).
We are now in the conditions of Lemma 2. In fact, we have the natural
decomposition M = Rx Rn-ZXR with the inner product AZ;I k, #dxxdxﬂ in

Rn-2’ and, by (17) the transformations of G are of form (18). There-

fore, by Lemma 2, U is diffeomorphic to RZXUO, Uo being a flat
homogeneous manifold with a metric of index equal to k, k = indexg-1.

Hence M is diffeomorphic to szMl, M1 being the universal covering

of Uo' This completes the proof.
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