

Jan Ambrosiewicz

POWERS OF SETS IN LINEAR GROUPS

It has been proved in the paper [1] that the set K_2^2 is not a subgroup of groups: $GL(n, F)$, $SL(n, F)$, $PSL(n, F)$ for $n > 2$, where $K_2 = \{g \in G: o(g) = 2\}$. In the present paper we will prove:

1° $SL(n, F) = K_2^4$ for $2 < n < |F| - 1$, 2° $GL_1(n, F) = K_2^4$ for $n < |F| - 1$, where $GL_1(n, F)$ denotes the group of all n by n matrices of determinant ± 1 , 3° $SL(n, F) = C_V^4$ for $n < |F| - 1$, where C_V denotes the conjugacy class of the matrix $V = \text{diag}(v_1, \dots, v_n)$, $v_i \neq v_j$ for $i \neq j$, 4° $PSL(n, F) = C_V^2 = K_2^4$ for $n < |F| - 1$ (the result $PSL(n, F) = C_V^2$ was proved in [3] on another way), 5° $SL(3, F) = K_2^4$, 6° $PSL(n, F) = K_2^4$, 7° $GL_1(n, F) = K_2^4$. We will give also condition under which $SL(n, F) = C_V^2$ (see the question stated in [3], p.66).

Throughout this paper E' will denote the matrix $\begin{bmatrix} 0 & 1 \\ \cdot & \cdot \\ 1 & 0 \end{bmatrix} \in M_{n \times n}$.

We will use the following lemmas.

Lemma 1 (see [1]). Let G be a group. An element $g \in K_2^2$ if and only if there is an element $x \in K_2$, $x \neq g^{-1}$ such that $(gx)^2 = 1$.

Lemma 2 (see [2]). If M is a non-empty subset of G , $M = M^{-1}$ and $xM \cap M \neq \emptyset$ for each $x \in G$, then $M^2 = G$.

Lemma 3. Let $V = \text{diag}(v_1, \dots, v_n)$, $W = \text{diag}(w_1, \dots, w_n)$, $v_i \neq v_j$, $w_i \neq w_j$ for $i \neq j$. If $\det A = \det V \det W$, $A \notin Z(GL(n, F))$ and A has a rational canonical form then there are matrices $X, Y \in GL(n, F)$ with arbitrary chosen $\det X, \det Y \in F^*$ such that

$$(1) \quad A = (X^{-1}V \ X)(Y^{-1}W \ Y).$$

The proof of Lemma 3, for $n = 3$ has been given in [2]. Using the same method one can prove Lemma 3 for any $n \geq 2$, (see [6]).

Lemma 4. Let $V = \text{diag}(v_1, \dots, v_n)$, $v_i \neq v_j$ for $i \neq j$. Let $v_n = 1$, $v_{2i-1}v_{2i} = 1$ for $i = 1, \dots, \frac{n-1}{2}$ if n is odd. Let $v_{2i-1}v_{2i} = 1$ for $i = 1, \dots, \frac{n}{2}$ if n is even. Then there exists $T \in \text{SL}(n, F)$ such that

$$(2) \quad V T^{-1} V T = E, \quad T^2 = E \text{ for } n > 2 \text{ and } T^2 = -E \text{ for } n = 2, \quad T \neq V^{-1},$$

$$(3) \quad xE \in C_V C_{xV} \text{ for } x \in F^*,$$

$$(4) \quad \text{If } n > 2, \text{ then } C_{xV} \subseteq K_2^2 \text{ iff } x_2 = 1.$$

Proof. If n is odd, we put $T = \text{diag}\left(L_1, \dots, L_{\frac{n-1}{2}}, L_{\frac{n+1}{2}}\right)$, $L_i = E'_2$, $i = 1, \dots, \frac{n-1}{2}$, $L_{\frac{n+1}{2}} = [\pm 1]$ where we take $+1$ when $\frac{n-1}{2}$ is even and -1 when $\frac{n-1}{2}$ is odd; if n is even, we put $T = \text{diag}(L_1, \dots, L_{\frac{n}{2}})$, $L_i = E'_2$, $i = 1, \dots, \frac{n}{2}$ when $n > 2$ and $T = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$ when $n = 2$.

The relations (2) can be easily verified by direct computations. The relations (3) follows immediately from (2). By Lemma 1, $xV \in K_2^2$ iff there exists $T \in K_2$ such that $T^{-1} \neq xV$ and $T^{-1}(xV)T = x^{-1}V^{-1}$. But by (2) and by $x^2 = 1$ these relations hold for $n > 2$. The inclusion $C_{xV} \subseteq K_2^2$ results from the fact that K_2^2 is a normal subset.

Lemma 5. Let $V = \text{diag}(v_1, \dots, v_n)$, $v_i \neq v_j$ for $i \neq j$. If n is odd, we put $v_n = \pm 1$, $v_{2i-1}v_{2i} = 1$ for $i = 1, \dots, \frac{n-1}{2}$; if n is even, we put (i) $v_{2i-1}v_{2i} = 1$ for $i = 1, \dots, \frac{n}{2}$ or (ii) $v_1 = 1$, $v_2 = -1$, $v_{2i-1}v_{2i} = 1$ for $i = 2, \dots, \frac{n}{2}$. Then there exists a matrix T such that

$$(5) \quad VT^{-1}VT = E, \quad T^2 = E, \quad T \neq V^{-1}, \quad \det T = \pm 1,$$

$$(6) \quad xE \in C_V C_V \quad \text{for } x \in F^*,$$

$$(7) \quad C_{xV} \subseteq K_2^2 \quad \text{GL}_1(n, F) \quad \text{iff } x^2 = 1.$$

Proof. If n is odd, we put $T = \text{diag}(L_1, \dots, L_{\frac{n-1}{2}}, L_{\frac{n+1}{2}})$, $L_i = E'_2$, $i = 1, \dots, \frac{n-1}{2}$, $L_{\frac{n+1}{2}} = 1$; if n is even, we put $T = \text{diag}(L_1, \dots, L_{\frac{n}{2}})$, $L_i = E'_2$, $i = 1, \dots, \frac{n}{2}$ in the case (i) and $T = \text{diag}(L_1, \dots, L_{\frac{n}{2}})$, $L_1 = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$, $L_i = E'_2$, $i = 2, \dots, \frac{n}{2}$ in the case (ii). By direct computation it is easy to verify the relations (5). The relation (6) follows from (5). The condition (7) holds by relations $T^{-1} \neq xV$, $T^{-1}(xV)T = x^{-1}V^{-1}$, $T \in K_2$ and by Lemma 1.

Lemma 6. $Z(SL(n, F)) \subseteq K_2^4$ except for $n = 2$ and $\text{char } F \neq 2$.

Proof. Let $a^n = 1$. In the proof we will distinguish two cases:

(i) n is even, (ii) n is odd. If $n = 2k > 2$, then we put

$$A = \text{diag}(a^2, a^4, \dots, a^{2k}, a^2, a^4, \dots, a^{2k}),$$

$$B = \text{diag}(a^{2k-1}, a^{2k-3}, \dots, a, a^{2k-1}, a^{2k-3}, \dots, a),$$

$S = \text{diag}(E'_{k-1}, -1, E'_{k-1}, -1)$, $R = \text{diag}(E'_k, E'_k)$. One can verify that the following relations $A, B, S, R \in SL(n, F)$; $aE = AB$; $S^{-1}AS = A^{-1}$; $R^{-1}BR = B^{-1}$; $S^2 = R^2 = E$; $S^{-1} \neq A$; $R^{-1} \neq B$ hold. Hence

$A, B \in K_2^2$ by Lemma 1. Therefore $aE = AB \in K_2^4$. If $n = 2$, $\text{char } F = 2$ then obviously $Z(SL(n, F)) = \{E\} \subseteq K_2^2$. If $n = 2$, $\text{char } F \neq 2$ then $Z(SL(n, F)) = \{E, -E\} \not\subseteq K_2^4 = \{E\}$, (see [1]).

If n is odd, then we put $A = \text{diag}(a^n, a^{n-1}, \dots, a)$, $B = \text{diag}(a, a^2, \dots, a^{n-1}, a^n)$, $M = \text{diag}(r, E'_{n-1})$, $N = \text{diag}(E'_{n-1}, r)$

where $r \in \{1, -1\}$. It is easy to see that we can choose r such that $M, N \in SL(n, F)$. One can verify that the following relations: $A, B \in SL(n, F)$; $AB = aE$; $M^{-1}AM = A^{-1}$; $N^{-1}BN = B^{-1}$; $M^2 = N^2 = E$; $M^{-1} \neq A$; $N^{-1} \neq B$; $M, N \in SL(n, F)$ hold for suitable $r \in \{1, -1\}$. Hence by Lemma 1 $A, B \in K_2^2$, so $aE = AB \in K_2^4$. Therefore $Z(SL(n, F)) \subseteq K_2^4$.

Lemma 7. $Z(GL_1(n, F)) \subseteq K_2^4$.

Proof. If $aE \in Z(GL_1(n, F))$ and $a^n = 1$, $n > 2$ then Lemma 7 is true by Lemma 6. If $n = 2$, $a^2 = 1$ then Lemma 7 is true by the identity $E'_2(-E_2)E'_2 = -E_2$ and by Lemma 1 and by the fact that $E_2 \in K_2^4$.

Let $a^n = -1$. We will consider four cases: (i) $n = 2k$; k - even; (ii) $n = 2k$, $k > 1$, k - odd; (iii) $n = 2$; (iv) n - odd.

If $n = 2k$, k - even, then we put $A = \text{diag}(a^2, -a^4, \dots, -a^{2k}, -a^2, a^4, -a^6, \dots, a^{2k})$, $B = \text{diag}(-a^{2k-1}, a^{2k-3}, \dots, a^{2k-1}, -a^{2k-3}, \dots, -a)$, $S = \text{diag}(E'_{2k-1}, 1)$, $R = \text{diag}(E'_k, E'_k)$. The following relations are easily checked: $AB = aE$, $S^{-1}AS = A^{-1}$, $R^{-1}BR = B^{-1}$, $S^2 = R^2 = E$, $S^{-1} \neq A$, $R^{-1} \neq B$ hold. Hence by Lemma 1 we have $A, B \in K_2^2$. Therefore $aE = AB \in K_2^4$. If $n = 2k$, k - odd, $k > 1$, we put $A = \text{diag}(a^2, -a^4, \dots, a^{2k}, -a^4, \dots, -a^{2k})$, $B = \text{diag}(-a^{2k-1}, a^{2k-3}, \dots, -a, a^{2k-1}, -a^{2k-3}, \dots, a)$, $S = \text{diag}(E'_{k-1}, 1, E'_{k-1}, 1)$, $R = E'_{2k}$. One can easily verify the following relations: $AB = aE$, $S^{-1}AS = A^{-1}$, $R^{-1}BR = B^{-1}$, $S^2 = R^2 = E$, $S^{-1} \neq A$, $R^{-1} \neq B$. Hence $A, B \in K_2^2$ by Lemma 1, so $aE = AB \in K_2^4$. If $n = 2$, then Lemma 7 follows from the following identities

$$\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} a & 0 \\ 0 & -a \end{bmatrix} = aE, \quad \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}^{-1}$$

$$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} a & 0 \\ 0 & -a \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} a & 0 \\ 0 & -a \end{bmatrix}^{-1}$$

and by Lemma 1. If n is odd and $a^n = -1$, then Lemma 7 is true by the equation $(-a)^n = 1$ and by Lemma 6.

Theorem 1. If $V = \text{diag}(v_1, \dots, v_n)$, $W = \text{diag}(w_1, \dots, w_n)$, $v_i \neq v_j$, $w_i \neq w_j$ for $i \neq j$ and $V, W \in \text{SL}(n, F)$, then $\text{SL}(n, F) = C_V C_W \cup Z(\text{SL}(n, F))$.

Proof. Let $B \in \text{SL}(n, F) - Z(\text{SL}(n, F))$. By Corollary 4.7 p.360 of [5] there exists $S \in \text{GL}(n, F)$ such that $S^{-1}B S = A \in \text{SL}(n, F)$ has a rational canonical form. It is clear that $\det B = \det V \det W$, so by Lemma 3, $S^{-1}B S = A = (X^{-1}V X)(Y^{-1}W Y)$ or

$$(8) \quad B = [(X S^{-1})^{-1} V (X S^{-1})] \cdot [(Y S^{-1})^{-1} W (Y S^{-1})].$$

By Lemma 3 we can assume that $\det X = \det Y = \det S$. Hence $B \in C_V C_W$ by (8).

If we will put $V = W$ in Theorem 1, then we will receive

Corollary 1.1. If $V = \text{diag}(v_1, \dots, v_n)$, $v_i \neq v_j$ for $i \neq j$ and $V \in \text{SL}(n, F)$, then

$$(9) \quad \text{SL}(n, F) = C_V^2 \cup Z(\text{SL}(n, F)).$$

Theorem 2. If V is a matrix described in Lemma 4, then

$$(10) \quad \text{SL}(n, F) = \bigcup_{x \in Z(\text{SL}(n, F))} C_V C_{xV} \text{ for } n > 2.$$

Proof. By Lemma 4, $xE \in C_V C_{xV}$, so $Z(\text{SL}(n, F)) \subseteq \bigcup_{x \in Z(\text{SL}(n, F))} C_V C_{xV}$.

By Corollary 1.1, $\text{SL}(n, F) - Z(\text{SL}(n, F)) = C_V C_V$. Hence the equality (10) holds.

Corollary 2.1. If $2 < n < |F| - 1$ and $Z(\text{SL}(n, F)) = E$ then there exists a matrix V such that $\text{SL}(n, F) = C_V^2$.

Proof. Let V be a matrix described in Lemma 4. An existence of V ensures the inequality $n < |F| - 1$. By (2), $E \in C_V^2$. Hence by Theorem 2, $SL(n, F) = C_V^2$.

Corollary 2.2. If n, q are even numbers and $n < q$, then there exists $V \in SL(n, q)$ such that $SL(n, q) = C_V^2$.

Proof. Let V be a matrix described in Lemma 4. The existence of V ensures the inequality $n < q$. It is clear that Lemma 4 is true also for $n = 2$, because q is even. Now our Corollary results from Corollary 2.1, because $|Z(SL(n, Q))| = (n, q-1) = 1$, by assumption.

Corollary 2.3. Let $s = o(V)$ denotes an order of V described in Lemma 4, $r = |Z(SL(n, q))|$. If $r \mid s$, then $SL(n, q) = K_s^2$.

The proof results from Theorem 2 and from the fact that $o(Va) = o(V)$ provided $a \in F_q^*$.

Theorem 3. If $2 < n < |F| - 1$, then $SL(n, F) = K_2^4$.

Proof. Let V be a matrix described in Lemma 4. An existence of V follows by the inequality $n < |F| - 1$. By Lemma 4, we have $C_V \subseteq K_2^2$, so $C_V^2 \subseteq K_2^4$. By Lemma 6, we obtain $Z(SL(n, F)) \subseteq K_2^4$. Hence $SL(n, F) \subseteq K_2^4$, by Corollary 1.1. An inverse inclusion is obvious.

Remark 2. If $n = 2$ and $\text{char } F \neq 2$, then Theorem 3 is not true, because in this case $K_2^2 = E$ (see [1], Theorem 3). If $n = 2$, $\text{char } F = 2$ and $|F| > 2$, then $SL(n, F) = K_2^2$, (see [1], Theorem 2).

Corollary 3.1. If $n > 2$, then $SL(n, F) = K_2^4$ where $F = Q, R, C$.

Theorem 4. If $n < |F| - 1$, then $GL_1(n, F) = K_2^4$.

Proof. We will consider two cases: a) n is even, b) n is odd.

Ad a). Let V and W are matrices from Lemma 5 described in (i) and in (ii) respectively. The existence of matrices V and W ensures the inequality $n < |F| - 1$. Hence we have $C_V, C_W \subseteq K_2^2$ by Lemma 5 and $Z(GL_1(n, F)) \subseteq K_2^4$, by Lemma 7. From (1) $GL_1(n, F) = C_V^2 \cup C_V C_W \cup \cup Z(GL_1(n, F))$. Therefore $GL_1(n, F) \subseteq K_2^4$.

Ad b). In this case a proof is similar to Ad a).

Corollary 4.1. If $F = Q, R, C$, then $GL_1(n, F) = K_2^4$.

Theorem 5. If n is odd and $|Z(SL(n, F))| = n$, then there exists $V \in SL(n, F)$ such that $SL(n, F) = C_V^2 = K_2^4$.

Proof. Let $a \in F^*$ be a n^{th} root of 1. Then the matrices $V = \text{diag}(a^n, a^{n-1}, \dots, a)$, $a^i V = \text{diag}(\underbrace{a^{n+i}, a^{n-1+i}, \dots, a^2}_{i}, a)$, $\underbrace{a^n, a^{n-1}, \dots, a^{2+i}, a^{1+i}}_{n-i}$ have distinct entries for $i = 1, \dots, n-1$ and we have $V, a^i V \in SL(n, F)$. Let $S = \text{diag}(r, E'_{n-1})$, $r = \pm 1$;

$$R = \begin{bmatrix} 0 & E_{n-i} \\ E_i & 0 \end{bmatrix}, \quad i=1, \dots, n-1.$$

It is clear that $\det R = 1$ and that we can choose r such that $\det S = 1$. The following identities are easily checked: (i) $VS^{-1}VS = E$, (ii) $R a^i V R^{-1} = V$. By Corollary 1.1 we get $SL(n, F) = C_V^2 \cup Z(SL(n, F))$. From (i) results $(a^i V)S^{-1}V S = a^i E$. Hence, by (ii), $(R^{-1}VR)(S^{-1}VS) = a^i E$ for $i = 1, \dots, n-1$. Since $E \in C_V^2$, by (i), then $Z(SL(n, F)) \subseteq C_V^2$. Therefore $SL(n, F) = C_V^2$, by Corollary 1.1. By (i) and by Lemma 1, $V \in K_2^2$, so $C_V^2 \subseteq K_2^4$, because the set K_2^2 is a normal set.

Theorem 5 is a partial answer on a question stated in paper 3, p.66.

Corollary 5.1. If n is odd, then there exists $V \in SL(n, C)$ such that $SL(n, C) = C_V^2$.

The proof results from Theorem 5 and from the fact that $|Z(SL(n, C))| = n$.

Theorem 6. If $n < |F| - 1$, $|F| > 2$, then there exists $V \in SL(n, F)$ such that $SL(n, F) = C_V^4$.

Proof. Let V be a matrix from Lemma 4. An existence of V follows from the inequality $n < |F| - 1$. By Corollary 1.1, $SL(n, F) =$

$= C_V^2 \cup Z(SL(n, F))$. To prove Theorem 6 it enough to show that $[SL(n, F) - Z(SL(n, F))]^2 = SL(n, F)$. Let $M = SL(n, F) - Z(SL(n, F))$. It is clear that $M = M^{-1}$. We will show that for any $g \in SL(n, F)$ we have $gM \cap M \neq 0$. Indeed, if this is false, there exists $g_0 \in SL(n, F)$ such that $g_0 M = Z(SL(n, F))$ i.e. $M = g_0^{-1} Z(SL(n, F))$ which means that $SL(n, F) = Z(SL(n, F)) \cup g_0^{-1} Z(SL(n, F))$. But this contradicts $|F| > 2$.

The center $Z(SL(n, F))$ is an unity \bar{E} of the group $PSL(n, F)$. Lemma 4 can be used to the group $PSL(n, F)$ without the assumption concerning n because for $n = 2$ we have $T^2 = -E \in Z = \bar{E}$. The equality (9) has now a form $\bar{V} T^{-1} \bar{V} T = \bar{E}$, so $\bar{E} \in C_{\bar{V}} C_{\bar{V}}$. Therefore by Lemma 4 and by Corollary 1.1, we obtain the theorem.

Theorem 7. If $V \in PSL(n, F)$ satisfies the assumption of Lemma 4, then $PSL(n, F) = C_V^2$.

Theorem 8. If $n < |F| - 1$, then there exists $V \in PSL(n, F)$ such that $PSL(n, F) = C_V^2 = K_2^4$.

Proof. The assumption ensures the existence of the matrix V described in Lemma 4. Since $Z(PSL(n, F)) = \{\bar{E}\}$, we have $C_V \subseteq K_2^2$ by (4). Therefore by Theorem 7, $PSL(n, F) = C_V^2 = K_2^4$.

Theorem 9. $SL(3, F) = K_2^4$.

Proof. If $|F| > 4$, then the proof follows from Theorem 3. If $|F| = 4$, then the proof follows from Theorem 5. If $|F| = 2$, then the proof follows from Theorem 8 because in this case $SL(3, 2) \cong PSL(2, 7)$. To prove Theorem 9 in the case $|F| = 3$, we will use character table of group $SL(3, 3)$ (see [4], p.68). Using Burnside's formula on multiplication of conjugacy classes, it has been showed in [4] that for each class $C \neq \{E\}$ of the group $SL(3, 3)$, we have $C^4 = SL(3, 3)$. Hence in the special case $C \subseteq K_2$, we have $SL(3, 3) = K_2^4$.

Corollary 9.1. $GL_1(3, F) = K_2^4$.

Proof. We have $GL_1(3, F) = (-E)SL(3, F) \cup SL(3, F)$. If $A \in SL(3, F)$ then $A = A_1 A_2 A_3 A_4$ with $A_i \in K_2 \subset SL(3, F)$, by Theorem 9. It is clear that $-A = (-EA_1)A_2 A_3 A_4$ and $(-EA_1), A_2, A_3, A_4 \in K_2 \subset GL_1(3, F)$. Hence $GL_1(3, F) = K_2^4$.

REFERENCES

- [1] J. Ambrosiewicz: On the squares of linear groups, *Rend. Sem. Mat. Univ. Padova*, Vol. 75 (1986).
- [2] J. Ambrosiewicz: On the square of sets of the group $SL(3, F)$, $PSL(3, F)$, *Demonstratio Math.* 18 (1985) 963-968.
- [3] J.L. Brenner: Covering Theorems for FINASIGS X. The group $G=PSL(n, q)$ had a class C such that $CC=G$, *ARS COMBINATORIA*, Vol. 16 (1983) pp. 57-68.
- [4] A. Dold, B. Eckmann, Z. Arad, M. Herzog: Products of conjugacy classes in groups. *Springer-Verlag*, Berlin Heidelberg (1985).
- [5] T.W. Hungerford: *Algebra*. *Springer-Verlag*, New York, Heidelberg, Berlin 1974.
- [6] J. Ambrosiewicz: Products of sets in linear groups. *Demonstratio Math.* 22 (1989), (to appear).

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF WARSAW,
BIAŁYSTOK BRANCH, 15-267 BIAŁYSTOK, POLAND

Received October 21, 1988.

