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POWERS OF SETS IN LINEAR GROUPS

It has been proved in the paper [1] that the set K% is not a sub-
group of groups: GL(n,F), SL(n,F), PSL(n,F) for n>2, where
K, = {ge G: olg) = 2}. In the present paper we will prove:
1° sL(n,F) = Ké for 2<n<|F|-1, 2° GL,(n,F) - K“;‘ for n<|F|-1,
where GLl(n,F) denotes the group of all n by n matrices of deter-

minant +1, 30 SL-(n,F) = -Cé for n<| F|-1, where CV denotes the

conjugacy class of the matrix V = diag(vl,. .. ,vn) ' vy # vj for i £ i,
4° PSL(n,F) = c‘zl. - Kg for n<|F|-1 (the result PSL(n,F) = c?

was proved in [ 3] on another way), 5° SL(3,F) = Klz" 6° PSL(n,F)=

4 o 4
= X5, 7 GLl(n,F) - X,.
SL(n,F) = C‘zr (see the question stated in [3], p.66).

We will give also condition under which

0 1
Throughout this paper E' will denote the matrix €M .
1 o0 nxn

We will use the following lemmas.

Lemma 1 (see [1]). Let G be a group. An element gng if
end only if there is an element x € K2, x # g-l such that (gx)z = 1.

Lemma 2 (see [2]). U M is a non-empty subset of G,M = M_1
and xMNM # O for each xe G, then M2 = G.

Lemma 3. Let V = diag(vl,... ,vn), W = diag_(wl,... ,wn),
A £ vj, oA £ 5 for i £ j. If detA = detV detW,A¢ Z(GL(n,F)) and
A has a rational canonical form then there are matrices X,Ye GL(n,F)

with arbitrary chosen det X, det Ye F* such that
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2 J. Ambrosiewicz

(1) A= xxorlv .

The proof of Lemma 3, for n = 3 has been given in [2]. Using

the same method one can prove Lemma 3 for any n>2, (see le]).

Lemma 4. Let V = diag(vl,...,vn), v A v], for i £ j. Let
. n-1 .
v, " 1, Voi-1V2i " 1 foris= 1""’T if n is odd. Let Voi-1Voi ® 1
fori=1,..., 121— if n is even. Then there exists Te SL(n,F) such
that : '

(2) VT WT-E T2=«Eforn>2and T2 = -E for n=2, T4V'1,

>
(3) xEe CVCxV for xeF,
2 .
(4) If n>2, then C CK, iff x, = L.

Proof. 1If n is odd, we put T = diag<L1,...,Ln_1, Ln+1>’

2 2
-1 -
Li - E’Z’ i= 1,...,1—1-2—, Lril_-[:il:] where we take +1 whenE2—1is
2
even and -1 when n—él—is odd; if n is even, we put T =
o1
-diag(Ll,...,Li), Li - E'2, i= 1,...,%when n>2and T = [1 0]

2.
when n = 2,

The relations (2) can be easy verified by direct computations. The
relations (3) follows immediately from (2). By Lemma 1, xVe Kg iff
there exists TG.K2 such that T ! $# xV and T V)T - x . But
by (2) and by x2 = 1 these relations hold for n>2. The inclusion

-1V-1

C §K2 results from the fact that K22 is a normal subset.
xV 2
Lemma 5. letV = dtag(vl,...,vn), v s \ fori dj. ¥ n is

-1
odd, we put Va " €, Voi-1V2i = lforia= 1,.,.,22——; if n is even,
we put (i) Vo qVp = lfori= 1,...,% or (ii) vy =1, vy e -1,
=1 fori= 2,...,%. Then there exists a matrix T such that
- 396 -
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Powers of sets in linear groups 3

(5) VI'WT « B, T2 = E, T # V'), det T = 31,
*

(6) xEe CVCV for xeF¥,

2 . 2
(7) C yEK; GL,(n,F) iff x" = 1.

Proof. U n is odd, we put T-diag(Ll’”.’L‘.ﬂ’L‘_lil)v
, n-1 2 2
Li = E2, iw 1,...,—2-, Ln_+_1_ = 1; if n 1is even, we put
2
T = diag(Ll,...,Lg), L, - E'z, i= 1,...,% in the case (i) and
2

1 O ' n

T - diag(Ll,...,L%), L - . Ll L, = E, 1=2,...,5 in the

case (ii). By direct computation it is easy to verify the relations (5).

The relation (6) follows from (5). The condition (7) holds by relations
11 # xV, T-l(xV)T - x'lv'l, Te X, and by Lemma 1.
Lemma 6. Z(SL(n,F))E Ké except for n = 2 and char F 2.

Proof. Leta" = 1. In the proof we will distinguish two cases:

(i) n is even, (ii) n is odd. T1f n = 2k>2, then we put

4 2k 2 4 2k
a”)

A= diag(az,a Y S T ,

B e diag(a2k°1,a2k'3, eee By 2k-1,32k-3’ ee.,a),

S = d‘la.g(E v-1,E{ .,-1), R = diag(Ek Ek) One can verify that the
k-1 k-1 1
following relations A,B,S,Ré€ SL(n »F)s aE = AB; S las . s

RIBR-B! s2er?2aE; s AR ﬁBhold.Hence

ABGK by Lemma 1. ThereforeaE-ABeK; Una=2, char F = 2

then obvtously Z(SL(n,F)) = {E}QKZ. ¥ne2, char F ¢ 2 then
Z(SL(n,F)) = {E,-E}¢ X3 « {E}, (see [1]). 1
If n is odd, then we put A = diag(an,an- yeo.,a), B =

= diag(a,az,...,an'l,an), M = diag(r,E;_l), N = diag(E;_l,T)

- 397 -



4 J. Ambrosiewicz

where re{ 1,-1}. It is easy to see that we can choose r such that
M,N € SL(n,F). One can verify that the following relations: A,B €

€ SL(n,F); AB = aE; M A M- A‘1; NIBN - B'1; M2=N2=E;

M-1 + A N_1 # Bs M,Ne SL(n,F) hold for suitable re{l,-l}. Hence
by Lemma 1 A,BEKg, so aE = ABng. Therefore Z(SL(n,F)).C_Kg.

Lemma 7. Z(GLl(n,F))Q Kg

Proof. 1f aEe Z(GLl(n,F)) and a" = 1, n>2 then Lemma 7 is

true by Lemma 6. 1If n = 2, az = ] then Lemma 7 is true by the iden-

. ; ' - 4
tity 1-32(-132)]-32 = -E2 and by Lemma 1 and by the fact that 1:26](2.

Let a" = -1. We will consider four cases: (i) n = Zk; k - evens

(ii) n = 2k, k>1, k - odd; .iii) n = 23 (iv) n - odd.

Ifn=2k, k - even, then we put A = diag(az,-QA,...,-AZk,-az,

- 2k- - -
a4,-a6,... ,a2k), B = diag(-azk l,a k 3,. a2k 1,-a2k 3,.
S = diag(E. ,1). R = diag(E, ,E.). The following relations are
k-1 LR 1 .2 2
easily checked: AB = aE, S A S=A " ,R BR=B , 8S“=R°=E,
S'1 £ A, R-l £ B hold. Hence by Lemma 1 we have A,B ng. There-
fore a.l-ZmABel(4 Una=2k, k - odd, k>1, we put A =

o
= diag(az,-a4,. .. ,a2k,-a2,a4,. .. ,-a2k) , B= diag(-a2k-1,a2k_3,. ..

2k-1  2k-3 . ’ ' '

a ,-a ye..sa), S = dmg(Ek_l,l,Ek_l,l), R1= Eop .
One can easy verify the following relations: AB = aE, STTAS=A,
R-lB R = B-l, 52 = R2 = E, S-l $ A, R'l # B. Hence A,Bng

by Lemma 1, so aE = AB ¢ Kg. If n = 2, then Lemma 7 follows from

.,a, ..,-a),

ce.y=8,

the following identities
1 0]fa O "1 o]t oJ[1 o] 1 o}
= aE, =
0 - 0 -a L0 1] {0 -1 0 1l 0 -1
l:o 1:| "a O] |:(‘) 1] "a 0
1 04 |0 -a 0 LO -al
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Powers of sets in linear groups 5

and by Lemma 1. If n is odd and a" = -1, then Lemma 7 is true by
the equation (-a)" = 1 and by Lemma 6.

Theorem 1. 1V = 'diag(vl,...,vn), W = diag(wl,...,wn),
v, # TR ¢ W, for i 4 j and V,We SL(n,F), then SL(n,F) =
= C,Cy UZ(SLin,F)).

Proof. Let Be SL(n,F) - Z(SL(n,F)). By Corollary 4.7 p.360
of [5] there exists Se GL{(n,F) such that S-IB S = AeSL(n,F) has
a rational canonical form. It is clear that det B = det V det W, so by
Lemma 3, S'B S = 4 = X"V )Y W ¥) or

-1 1

(8) B - [(xs™h vixs™H]-[iys™ly wiys™H].

By Lemma 3 we can assume that det X = det Y = det S. Hence
Be C,Cy, by (8).
If we will put V = W in Theorem 1, then we will receive
Corollary 1.1. U V a diag(vl,...,vn), v, , vj for i & j and
ve SL(n,F), then

(9) SL(n,F) = C5 U Z(SL(n,F)).
Theorem 2. If V is a matrix described in Lemma 4, then

(10) SL(n,F) = U C.,C... for n>2.
xz(SL(n,F)) ¥ XV

Proof. By Lemma 4, xEé€ CVCxV’ so. Z(SL(n,F))C

c U C,,C

= xez(sL(n,F)) ¥ XV

By Corollary 1.1, SL(n,F) - Z(SL(n,F)) = CyCy- Hence the
equality (10) holds.

Corollary 2.1. U 2<n<|F|-1 and Z(SL(n,F)) = E then

there exists a matrix V such that SL(n,F) = C‘Zf.
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6 J. Ambrosiewicz

Proof. Let V be a matrix described in Lemma 4. An existence
of V ensures the inequality n<|F|-1. By (2), Ee¢ C\zl. Hence by Theo-
rem 2, SL(n,F) = cf,.

Corollary 2.2, If n,q are even numbers and n<q, then there
exists Ve SL(n,q) such that SL(n,q) = C‘zf

Proof. Let V be a matrix described in Lemma 4. The existence
of V ensures the inequality n<q. It is clear that Lemma 4 is true also
for n = 2, because q 1is even. Now our Corollary results from Co-
rollary 2.1, because |Z(SL(n,Q))| = (n,q-1) = 1, by assumption.

Corollary 2.3. Let s = o(V) denotes an order of V described
in Lemma 4, r = | Z(SL(n,q))|. 1 rls, then SL(n,q) = XZ.

The proof results from Theorem 2 and from the fact that o(Va) =
= o{V) provided ae F*.

Theorem 3. If 2<n<]|F|-1, then SL(n,F) = 4

K,.
2
Proof. Let.V be a matrix described in Lemma 4. An existence
of V follows by the inequality n<|F|-1. By Lemma 4, we have
Cngg, so C\ZI-C- Ké. By Lemma 6, we obtain Z(SL(n,F))(;Ké. Hence
SL(n,F)gKg, by Corollary 1.1. An inverse inclusion is obvious.
Remark 2. U n =2 and char F # 2, then Theorem 3 is not
true, because in this case K2 = E (see [1] Theorem 3). f n = 2,
char F = 2 and |F|>2, then SL(n,F) = K , (3ee [1], Theorem 2).
Corollary 3.1. U n>2, then SL(n,F) = Ké where F = Q,R,C.
4
. 2.
Proof. We will consider two cases: a) n 1is even, b) n is
odd.

Ad a). Let V and W are matrices from Lemma 5 described in (i)

Theorem 4. 1f n<|F]-1, then GLl(n,F) =K

and in (ii) respectively. The existence of matrices V and W ensures
the inequality n<|F|-1. Hence we have CV ch Kg by Lemma 5 and
Z(GL,(n,F))C K%, by Lemma 7. From (1) GL,(n,F) = C2UC CyU
UZ(GLl(n,F)). Therefore GLl(n,F)QKg.
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Ad b). Tn this case a proof is similar to Ad a).
Corollary 4.1, f ¥ =Q,R,C, then GLl(n,F) = Kg
Theorem 5. If n is odd and |Z(SL(n,F))| = n, then there

exists Ve SL(n,F) such that SL(n,F) = C\zr = Kg.
Proof. Let ac F¥be a nth root of 1. Then the matrices
V = diag(an,an-l,..,a), aVv = diag(a n+1 a’” l“,...,az,a,
i
ftn,an_l,... ,a2+1 1+ 1) have distinct entries for i = 1,...,n-1 and we
n-i

have V, a'Ve SL(n,F). Let S = diag(r,EI'l_l), r = +1;

0 E .

R e n-t , i=1l,...,n-1,
E. O

Tt is clear that det R = 1 and that we can choose r such that

det S = 1. The following identities are easily checked: (i) VS-J‘VS=E,

(ii) R a'v R_1 = V. By Corollary 1.1 we get SL(n,F) =

- C UZ(SL(n F)). From (i) results (aiV)S—IV S = a'E. Hence,
by (u) (R"'R)(57!VS) = o' for 1 = 1,...,n-1. Since EeC2,
by (1), then Z(SL(n,F))C C2. Therefore SL(n F) = CZ, by Corolla-
ry 1.1. By (i) and by Lemma 1, Ve Kg, S0 C g, because the set
K% is a normal set.

Theorem 5 is a partial answer on a question stated in paper 3, p.66.

Corollary 5.1. ¥ n is odd, then there exists Ve SL(n,C)
such that SL(n,C) = cf,

The proof results from Theorem 5 and from the fact that
| Z(SL(n,C))| = n.

Theorem 6. 1If n<|F|-1, |F|>2, then there exists
ve SL{(n,F) such that SL(n,F) = Cf;.
Proof. Llet V be a matrix from Lemma 4. An existence of V

follows from the inequality n<|F|-1. By Corollary 1.1, SL(n,F) =
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8 J. Ambrosiewicz

- C‘ZIUZ(SL(n,F)). To prove Theorem 6 it enough to show that
[SL(n,F)-Z(SL(n,F)] 2 = SL(n,F). Let M = SL(n,F)-Z(SL(n,F)).

1 We will show that for any g€ SL(n,F) we

Tt is clear that M = M~
have gMN M # O. Indeed, if this is false, there exists 8, € SL(n,F)

such that g M = Z(sL(n,F)) i.e. M = g;lz(SL(n,F)) which means

that SL(n,F) = Z(SL(n,F))VU g;IZ(SL(n,F)). But this contradicts
|F|>2.

The center Z(SL(n,F)) is an unity E of the group PSL(n,F).
Lemma 4 can be used to the group PSL(n,F) without the assumption
concerning n because for n = 2 we have T2 = -E€Z = E. The equa-
lity (9) has now a form V T E, so Ee CgCy. Therefore by
Lemma 4 and by Corollary 1.1, we obtain the theorem.

Theorem 7. If Ve PSL(n,F) satisfies the assumption of Lem-
ma 4, then PSL(n,F) = CZ.

Theorem 8. 1If n<|F|-1, then there exists Ve PSL(n,F) such
that PSL(n,F) = C‘zr - Kg.

Proof. The assumption ensures the existence of the matrix V

described in Lemma 4. Since Z(PSL(n,F)) = {1_':‘}, we have CyC Kg
by (4). Therefore by Theorem 7, PSL(n,F) = C‘ZI - Kg.

Theorem 9. SL(3,F) = Ké

Proof. 1If |F|>4, then the proof follows from Theorem 3.
¥ |F| = 4, then the proof follows from Theorem 5. If | F| = 2, then
the proof follows from Theorem 8 because in this case SL(3,2) &
2 PSL(2.7). To prove Theorem 9 in the case |F| = 3, we will use
character table of group SL(3,3) (see [4], p.68). Using Burnside’s
formula on multiplication of conjugacy classes, it has been showed in
[4] that for each class C # {E} of the group SL(3,3), we have

C4 = SL(3,3). Hence in the special case CC K2’ we have SL(3,3) =

4

= K2.
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4
Corollary 9.1. GLI(S,F) = K2

Proof. We have GL](3,F) = {-E}SL(3,F)USL(3,F). If
A€ SL(3,F) then A = A1A2A3A4 with A, € K,C SL(3,F), by Theo-
rem 9. It is clear that -A = (-EAI)A A,A, and (-EAI),AZ,A3,A4e

2374

¢ X, GL,(3,F). Hence GL,(3,F) = Ké.
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