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1. Introduction 

Let (M ,g) be a Riemannian manifold with a (possibly indefinite) 
i j . . . i 

metric g . A tensor field T P . . o f type Cp,q) on M will be 
3 1 ' ' ' ] q called recurrent if 

h , . . .h i . . . . i 
CD T 1 P t T 1 p . . , -

V ' - t q V V k 

h-. . .h i , . . . i 
= T P T p 

t r . . t q , k j r . . j q ' 

where the comma denotes covariant differentiation with respect to g . 

Relation Cl) states that at any point x e M such that TCx) / 0 there 

exists a Cunique) covariant vector x Ccalled the recurrence vector 

of T ) which sat is f ies the condition 

i 1 . . . i i , . . . i 
C2) T 1 P . . . (x) - * , T 1 p . . Cx). 

k h " ' \ 

A Riemannian manifold CM,g) will be called recurrent (Ricci-re-

current) if i ts curvature tensor (Ricci tensor) i s recurrent. Through-

out this paper we assume that the Ricci tensor of a Ricci-recurrent 

manifold i s not paral lel . 
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2 A. G^barowski 

According to Adati and Miyazawa [ l ] , an n-dimensional (n ^ 4 ) 

Riemannian manifold ( M , g ) will be called conformally recurrent if 

i ts Weyl conformal curvature tensor 

is recurrent . 

If C, . . = 0 everywhere on M and dim M > 4 , then ( M , g ) i s 

said to be conformally symmetric [ 2 ] , Such a manifold is called 

essentially conformally sjTMietric if it is neigher conformally flat 

^ h i j k = ^ n o r l o c a l l y symmetric ( R ^ ^ ^ = 0 ) . Clearly, the c lass 

of conformally recurrent manifolds contains all conformally symmetric 

as well as recurrent manifolds of dimension n St 4 . The existence of 

essentially conformally recurrent manifolds, i . e . of conformally r e -

current manifolds which lie beyond the two c lasses mentioned above, 

has been established in [ 8 ] , 

Let ( M , g ) be an n-dimensional Riemannian manifold whose metric 

g need not be definite. If g i s another metric on M, and there 

exists a function p on M such that g = (exp 2p)g, then g and g" 

are said to be conformally related or conformal to each other. A spe-

cial c lass of conformally recurrent manifolds which is a natural exten-

sion of the c lass of essentially conformally symmetric ones have been 

defined and studied by W. Roter in his. paper [ j l ] . Namely, a con-

formally recurrent manifold ( M , g ) is called simple ( s . c . r . in short) 

if i ts metric i s locally conformal to a non-conformally flat conformally 

symmetric one, i . e . if for each point x g M there exists a neighbour-

hood V of x and a function p on V such that g » (exp 2p)g is 

a non-conformally flat conformally symmetric metric . In [ l l ] W. Roter 

gave a characterization of s . c . r . manifolds (Theorem 1) and proved 

+ 
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Homogeneous conformally recurrent manifolds 3 

(Theorem 5) that every non-locally symmetric s . c . r . manifold i s Ricci-

-recurrent or it admits a unique recurrent absolute exterior 2-form cj 

satisfying 

U ) C hi jk -
r 

with lei = 1 , rank co= 2 and CJ . o> . = 0 . 1 1 r i j 
Although the Ricci-recurrent ones do not exhaust the whole c l a s s 

of essential ly s . c . r . manifolds ( s e e [ 5 ] ) , they form a remarkable sub-

c l a s s . 

We shall res t r ic t our consideration to manifolds which a re essen-

tially s . c . r . and whose Weyl conformal curvature tensor i s not of the 

form ( 4 ) . In [ l l] W. Roter proved the existence and gave a complete 

local description (at generic points) of those manifolds. The present 

paper deals with a global class i f ication problem for homogeneous s . c . r . 

manifolds of c l a s s C° ° or analytic. F i r s t we consider homogeneous 

s . c . r . manifolds M n (determined in Theorem 1 ) , which are universal 

in the sense that the pseudo-Riemannian universal coverings of their 

homogeneous open submanifolds exhaust, up to isometry, all simply 

connected homogeneous s . c . r . manifolds of the considered type. Next 

using the same method a s in [ 3 ] we obtain some information about the 

global structure of essential ly s . c . r . manifolds. We prove there (Theo-

rem 3) that such a manifold i s always diffeomorphic to a product 

2 

R x M , M being flat and homogeneous. 

Throughout this paper , by a manifold we shall mean a connected 

paracompact manifold either of c l a s s C°° or analytic. Concerning Rie-

mannian manifolds, we shall often write M instead of ( M , g ) . 

2. The general form of universal models 

In this section each Latin index runs over 1 , 2 , . . . ,n , and each 

Greek index - over 2 , 3 , . . . , n - l . Given a pseudo-Riemannian manifold 

( M , g ) , by a local isometry of M we shall mean any isometry between 

open connected subsets of M. F i r s t we formulate certain important 
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A. Gçbarowski 

examples of simply connected, complete, essentially simple conformally 

recurrent manifolds whose Weyl conformai curvature tensor i s not of 

the form (4) described as follows. 

T h e o r e m 1. Ci) Let M denote the Euclidean n-space ( n > 4 ) 

endowed with the metric g given by 

1 2 1 
g . ^ d x 3 - $(dx ) + k^dx^dx1" + 2 dx dx11, 

where the function $ is defined by 

$ ( x \ . . . , x n ) = C A ( x 1 ) k M + B U ^ c ^ x " , 

A, B being a non-constant analytic functions on R and [ k ^ ] , 

non-zero symmetric matrices such that [ k ^ ] is non-singular and 

" r a n k c l a > : l w l t h - C k ^ T 1 . Then M is a simply 

connected, complete, analytic, n-dimensional simple conformally recur-

rent manifold whose Weyl conformal curvature tensor i s not of the 

form (4 ) . 

Cii) In the Cartesian coordinates, any local isometry f = (fX f U ) 

of M is of the form 

(5) 

f ^ x 1 Xn) = 6x^ + T 

f * ( x \ . . . , x n ) - H^x-" + c M x 1 ) , A - 2 , . . . ,n-l 

A x 1 Xn) - - e k ^ c ^ x 1 ) ^ + i c V 1 ) ] + i * n + 

where ¡Hju] is an (n-2)*(n-2) matrix and z , 6 , T are real numbers 

satisfying the conditions 

(6) | £ | - 1, A(t) = A(tt + T ) , 

(7) 
a) kyj-H^H^ - kA(i( 

b) c ^ B ( t ) - B(et + T) c ^ h J h J 
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Homogeneous conformally r e c u r r e n t manifolds 5 

for any r e a l t , and the functions C* f ^ =• 2 , 3 , . . . , n - l , form a solu-

tion of the following system of o rd inary d i f ferent ia l equations 

(8) E*( t ) = A ( t ) E \ t V + B ( t ) k J f c „ r E r ( t ) , 

with E*( t ) - H * C r ( t ) . 

(.iti) Converse ly , given z , £ , T and h £ , C* sat isfying ( 6 ) - ( 8 ) , 

formulae (5) define a global i sometry of M onto i t se l f . 

P r o o f , ( i ) From Rote r s considerat ion (cf . [ l l ] , proof of 

T h . 7 ) it follows that M is a non-conformally symmetric s . c . r . Ricci -

- r e c u r r e n t manifold whose Weyl conformai curva ture tensor i s not of 

the form ( 4 ) . By an explicit computation we ve r i fy that the geodesic 

equations fo r M reduce to a system of l inear d i f ferent ia l equations, 

so that M is complete. 

( i i ) Let f be a local i sometry of ( M , g ) . The di f ferent ia l dx^ 

i s the unique (up to a constant f ac to r ) para l le l covariant vec tor f ield 

in M (c f . [ 9 ] p . 5 4 ) . Hence f dx = £dx , 6 being a non-ze ro con-

s tant . Raising ind ices , we obtain f* ——=» 6 ^ — — i . e . 3 f " = f ^ 
. 3X11 3x n 

and 3^f - 0 for i < n . One can explicity compute tha t , the essent ia l 
components of Ricci tensor R and VR a r e 

R „ = (n -2 )A , V.R. , = (n-2) V.A 11 j 11 j 

( see Q.1] , formulae (36)) so that the re la t ion f*VR = VR yields 
1 1 1 ' f = x of = ) . Moreover , f leaves invariant the orthogonal com-

g 
plement D of , which is an in tegrable codimension one d i s t r i -

3x n 

bution on M. This para l l e l ( n -1 ) -p l ane field determines a foliation 

whose leaves a r e total ly geodesic submanifolds of M. Any leaf 06 of D 

i s given by x "̂ = const and inher i t s from M a symmetric connection 

( a s a totally geodesic submanifold), which i s f la t since d x ^ , . . . ,dx n a r e 

para l l e l along 0C ( see \j~\, pp .56-59) so that x ^ , . . . , x n a r e affine co-
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6 A. G^barowski 

ordinates for cC . Our local isometry f , whenever dt fined, sends 

(local) leaves of D affinely into leaves . Thus, f * and f n are affine 
2 n functions of x , . . . ,x , and f i s of the form 

f V , . . . , * 1 1 ) =9>Cx1) , 

(9) i f ^ x 1 x11) = f ^ C x 1 ) * " + e U x 1 ) , 

A x 1 , . . . / ) = f J ( x V + 6"1*1 1 + C ^ x 1 ) , 

with 

(10) det f f^Cx 1 ) ] / 0. 

Comparing now the components of g with those transformed by f , 

we obtain 

1 - S in - l f * 8 > , n - fi'W). 

which implies f^ " (x \ . . . .x11) = t x ^ + T for some real T . 

Next we have 

0 = g n = ( f * g ) u = k ^ C x V t f t x 1 ) + k ^ c ' U 1 ) ! ^ 1 ) + i f f t x 1 ) . 

The right-hand side of this equality i s a polynomial in variables 

x 2 , . . . , x n _ 1 , so that k ^ f j ( x 1 ) f ^ ( x 1 ) = 0 , hence $ = 0 by (10) i . e . 
* X A f̂ J i s constant, say f^ Cx ) » H^, and 

(11) f JCx 1 ) = - e ^ k ^ c ^ x 1 ) ^ . 

It i s also easy to see that k^^ - C f * " kppH^H^, which implies 

(7) ( a ) . Evaluating the equality f * g - g for the component g ^ we obtain 

certain equality between polynomials in variables x* , A = 2 , . . . , n - l , 

namely 

[A(x 1 )k^ ( U + B ( x X ) c ^ x ^ x - " = 6 2 [ A U X 1 + T ) K V F + Bit*1 + T) c v r ] • 

• K ^ x ' + 2 < C r ( x V + C 9Cx1 )C rCx 1)] + 2 e f £ ( x 1 ) x " + 

+ 2 e c n ( x 1 ) + k ^ c V ^ x 1 ) , 
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Homogeneous conformally recurrent manifolds 7 

and by comparing their coefficients and using (7) a) we get 

(12) A(x1)k^jU + B(x 1 ) c ^ = 62[A(cx1+T)k^(U+ B U x ^ T ) , 

(13) f ^ x 1 ) + c[AUx 1+T)k y r + B l t x ^ T ) C j , r ] H ^ U 1 ) = 0, 

(14) 2 îC n ( x 1 ) + k ^ C x ^ C ^ C x 1 ) + 62 [A(£x1+T)k y r + 

+ B U x V r ) c v > T]c v (x 1)c r (x 1 ) - 0. 

Transvecting (12) with and taking account of k ^ c ^ = 0 and 

k^H^H^j = k1^ , we have 

(15) A(t) = £2A(£t + T) 

for any real t. Using the very same argument as in [4-] (proof of 

Theorem 2) we obtain |£| = 1 and (15) implies (6) . Obvious conse-

quence of (12) is formula (7) b) . 

Combining (11) with (13) and taking into account (6)and 7 a) b) 

we obtain 

H ^ U ) - A(t)H^C r(t) + B(t)k*V c v rHgC 5 ( t ) , 

which by setting E*(t) = H*C*(t) yields (8) . 

From (14-) and (8) it follows immediately that 

d(cn(t) +-iek^c*(t)c"(t))/dt = d(cn(t) + iik^Ê^OE^Oî/dt = o 

hence 
C n ( t ) = - i £kA / ic\t)C"(t ) + z 

for some real z. In view of (11), this completes the proof of asser-

tion ( i i ) . 

( i i i ) As for the inverse one, we can immediately verify that for-

mulae (5) together with (G)-(8) define global isometry of M onto itself. 

This completes the proof. 
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8 A. Gqbarowski 

In the sequel we shall need the following lemma: 

L e m m a 1 ( see C3]> Lemma 1 ) . Let (M,g ) and ( M , g ) be two 

homogeneous pseudo-Riemannian manifolds, locally isometr ic to each 

o ther . If M i s simply connected and M has the p roper ty 

(16) ,any local i sometry of M can be extended to a global isometry 

of M onto i t s e l f , 

then t h e r e exis ts an isometr ic immersion f : M — M such that 

( i ) the image f (M) i s homogeneous ( a s an open submanifold of M) , 

( i i ) f : M—»-f (M) i s a cover ing. 

As mentioned in the introduction the name "universal model" f o r 

M n can now be just if ied a s fol lows. 

T h e o r e m 2. Any simply connected homogeneous s . c . r . manifold 

whose Weyl conformal cu rva tu re t ensor i s not of the form (4-) i s i so -

metric to the pseudo-Riemannian un iversa l covering of an open homoge-

neous submanifold of un iversa l model. 

P r o o f . Our argument is a r ep l i c a of the proof of Theorem 2 in 

[ 3 ] . To prove the statement, observe that any homogeneous simply con-

nected s . c . r . manifold whose Weyl conformal cu rva tu re tensor i s not 

of the form (4) is locally isometr ic to a un iversa l model M (cf . Cll] 

Theorem 7 ) . Theorem 1 implies c l e a r l y that M enjoys the p rope r ty 

(16 ) . By Lemma 1, the re exis ts an isometr ic immersion f : M—*-f(M)cM 

which is nothing but the un iversa l covering pro jec t ion . This completes 

the p roof . 

3 . Some global p r o p e r t i e s 

We a r e now going to de r ive some consequences of the above r e -

su l t s . It will be convenient to adopt the following notations and con-

vent ions. Each element h of the i sometry group l (M) determined in 

Theorem 1 will be identified with quintuples h • ( 6 , T , H, C ( t ) , z) 

where (as we know) £ belongs to the multiplicative group Z_ » j - l , l | , 

- 442 -



Homogeneous conformally recurrent manifolds 9 

T satisfies (6) and so its range is a discrete subset of R, H -

" [ H j ] i G the group of all (n-2)*(n-2) matrices satisfying (7) , the 

curve t —— C(t) - [ c 2 ( t ) , . . . »C11"1^)] in R n " 2 is an element of the 

vector space V of all solutions of (8) and z is an arbitrary real 

number. On the space V we define the exterior 2-form co by 

w c c l f c 2 ) - |k A j U [ c * ( t ) c^ ( t ) - c j i o c j c o ] . 

Differentiating cj(E^ ,E2 ) and taking into account (8) we get 

dcj(E rE2 )/dt --|k¥ [E^Ct)E^Ct) - eJCOeJIO] - 0, 

which implies that u is a constant independent of t. The 2-form a is 

the group operation of I (M ) , namely 

(6 1 ,T 1 ,H 1 ,C 1Ct) ,z 1 ) (6 2 ,T 2 ,H 2 ,C 2Ct) ,z 2 ) -

" t l V 61T2 + T l ' H1H2' H l C 2 ( t ) + C l U 2 t + T 2 J ' 

e1e2<An1Q.2{x), c^ig + T 2 ) ) + e ^ + z j , 

where the courves t —"-H^C^t) and t —»-C^ie^ + T a r e easily seen 

to lie in space V again. 

Points of our manifold M, whose underlying set is just Rn , will 

be described as triples (x,w,u), x,ue R, we so that for an 

isometry h «• (6 ,T,H,C(t ) ,z) € l (M) we have 

(17) h(x,w,u) - (6x + T , Hw + C (x ) , - i <CU ) , Hw + -|c (x )> +6u+ z ) , 

11 2 <" ,•> being the (possibly indefinite) Inner product in R determined 

Going on to a further study of the homogeneous s .c .r . manifolds 

we start with the following auxiliary fact (see Qjl . Lemma 4) : 
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10 A. Gqbarowski 

L e m m a 2. Given r e a l vector spaces V and W with a not ne-

c e s s a r i l y definite inner product in W, let G be a Lie group transfor-

mations of VxWx V, each of which is of the form 

(18) ( v i l w , v 2 ) — - ( 6 V l + T , Aw + C l v ^ , P ( v x ) w + t v 2 + S ( v x ) ) 

for some linear isometry A o f W , |t| = 1 , T 6 V and C°°-mappings 

C: V — W , P : V — - L ( W , V ) and S : V — V . Then 

( i ) any open orbit U of G is diffeomorphic to the product V * U o * V , 

Uo being an open subset of W on which a certain group G q of affine 

isometries acts transit ively; 

( i i ) any open orbit of G coincides with VxW*V whenever the inner 

product in W is definite. 

Using Lemma 2 , we now proceed to prove 

T h e o r e m 3 . Let ( M , g ) be an n-dimensional simply connected 

homogeneous s . c . r . manifold whose Weyl conformal curvature tensor 
2 

is not of the form ( 4 - ) . Then M is diffeomorphic to R where M^ 

is a simply connected homogeneous flat pseudo-Riemannian manifold with 

a metric of index k , k = index g - 1. 

P r o o f . By Theorem 2, M is the universal covering of an open 

homogeneous submanifold U of a universal model M. Let G be a group 

of isometries acting on U transit ively. G may be assumed to be con-

nected (if necessary we take i ts connected component of the identity). 

We are now in the conditions of Lemma 2. In f a c t , we have the natural 
H 2 \ 1 

decomposition M = R x R n x R with the inner product ¿_, k, dx* dx" m 

Rn~ , and, by (17) the transformations of G are of form ( 1 8 ) . There-
2 

f o r e , by Lemma 2 , U is diffeomorphic to R * U q , U q being a flat 

homogeneous manifold with a metric of index equal to k , k - index g - 1 . 

Hence M is diffeomorphic to R XM^, M^ being the universal covering 

of U . This completes the proof. 
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