

Michał Kinielewicz, Jerzy Motyl

**CONTROLLABILITY OF THE NEUTRAL FUNCTIONAL-DIFFERENTIAL
INCLUSION WITH M-DISSIPATIVE RIGHT HAND SIDE**

1. Notation and definitions

Let C_{or} , (resp. AC_{or} , L_{or}) denote the space of all continuous (resp. absolutely continuous, integrable) functions x acting from the interval $[-r, 0]$ to \mathbb{R}^n with the standard norm:

$$\|x\|_C = \sup_{-r \leq t \leq 0} |x(t)|$$

$$(\text{resp. } \|x\|_{AC} = x(-r) + \int_{-r}^0 |\dot{x}(t)| dt)$$

$$\text{and } \|x\|_L = \int_{-r}^0 |x(t)| dt.$$

We introduce the following measurability condition (M):

Let D be a nonempty open subset of $\mathbb{R} \times C_{or} \times L_{or}$ and $F: D \rightarrow \text{Comp}(\mathbb{R}^n)$ be a set-valued function such that:

(M) For every interval $I \subset \mathbb{R}^1$ and sets $K \subset C_{or}$, $S \subset L_{or}$ with $I \times K \times S \subset D$ and for every $\varepsilon > 0$ there exists a compact set $E \subset I$ with $\mu(I \setminus E) \leq \varepsilon$ such that the restriction of F to $E \times K \times S$ is Borel measurable.

The space of all set-valued functions $F: D \rightarrow \text{Comp}(\mathbb{R}^n)$ satisfying condition (M) will be denoted by $\mathcal{U}(D, \text{Comp}(\mathbb{R}^n))$.

For every x belonging to $C([\delta, \delta+\varrho], \mathbb{R}^n)$, $x(\delta) = 0$, every z belonging to $L([\delta, \delta+\varrho], \mathbb{R}^n)$ and $\dot{\phi}$ from AC_{or} we define $\dot{\phi} \oplus x$ and $\dot{\phi} \boxplus z$ by setting:

$$(\dot{\phi} \oplus x)(t) = \begin{cases} \dot{\phi}(t-\delta) & \text{for } t \in [\delta-r, \delta] \\ \dot{\phi}(0)+x(t) & \text{for } t \in [\delta, \delta+\varrho], \end{cases}$$

$$(\dot{\phi} \boxplus z)(t) = \begin{cases} \dot{\phi}(t-\delta) & \text{for } t \in [\delta-r, \delta] \\ z(t) & \text{for } t \in [\delta, \delta+\varrho]. \end{cases}$$

A pair (D, Ω) of nonempty sets $D \subset \mathbb{R} \times C_{or} \times L_{or}$ and $\Omega \subset \mathbb{R} \times AC_{or}$ will be called conformable if for every $(t, x), (t, x), (t, y) \in \Omega$ one has $(t, x, \dot{y}) \in D$.

Given a conformable pair (D, Ω) , a set $C \subset \mathbb{R} \times C_{or} \times \mathbb{R} \times C_{or}$ and a set-valued function $F: D \rightarrow \text{Comp}(\mathbb{R}^n)$ we say that $NFDI(D, F)$ is (Ω, C) -controllable if there exist numbers $\delta \in \mathbb{R}$, $\varrho > 0$ and an absolutely continuous function $x: [\delta-r, \delta+\varrho] \rightarrow \mathbb{R}^n$ such that

$$\begin{cases} \dot{x}(t) \in F(t, x_t, \dot{x}_t) & \text{for a.e. } t \in [\delta, \delta+\varrho] \\ (t, x_t) \in \Omega & \text{for a.e. } t \in [\delta, \delta+\varrho] \\ (\delta, x_\delta, \delta+\varrho, x_{\delta+\varrho}) \in C \end{cases}$$

where $x_t(s) = x(t+s)$ for $t \in [\delta, \delta+\varrho]$, $s \in [-r, 0]$.

We say that (D, Ω, C) has a nonempty intersection property if the following conditions are satisfied:

- (i) (D, Ω) is a conformable pair,
- (ii) $(\Omega \times \Omega) \cap C$ is nonempty,
- (iii) there are $(\delta, \dot{\phi}) \in \Omega$ and a number $\varrho > 0$ such that the set $K_{\dot{\phi}}(\Omega, C) = \left\{ x \in AC([\delta, \delta+\varrho], \mathbb{R}^n) : x(\delta) = 0, (t, (\dot{\phi} \oplus x)_t) \in \Omega \text{ for } t \in [\delta, \delta+\varrho] \text{ and } (\delta, x_\delta, \delta+\varrho, x_{\delta+\varrho}) \in C \right\}$ is nonempty.

For $F: D \rightarrow \text{Comp}(\mathbb{R}^n)$ we define set-valued functions G^F and $\mathcal{F}(G^F)$ by the formulas:

$$G^F(t, x) = F(t, (\dot{\phi} \oplus x)_t, (\dot{\phi} \boxplus \dot{x})_t) \text{ for } t \in [\delta, \delta+\varrho] \text{ and } x \in K_{\dot{\phi}}(\Omega, C).$$

$$\mathcal{F}(G^F)(x) = \left\{ f \in L([\delta, \delta+\varrho], \mathbb{R}^n) : f(t) \in G^F(t, x) \text{ for a.e. } t \in [\delta, \delta+\varrho] \right\}$$

$$\text{Dom } \mathcal{F}(G^F) = \left\{ x \in K_{\dot{\phi}}(\Omega, C) : \mathcal{F}(G^F)(x) \text{ is nonempty} \right\}.$$

We will say that $\mathcal{F}(G^F)$ has strong-weak closed graph if for every sequence (x_n) in $\text{Dom } \mathcal{F}(G^F)$ and every sequence (u_n) of $L([\delta, \delta+\varrho], \mathbb{R}^n)$ such that $u_n \in \mathcal{F}(G^F)(x_n)$ for $n = 1, 2, \dots$, x_n tending to x strongly and u_n tending to u weakly in $L([\delta, \delta+\varrho], \mathbb{R}^n)$ we also have $u \in \mathcal{F}(G^F)(x)$.

Definition. Let $\Omega \subset \mathbb{R} \times AC_c$ and $C \subset \mathbb{R} \times C_{\text{or}} \times \mathbb{R} \times C_{\text{or}}$ be given. A set-valued function $F \in \mathcal{M}(D, \text{Comp}(\mathbb{R}^n))$ is said to be m -dissipative with respect to (Ω, C) if (D, Ω, C) has a nonempty intersection property and the following hold:

(i) for every $x, y \in \text{Dom } \mathcal{F}(G^F)$, every $u \in \mathcal{F}(G^F)(x)$, $v \in \mathcal{F}(G^F)(y)$ and $\lambda > 0$ we have $\|x-y\|_{L_\delta} \leq \|x-y-\lambda(u-v)\|_{L_\delta}$,

$$(ii) \text{Rang}(I - \mathcal{F}(G^F)) = L([\delta, \delta+\varrho], \mathbb{R}^n),$$

where I denotes the identity operator and $\| \cdot \|_{L_\delta}$ denotes the norm in the space $L([\delta, \delta+\varrho], \mathbb{R}^n)$.

2. Main result

Let us collect together some known consequences of m -dissipativity in the following Lemma 1 (see e.g. [1]).

Lemma 1. Let F be m -dissipative with respect to (Ω, C) . For every $\lambda > 0$ let us define the following operators

$$J_\lambda(x) = (I - \lambda \mathcal{F}(G^F))^{-1}(x),$$

$$\mathcal{F}_\lambda(x) = \frac{1}{\lambda} (J_\lambda - I)(x).$$

Then:

(i) J_λ and \mathcal{F}_λ are well defined single-valued operators acting from whole space $L([\delta, \delta+\varrho], \mathbb{R}^n)$ to itself.

(ii) $\mathcal{F}_\lambda(x) \in \mathcal{F}(G^F)(J_\lambda(x))$.

(iii) If $\text{dist}(0, \mathcal{F}(G^F)(x)) = \inf\{\|y\|_{L_\delta} : y \in \mathcal{F}(G^F)(x)\}$ is bounded by K for each x then

$$\lim_{\lambda \rightarrow 0} \|J_\lambda(x) - x\|_{L_\delta} = 0 \text{ uniformly with respect to } x.$$

(iv) $\|\mathcal{F}_\lambda(x)\|_{L_\delta} \leq \text{dist}(0, \mathcal{F}(G^F)(x))$ for $x \in \text{Dom } \mathcal{F}(G^F)$.

Lemma 2. Let $F \in \mathcal{M}(D, \text{Comp}(\mathbb{R}^n))$ be bounded and such that $\mathcal{F}(G^F)$ has a strong-weak closed graph. Then for every $\varrho > 0$,

$$\mathcal{F}(G_\varrho^F) : \text{Dom } \mathcal{F}(G^F) \longrightarrow L([\delta, \delta+\varrho], \mathbb{R}^n) \text{ with } G_\varrho^F(t, x) = G^F(t, x) + \varrho B$$

(where B is a closed unit ball) has also a strong-weak closed graph.

Proof. Suppose (x_n) and (v_n) are arbitrary sequences in $\text{Dom } \mathcal{F}(G^F)$ and $L([\delta, \delta+\varrho], \mathbb{R}^n)$ respectively and such that $v_n \in \mathcal{F}(G_\varrho^F)(x_n)$ for $n = 1, 2, \dots$, $\|x_n - x\|_{L_\delta} \rightarrow 0$ and v_n tends weakly to v in $L([\delta, \delta+\varrho], \mathbb{R}^n)$.

Since $v_n \in \mathcal{F}(G_\varrho^F)(x_n)$ then $\text{dist}(v_n(t), G^F(t, x_n)) \leq \varrho$ for a.e. $t \in [\delta, \delta+\varrho]$ and $n = 1, 2, \dots$. It is known ([2]) that for every $n = 1, 2, \dots$ there exists $u_n \in \mathcal{F}(G^F)(x_n)$ such that

$$|v_n(t) - u_n(t)| = \text{dist}(v_n(t), G^F(t, x_n)) \leq \varrho \text{ for a.e. } t \in [\delta, \delta+\varrho].$$

By the boundedness of F the set $\bigcup_{n=1}^{\infty} \mathcal{F}(G^F)(x_n)$ is uniformly integrable on $[\delta, \delta+\varrho]$.

Therefore, by Dunford Theorem the set $\{u_n\}_{n=1}^{\infty}$ is relatively weakly compact in $L([\delta, \delta+\varrho], \mathbb{R}^n)$. Thus there exists u and a subsequence, say (u_k) of (u_n) such that u_k tends weakly to u as k tends to ∞ .

We have of course $|v_k(t) - u_k(t)| \leq \eta$ for $k = 1, 2, \dots$ and a.e. $t \in [\delta, \delta + \varrho]$.

By Banach-Mazur Theorem there exists a set of real numbers

$c_{n_k} \geq 0$, $k=1, 2, \dots, N$, $N=1, 2, \dots$ with $\sum_{k=1}^N c_{n_k} = 1$ and such that

$\sum_{k=1}^N c_{n_k} [v_{n_k}(t) - u_{n_k}(t)]$ tends to $v(t) - u(t)$ for a.e. $t \in [\delta, \delta + \varrho]$

as $N \rightarrow \infty$. But for every $N = 1, 2, \dots$ and a.e. $t \in [\delta, \delta + \varrho]$ we have

$$\left| \sum_{k=1}^N c_{n_k} [v_{n_k}(t) - u_{n_k}(t)] \right| \leq \sum_{k=1}^N c_{n_k} \eta = \eta.$$

Then we obtain $|v(t) - u(t)| \leq \eta$ for a.e. $t \in [\delta, \delta + \varrho]$.

Now by the assumption on the graph of $\mathcal{F}(G^F)$ we have $u \in \mathcal{F}(G^F)(x)$, i.e. $u(t) \in G^F(t, x)$ for a.e. t . Therefore for a.e. $t \in [\delta, \delta + \varrho]$ we have $v(t) \in G^F(t, x) + \eta B$ i.e. $v \in \mathcal{F}(G_\eta^F)(x)$.

Before formulating our main result we introduce the following notation

$$\Lambda_\alpha = \left\{ u \in L([\delta, \delta + \varrho], \mathbb{R}^n) : |u(t)| < \alpha \text{ almost everywhere} \right\},$$

$K_\alpha = \mathcal{T}(\Lambda_\alpha)$ where \mathcal{T} is an operator defined by the formula

$$(\mathcal{T}u)(t) = \int_\delta^t u(t) dt;$$

$$T_H(u) = \bigcap_{\varepsilon > 0} \bigcap_{\alpha > 0} \bigcup_{0 < h < \alpha} \left[\frac{1}{h} (H - u) + \varepsilon B \right]$$

is Bouligand's contingent cone to H at $u \in H$.

The following viability theorem given in [3] will be used in the proof of our main result:

Viability Theorem ([3], Th.4): Let $\phi \in AC_{\text{or}}$ and a compact set $H \subset \mathbb{R}^n$ be such that $\mathcal{T}(u)(t) \in H - \phi(t)$ for every $t \in [\delta, \delta + \varrho]$ and $u \in \Lambda_\alpha$ with some constant $\alpha = 1 + M$.

Let $F : [\delta, \delta+\varrho] \times C_{\text{or}} \times L_{\text{or}} \rightarrow \text{Comp } \mathbb{R}^n$ be such that:

a) there exist a constant $\eta > 0$ and a continuous function $q : K_\alpha \rightarrow L([\delta, \delta+\varrho], \mathbb{R}^n)$ such that $q(x)(t) \in G_q^F(t, x)$ for a.e. $t \in [\delta, \delta+\varrho]$, $x \in K_\alpha$ and such that a function $g : [\delta, \delta+\varrho] \times K_\alpha \rightarrow \mathbb{R}^n$ defined by $g(t, x) = q(x)(t)$ has Volterra's property with respect to $x \in K_\alpha$,

b) $G^F([\delta, \delta+\varrho] \times K_\phi(\Omega, C)) \subset MB$,

c) for every $x \in K_\alpha$ and a.e. $t \in [\delta, \delta+\varrho]$ we have

$$G^F(t, x) \subset T_H[(\phi \oplus x)_t(0)] + \eta B.$$

Then for a given $\eta > 0$ there exists $x^0 \in K_\alpha$ such that $x^0(t) \in H - \phi(0)$ and $\dot{x}^0(t) \in G^F(t, x^0)$ for a.e. $t \in [\delta, \delta+\varrho]$.

Theorem. Let $\Omega \subset R \times AC_{\text{or}}$, $C \subset R \times C_{\text{or}} \times R \times C_{\text{or}}$ and $F \in \mu(D, \text{Comp}(\mathbb{R}^n))$ be such that the following conditions (i)-(iv) hold:

(i) F is bounded and m -dissipative with respect to (Ω, C) ,

(ii) $\mathcal{F}(G^F)$ has a strong-weak closed graph,

(iii) there exist numbers $l > 0$, $M > 0$

and a compact set $H \subset \mathbb{R}^n$ such that

(a) $\mathcal{T}(u)(t) \in H - \phi(0)$ for every $t \in [\delta, \delta+\varrho]$ and $u \in \Lambda_\alpha$ with

$$\alpha = l + M,$$

(b) $G^F([\delta, \delta+\varrho] \times K_\phi(\Omega, C)) \subset MB$,

(c) $K_\alpha \subset K_\phi(\Omega, C)$.

(d) for every $\eta > 0$ there exists $\delta_\eta > 0$ such that for every $x \in K_\alpha$ and $y \in K_\phi(\Omega, C)$ satisfying $\|x - y\|_L \leq \delta_\eta$ we have

$$F(t, (\phi \oplus y)_t, (\dot{\phi} \oplus \dot{y})_t) \subset T_H[(\phi \oplus x)_t(0)] + \eta B \text{ for a.e. } t \in [\delta, \delta+\varrho],$$

(iv) for every $x, y \in K_\phi(\Omega, C)$, every $\lambda > 0$ and $u \in \mathcal{F}(G^F)(x)$, $v \in \mathcal{F}(G^F)(y)$ we have for all $t \in [\delta, \delta+\varrho]$

$$\sup_{\delta \leq \tau \leq t} |x(\tau) - y(\tau)| \leq \sup_{\delta \leq \tau \leq t} |x(\tau) - y(\tau) - \lambda(u(\tau) - v(\tau))|.$$

Then $\text{NFDI}(D, F)$ is (Ω, C) -controllable.

Proof. Let J_λ and \mathcal{F}_λ be operators defined in Lemma 1. For every fixed $\lambda > 0$ we define $f_\lambda: [\delta, \delta+\rho] \times K_\phi(\Omega, C) \rightarrow \mathbb{R}^n$ by setting $f_\lambda(t, x) = \mathcal{F}_\lambda(x)(t)$. We have $f_\lambda(\cdot, x) = \mathcal{F}_\lambda(x) \in L([\delta, \delta+\rho], \mathbb{R}^n)$ for every $x \in K_\phi(\Omega, C)$.

Now let $z_1 = J_\lambda(x)$ and $z_2 = J_\lambda(y)$ for fixed $x, y \in K_\phi(\Omega, C)$. By the definition of J_λ we obtain $z_1, z_2 \in K_\phi(\Omega, C)$ and $x \in z_1 - \lambda \mathcal{F}(G^F)(z_1)$, $y \in z_2 - \lambda \mathcal{F}(G^F)(z_2)$. Select now $u_1 \in \mathcal{F}(G^F)(z_1)$ and $u_2 \in \mathcal{F}(G^F)(z_2)$ such that $x = z_1 - \lambda u_1$, $y = z_2 - \lambda u_2$.

By (iv) for fixed $t \in [\delta, \delta+\rho]$ we obtain

$$\sup_{\delta \leq \tau \leq t} |z_1(\tau) - z_2(\tau)| \leq \sup_{\delta \leq \tau \leq t} |z_1(\tau) - z_2(\tau) - \lambda(u_1(\tau) - u_2(\tau))|$$

$$\text{i.e. } \sup_{\delta \leq \tau \leq t} |J_\lambda(x)(\tau) - J_\lambda(y)(\tau)| \leq \sup_{\delta \leq \tau \leq t} |x(\tau) - y(\tau)|.$$

Hence, by the definition of \mathcal{F}_λ it follows that

$$\begin{aligned} \sup_{\delta \leq \tau \leq t} |\mathcal{F}_\lambda(x)(\tau) - \mathcal{F}_\lambda(y)(\tau)| &= \frac{1}{\lambda} |[J_\lambda(x)(\tau) - J_\lambda(y)(\tau)] - [x(\tau) - y(\tau)]| \leq \\ &\leq \frac{2}{\lambda} \sup_{\delta \leq \tau \leq t} |x(\tau) - y(\tau)| \text{ for } t \in [\delta, \delta+\rho]. \end{aligned}$$

Therefore

$$|f_\lambda(t, x) - f_\lambda(t, y)| \leq \frac{2}{\lambda} |x - y|_t \text{ where } |x - y|_t = \sup_{\delta \leq \tau \leq t} |x(\tau) - y(\tau)|.$$

Hence, in particular it follows that f_λ is for every fixed $\lambda > 0$ continuous and has Volterra's property with respect to its second variable (it means that for every $u, v \in K_\phi(\Omega, C)$ and $t \in [\delta, \delta+\rho]$ such that $u(\tau) = v(\tau)$ for $\tau \in [\delta, t]$ we have $f_\lambda(t, u) = f_\lambda(t, v)$).

By virtue of Lemma 1 (ii) and (iv) we have $f_\lambda(\cdot, x) \in \mathcal{F}(G^F)(J_\lambda(x))$ and $|f_\lambda(t, x)| \leq K$ for $x \in K_\phi(\Omega, C)$ and a.e. $t \in [\delta, \delta+\rho]$. By assumption (iii)(b) we can use Lemma 1 (iii) to obtain that for every $\delta_0 > 0$ there is $\lambda_0 > 0$ such that $\|J_\lambda(x) - x\|_{L_\delta} \leq \delta_0$ for $x \in K_\phi(\Omega, C)$ and $\lambda \in (0, \lambda_0)$.

Now let $\varepsilon > 0$ be given and suppose $\delta_0 > 0$ is such taken that

$$F(t, (\phi \oplus y))_t, (\dot{\phi} \oplus \dot{y})_t \subset T_H[(\phi \oplus x)_t(0)] + \varepsilon B$$

for a.e. $t \in [\delta, \delta + \varrho]$, every $x \in K_\alpha$ and $y \in K_\phi(\Omega, C)$ satisfying

$\|x - y\|_{L_\delta} \leq \delta_0$. Then we have $G^F(t, J_\lambda(x)) \subset T_H[(\phi \oplus x)_t(0)] + \varepsilon B$ and $f_\lambda(t, x) \in T_H[(\phi \oplus x)_t(0)] + \varepsilon B$ for every $x \in K_\alpha$, $\lambda \in (0, \lambda_0)$ and a.e. $t \in [\delta, \delta + \varrho]$.

Now by Viability Theorem 4 given in [3] we obtain that for every $\varepsilon > 0$ and every $\lambda \in (0, \lambda_0)$ there is $x_\lambda \in K$ such that

$$\dot{x}_\lambda(t) \in G^F(t, x_\lambda) + \varepsilon B \quad \text{for a.e. } t \in [\delta, \delta + \varrho].$$

Let $\lambda = \frac{1}{k}$ and select N such that $\frac{1}{k} < \lambda_0$ for $k \geq N$. We put $x^k = x_{1/k}$ for $k \geq N$. Since K_α is bounded, closed and uniformly absolutely continuous in AC then it is compact in C and therefore in L^1 too. Since $|x(t)| < 1+M$ for almost all t and $k \geq N$ then the set $\{\dot{x}^k\}$ is uniformly integrable so by Dunford's theorem L^1 -relative sequential weakly compact. Therefore there exists $x_\varepsilon \in K_\alpha$ and a subsequence, say again (x^k) of (x^k) such that $\|x^k - x_\varepsilon\|_{L_\delta} \rightarrow 0$ and $\dot{x}^k \rightarrow \dot{x}_\varepsilon$ weakly in $L([\delta, \delta + \varrho], R^n)$.

We have $\dot{x}^k \in \mathcal{F}(G_\varepsilon^F)(x^k)$ for $k = 1, 2, \dots$ where $G_\varepsilon^F(t, x) = G^F(t, x) + \varepsilon B$ for $(t, x) \in [x]K$.

By virtue of Lemma 2 it follows that $\dot{x}_\varepsilon \in \mathcal{F}(G_\varepsilon^F)(x_\varepsilon)$ for every $\varepsilon > 0$.

Taking ε tending monotonically to zero we can again find $x \in K_\alpha$ and a subsequence of (x_ε) say (x_{ε_n}) such that $\|x_{\varepsilon_n} - x\|_{L_\delta} \rightarrow 0$ and $\dot{x}_{\varepsilon_n} \rightarrow \dot{x}$ weakly in $L([\delta, \delta + \varrho], R^n)$. Since $\dot{x}_{\varepsilon_n} \in \mathcal{F}(G_{\varepsilon_n}^F)(x_{\varepsilon_n})$ for every $n = 1, 2, \dots$ then $\dot{x} \in \mathcal{F}(G_\varepsilon^F)(x)$ for every ε_n . Therefore

$\dot{x} \in \mathcal{F}(G^F)(x)$. Put now $y = \phi \oplus x$. We have $\dot{y}(t) \in F(t, y_t, \dot{y}_t)$ for $t \in [\delta, \delta+\varphi]$, $(t, y_t) \in \Omega$ and $(\delta, y_\delta, \delta+\varphi, y_{\delta+\varphi}) \in C$ because $x \in K_\alpha \subset K_\phi(\Omega, C)$. Then $NFDI(D, F)$ is (Ω, C) -controllable.

REFERENCES

- [1] V. Barbu: Nonlinear semigroups and differential equations in Banach spaces. Noordhoff, Intern. Publishing, Leyden 1976.
- [2] C.J. Himmelberg: Measurable relations, Fundamenta Math. 87 (1975), 53-72.
- [3] M. Kisielewicz: Viability theorems for neutral-functional-differential inclusions, Funkcial Ekvac. 33 (1) (to appear).

DEPARTMENT OF MATHEMATICS, HIGHER ENGINEERING COLLEGE,
65-245 ZIELONA GÓRA, POLAND

Received November 30, 1988.

