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POWERS OF SETS IN LINEAR GROUPS 

2 
It has been proved in the paper C i ] that the set K„ is not a sub-

group of groups: GL (n ,F ) , S L ( n , F ) , P S L ( n , F ) for n > 2 , where 

= { ® £ " ^ t ' l e P r e s e n t paper we will prove: 

1° S U n , F ) = K^ for 2 < n < | F | - l , 2° GL1Cn,F) = X^ for n<|F| - l , 
where GL. (n ,F ) denotes the group of all n by n matrices of deter-

o ^ 

minant +1, 3 SL (n ,F ) = Cy for n < | F | - l , where C^. denotes the 

conjugacy class of the matrix V = diagCv^,. . . , v^ ^ v_. for i j , 

4° P S L ( n . F ) = Cy = K* for n<|F| - l (the result P S L ( n , F ) - C^. 

was proved in C3] on another way) , 5 S L ( 3 , F ) = K^» 6° PSL (n ,F ) = 
4 O r \ 4 = K2> 7 GL^(n,F) = K^- We will give also condition under which 

SL (n ,F ) = C^ (see the question stated in [ 3 ] , p.66). 
rO In 

Throughout this paper E' will denote the matrix 

We will use the following lemmas. 
L l OJ 

e M nxn 

2 
Lemma 1 (see [ 1 ] ) . Let G be a group. An element g 6 K„ if 

-1 2 end only if there is an element x e K„ , x g such that (gx) = 1. 

Lemma 2 (see L2] ) . If M is a non-empty subset of G,M = M 
2 

and xMDM ^ 0 for each x e G , then M = G. 

Lemma 3. Let V = diag(v^ ,. . . ,v^) , W = diag(w^ , . . . , 
v i ^ v j ' w i ^ w j f o r 1 i4 3- ^ d e t A " d e t V detW.A^ Z ( G L ( n , F ) ) and 

A has a rational canonical form then there are matrices X , Y e GL (n ,F ) 

with arbitrary chosen det X, det Y e F such that 
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2 J. Ambrosiewicz 

(1) A - .(X_1V X)CY_1W Y). 

The proof of Lemma 3, for n = 3 has been given in [2]. Using 
the same method one can prove Lemma 3 for any n>2, (see L6]). 

Lemma A. Let V - diagtv ,̂... , v̂  A v for i ^ j. Let 
vn - 1, v2i_iv2i " 1 for 1 " • • • t-j - if n is odd. Let v2i v̂̂  - 1 
for i - 1 X ^ n is even' Tllen there exists Te SL(n,F) such 
that 
(2) V T-1V T - E, T2 - E for n>2 and T2 - -E for n - 2, T^V"1, 

(3) xEeCyC for xeF* 

U) If n>2, then C „£K2 iff x0 - 1. xV 2 2 
Proof. If n is odd, we put T - diag (l^,... ,L L ^ ]» 

L̂  - Ê » i - 1,... »- j - r " [±1] where we take +1 when is 

n 1 even and -1 when — i s odd; if n is even, we put T • 
1 n r 0 1 - diag(L. ,... ,L ) , L. - E0, i - 1,... when n> 2 and T 1 n_ i z z 

2 
when n - 2. 

The relations (2) can be easy verified by direct computations. The 
2 relations (3) follows immediately from (2). By Lemma 1, xVe Kg iff 

there exists T€ K„ such that T"1 ^ xV and T_1(xV)T - x-1V_1. But 
2 z 

by (2) and by x - 1 these relations hold for n>2. The inclusion 
2 2 Ĉ ySZK̂  results from the fact that Kg is a normal subset. 

Lemma 5. Let V - diaglvj,...,vn), vt ^ v̂  for i (> j. If n is 
odd, we put v̂  - +1, v^ jV^ - 1 for i - 1,... ; if n is even, 
we put (i) v^ jV^ - 1 for i - 1 ^ or (ii) Vĵ  • 1, v̂  • -1, 
V2i lv2i " * 1 • 2, . Then there exists a matrix T such that 

- 396 -

L- l 0. 



Powers of sets in linear groups 3 

L. - E'2, I - 2 , . . . in the 

(5) V T ' V t - E, T2 - E, T yt V" 1 , det T - +1, 

(6) xE6 CyCy for x e F*f 

(7) C XV~ K 2 G L i t n ' F ) l f f x 2 - l -

P r o o f . If n is odd, we put T - diag(L^,. . . ,Ln 

n-1 ~2~ ~2~ ' 
L̂  » E2» i » 1 , . . . ,—2~, 1» j - 1 ; if n is even, we put 

T - diagtL., , . . . , L ), L. - E_, i - } , . . . i n the case (i) find 1 xi 1 ¿. z 
2 

["-1 0" 
T - diag(L- , . . . ,L ) , L1 -

2 L 0 l j 

case (ii). By direct computation it is easy to verify the relations (5). 

The relation (6) follows from (5). The condition (7) holds by relations 

T"1 + xV, T"1(xV)T - x ' V " 1 , Te K„ and by Lemma 1. 
¿. i 

Lemma 6. Z(SL(n,F))Q K^ except for n - 2 and char F { 2. 

P r o o f . Let &1 - 1. In the proof we will distinguish two cases: 

(i) n is even, (ii) n is odd. If n = 2k>2, then we put 

A - d i a g ( a 2 , a ^ , . . . . . . , 

_ .. , 2k-1 2k-3 2k-1 2k-3 v B » diagla ,a ,a , . . . , a ) , 

S - d i a g ^ ^ ^ - l . E ^ j . - l ) , R - diag(E^,E^). One can verify that the 

following relations A,B,S,R e SL(n,F)» aE - AB j S - 1 A S - A" 1 ; 

R _ 1 B R - B ' S S 2 - R 2 - E; S" 1 t A» R"1 * B hold. Hence 

A,B€ K 2 by Lemma 1. Therefore aE - AB e X^. If n - 2, char F - 2 

then obviously Z(SL(n,F)) - { e J s K j . If n - 2, char F * 2 then 

Z(SL(n,F)) • j E , - e J K j • { e } , (see [ l ] ) . 

If n is odd, then we put A - diag(an,an A , . . . , a ) , B -

diag(a,a , . . . , a ,a ) , M - d i a g t r . E ^ ) , N - d iag^E^ ,r) 

- 397 -



J. Ambrosiewi.cz 

where re{ 1,- l j . It is easy to see that we can choose r such that 

M,N 6 SL(n,F). One can verify that the following relations: A,B e 

6 SL(n,F); AB = aE; M^A M = A"1; N ^ B N = B"1; M 2 = N 2 - E ; 

M"1 ^ A; N"1 h B; M,N € SL(n,F) hold for suitable r e { l , - l ) . Hence 
9 / / 

by Lemma 1 A ,BeK 2 > so aE = AB 6 K^. Therefore Z(SL(n,F) )c K*. 

Lemma 7. ZtGL^n.F) )c K^. 

P r o o f . If aE e ZtGL.. (n,F)) and &n = 1, n>2 then Lemma 7 is 
2 

true by Lemma 6. If n = 2, a »1 then Lemma 7 is true by the iden-

tity E2(-E2)E'2 = -E2 and by Lemma 1 and by the fact that e ^2' 

Let a11 = -1. We will consider four cases: (i) n » 2k; k - even; 

(ii) n = 2k, k > l , k - odd; mi) n = 2; (iv) n - odd. 

2k-3 4 6 2k. , 2k-1 2k-3 
a ,-a ,. .. ,a ), B = diag(.-a fa 

2k-1 
9o. t & t -a. 

R 2 - E, 

2 4 2k 2 

If n = 2k, k - even, then we put A - diag(a ,-a , . . . , - a ,-a , 

, . . . , -a) , 

S = diagCE' 1 ,1). R - diagCE/,E, ). The following relations are 
Z K ' L _ i K K 1 1 -1 o 

easily checked: AB = aE, S A S 1 - 1 2 
S A, R £ B hold. Hence by Lemma 1 we have A,B 6 K„. There-

fore aE = AB€ K^. If n - 2k, k - odd, k > l , we put A = 

, . , 2 4 2k 2 4 - 2k. A- t
 2 k - ! 2k"3 

= diag^a ,-a , . . . ,a ,-a ,a , . . . , - a ), B = diagl-a ,a , . . . 

. . . , -a ,a " ,-a2k" , . . . , a) , S - diag(E^ ^ , 1 ^ , 1 ) , R = E ^ . 

One can easy verify the following relations: AB = aE, S ^ A S = A ,̂ 
-1, - 1 2 2 

B \ S Z = R E, S"1 ^ A, R"1 f. B. Hence A,B e K 2 

A 
R B R 

by Lemma 1, so aE • AB fc K^. If n = 2, then Lemma 7 follows from 

the following identities 

" 1 0 " 

0 -1 

0 

IP -aj 
aE, 

-1 

0 

"1 "1 0' "-1 0' 1 0" 

.0 -1. _o 1. .0 -1. 

-1 

"0 1" a 0" "0 1" |~a 0' 

_1 0. .0 -a . JL 0. Lo -a. 

-1 
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and by Lemma 1. If n is odd and a11 - -1, then Lemma 7 is true by 

the equation ( - a ) n «• 1 and by Lemma 6. 

T h e o r e m 1. If V - d iag iv^ , . . . .v^) , W - diagCwj w^) , 

v. b v . , w. * w. for i a j and V , W e S L ( n , F ) , then SL (n ,F ) -

- C v C w U Z ( S L t n , F ) ) . 

P r o o f . Let Be SL (n ,F ) - Z ( S L ( n , F ) ) . By Corollary 4.7 p.360 

of [ 5 ] there exists S e G L ( n . F ) such that S _ 1 B S - A e S L ( n . F ) has 

a rational canonical form. It is clear that det B - det V det W, so by 

Lemma 3, S _ 1 B S - A - CX^V X H Y ^ W Y ) or 

(8) B - [ ( X S " 1 ) V C X S " 1 ) ] • [ ( Y S " 1 ) NvCYS" 1 ) ] . 

By Lemma 3 we can assume that det X - det Y - det S. Hence 

B e C y C w b y ( 8 ) . 

If we will put V - W in Theorem 1, then we will receive 

C o r o l l a r y 1.1. If V » d iag ( v^ , . . . . v^ ) , v. ^ v. for i ^ j and 

Ve SLCn.F) , then 

(9) SL (n .F ) - c j U Z ( S L ( n , F ) ) . 

T h e o r e m 2. If V is a matrix described in Lemma 4, then 

(10) SL (n ,F ) - 1J C,,C rr for n>2. 
x e Z ( S L ( n , F ) ) V X V 

P r o o f . By Lemma 4, xE € CyC^y, so Z ( S L ( n , F ) ) C 

c U C.,C ... 
xeZ (SLCn,F ) ) V X V 

By Corollary 1.1, SL (n ,F ) - Z ( S L ( n , F ) ) - C y C y . Hence the 

equality (10) holds. 

C o r o l l a r y 2.1. If 2 < n < | F | - l and Z ( S L ( n , F ) ) - E then 
2 

there exists a matrix V such that SL (n ,F ) » C.,. 
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P r o o f . Let V be a matrix described in Lemma 4 . An existence 
2 

of V ensures the inequality n < | F | - l . By ( 2 ) , E 6 C V . Hence by Theo-
2 rem 2, S L ( n , F ) = 

C o r o l l a r y 2 . 2 . I f n , q are even numbers and n < q , then there 
2 

exists V e S L ( n , q ) such that S L ( n , q ) = C y 

P r o o f . Let V be a matrix described in Lemma 4-. The existence 

of V ensures the inequality n < q . It i s clear that Lemma 4 i s true also 

for n = 2 , because q is even. Now our Corollary results from Co-

rol lary 2 . 1 , because | Z ( S L ( n , Q ) ) | = ( n , q - l ) = 1, by assumption. 

C o r o l l a r y 2 . 3 . Let s = o(V) denotes an order of V described o 
in Lemma 4 , r = | Z ( S L ( n , q ) ) | . If r | s , then S L ( n , q ) - K g . 

The proof results from Theorem 2 and from the fact that o(Va) = 

= o(V) provided a e F * . 

T h e o r e m 3 . If 2 < n < . | F | - l , then S L ( n , F ) = K^. 

P r o o f . Let V be a matrix described in Lemma A. An existence 

of V follows by the inequality n c | F | - l . By Lemma 4-, we have o ? / / 
C y C K ^ so C y S K j . By Lemma 6 , we obtain Z ( S L ( n , F ) ) c K^. Hence 

S L ( n , F ) c by Corollary 1 . 1 . An inverse inclusion is obvious. 

R e m a r k 2. I f n = 2 and char F £ 2 , then Theorem 3 is not 
2 

true, because in this case = E (see [ l 3 , Theorem 3 ) . If n = 2, 

char F = 2 and | F | > 2 , then S L ( n , F ) = K?, Cfeee [ l ] , Theorem 2 ) . 
/ 

C o r o l l a r y 3 . 1 . If n > 2 , then S L ( n , F ) = K 2 where F = Q , R , C . 

T h e o r e m 4 . If n < | F | - l , then G L j C n . F ) = 
P r o o f . We will consider two cases : a) n is even, b) n is 

odd. 

Ad a ) . Let V and W are matrices from Lemma 5 described in U) 

and in Cii) respectively. The existence of matrices V and W ensures 
2 

the inequality n«c|F|- l . Hence we have Cy , C ^ c : K^ by Lemma 5 and 

Z ( G L 1 C n , F ) ) c K^, by Lemma 7 . From U ) G L ^ n . F ) = C y U C ^ U 

U Z ( G L 1 C n , F ) ) . Therefore G L ^ ( n , F ) C K^. 
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Ad b ) . In this case a proof i s similar to Ad a ) . 

C o r o l l a r y 4 . 1 . If F « Q,R ,C , then G L ^ ( n , F ) = K^. 

T h e o r e m 5. If n is odd and | Z ( S L ( n , F ) ) | = n , then there 
O / 

exists V6 S L ( n , F ) such that S L ( n , F ) = C^ «. K^-

* th P r o o f . Let a e F be a n root of 1. Then the matrices 
,. , n n-1 » iTr ,. , n+i n- l+ i 2 V = diagta ,a , . . , a ) , a V = diagka ,a a , a , 

i 
a11,a11 , . . . , a l , a have distinct entries for i => l , . . . , n - l and we 

n-i 

have V, a V e S L ( n , F ) . Let S » d i a g ( r , E ^ r = +1; 

E . n-i 

E. L 1 
i = l , . . . ,n-1. 

It i s clear that det R » 1 and that we can choose r such that 

det S = 1. The following identities are easi ly checked: U) VS ''"VS-E, 

( i i ) R a l V R " 1 = V. By Corollary 1.1 we eet S L ( n , F ) = 

- C ^ U Z ( S L ( n , F ) ) . From U) results ( a V ) S V S - a ^ . Hence, 

by ( i i ) , ( R ' V r H S ' V s ) - a 1E for i = l , . . . , n - l . Since E e C ^ , 

by U ) , then Z ( S L ( n , F ) ) c c L Therefore S L ( n , F ) - C?., by Corolla-
2 2 4 ry 1 .1 . By ( i ) and by Lemma 1, V e I ^ » so C y C ] ^ , because the set 

K j i s a normal set . 
Theorem 5 is a partial answer on a question stated in paper 3 , p .66 . 

C o r o l l a r y 5 .1 . If n is odd, then there exists Ve S L ( n , C ) 
2 

such that S L ( n , C ) - C ^ . 

The proof results from Theorem 5 and from the fact that 

I Z ( S L ( n , C ) ) | - n. 

T h e o r e m 6. I f n < | F | - l , | F | > 2, then there exists 

V€ S L ( n , F ) such that S L ( n , F ) - C * . 

P r o o f . Let V be a matrix from Lemma 4. An existence of V 

follows from the inequality n < | F | -1 . By Corollary 1 .1 , S L ( n , F ) -

- 4 0 1 -



8 J. Ambrosiewi.cz 

2 
» Cy U Z ( S L ( n , F ) ) . To prove Theorem 6 it enough to show that 

[ S L ( n , F ) - Z ( S L ( n , F ) ) ] 2 - S L ( n , F ) . Let M - S L ( n , F ) - Z ( S L ( n , F ) ) . 

It i s clear that M - M We will show that for any g€ S L ( n , F ) wfe 

have gMDM j> 0. Indeed, if this i s fa l se , there exists g 6 S L ( n , F ) 1 ° such that gQM - ZCSL(n .F ) ) i . e . M - gQ Z ( S L ( n , F ) ) which means 

that S L ( n , F ) - Z ( S L ( n , F ) ) U g ^ Z C S L U . F ) ) . But this contradicts 

| F | > 2 . 

The center Z ( S L ( n , F ) ) i s an unity E of the group P S L ( n , F ) . 

Lemma 4 can be used to the group P S L ( n , F ) without the assumption 
2 — 

concerning n because for n - 2 we have T - -E 6 Z - E . The equa-

lity (9) has now a form V T _ 1 V T - E , so E e C v C V " T h e r e f o r e b y 

Lemma 4 and by Corollary 1 .1 , we obtain the theorem. 

T h e o r e m 7. If V€ P S L ( n , F ) satisfies the assumption of Lem-2 
ma 4 , then P S L ( n , F ) - Cy. 

T h e o r e m 8. If n - e | F | - l , then there exists Ve P S L ( n , F ) such 

that P S L ( n , F ) - C 2 - K * . 

P r o o f . The assumption ensures the existence of the matrix V 

described in Lemma 4. Since Z ( P S L ( n , F ) ) - |e } , we have C y C K ^ 

by (4) . Therefore by Theorem 7, PSLCn.F) - C^ - K^. 

T h e o r e m 9. S L ( 3 , F ) - K^. 

P r o o f . If | F | > 4 , then the proof follows from Theorem 3. 

If | F | = 4 , then the proof follows from Theorem 5. If I F | - 2, then 

the proof follows from Theorem 8 because in this case S L ( 3 , 2 ) -

S P S L ( 2 . 7 ) . To prove Theorem 9 in the case | F | - 3 , we will use 

character table of group S L ( 3 , 3 ) (see [4-], p .68) . Using Burnside's 

formula on multiplication of conjugacy c la s se s , it has been showed in 

[ 4 ] that for each class C | e | of the group S L ( 3 , 3 ) , we have 

C* - S L ( 3 , 3 ) . Hence in the special case C C K , , we have S L ( 3 , 3 ) = 

- 402 -



Powers of se t s in linear groups 9 

C o r o l l a r y 9 . 1 . G L ^ . F ) = K * . 

P r o o f . We have G l ^ ^ F ) = ( - E ) S L ( 3 , F ) U S L ( 3 , F ) . If 

A e S L ( 3 , F ) then A = A ^ A ^ A ^ with A . e l ^ C S L ( 3 , F ) , by Theo-

rem 9. It i s clear that -A - ( - E A j ) A ^ ^ A ^ and ( - E A ^ , A 2 > A^, A^e 

€ K ^ G L j O . F ) . Hence G I ^ U . F ) = K * . 

R E F E R E N C E S 

C J. A m b r o s i e w i c z : On the squares of linear groups , Rend. 
Sem. Mat. Univ. Padova, Vol .75 (1986) . 

[ 2 ] J. A m b r o s i e w i c z : On the square of se t s of the group 
S L ( 3 , F ) , P S L ( 3 , F ) , Demonstratio Math. 18 (1985) 963-968. 

[ 3 ] J . L . B r e n n e r : Covering Theorems for FINASIGS X. The 
group G = P S L ( n , q ) had a c l a s s C such that CC=G,ARS COMBINA-
TORIA, Vol.16 (1983) pp .57-68 . 

[4-] A. D o l d , B . E c k m a n n , Z. A r a d , M. H e r z o g : 
Products of conjugacy c l a s s e s in groups. Spr inger-Ver lag , Ber-
lin Heidelberg (1985) . 

[ 5 ] T .W. H u n g e e r f o r d : Algebra. Spr inger-Ver lag , New York, 
Heidelberg, Berlin 1974. 

[ 6 ] J. A m b r o s i e w i c z : Products of sets in linear groups. Demon-
stratio Math. 22 (1989) , (to appear ) . 

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF WARSAW, 
BIALYSTOK BRANCH, 15-267 BIALYSTOK, POLAND 

Received October 21, 1988. 

- 403 -




