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1. Introduction
The aim of this paper is to present the existence theorem for

functional-differential inclusions of the form
d—D(tx)eF(tx)
dt 't "t

where F is a multivalued mapping having a Carathéodory selector and
taking as its values nonempty closed compact but not necessarily con-
vex or nonempty closed convex subsets of R" and D is a single-v&lued
mapping with values in R™. We extend the results of J.X.Hale [4] on

the functional-differential inclusions of neutral type.

2. Notations and definitions

Suppose r>0 is a given real number, R = (-oc0,+00), R" is a

n-dimensional linear vector space with a norm I-1, C([a,b] ,R™) is
the Banach space of continuous functions endowed with the topology of
uniform convergence. If [a,b] = [-r,0] we let Cor ™ c([-r,0],R™)

-nd denote the norm of an element Je Cor by lg)l = sup |$(8)].
-r<6<0

If 6eR, a20 and x¢ C(6 -r,6+a],R™), then for any t¢ [6,6+a],
we define x € C__ by xt(e), = x(te 8), -r<6«0.

- 385 -



2 E. Luczak-Kumorek

By P(X), CCl(X) and Comp(X) we denote the spaces of all non-
empty, nonempty closed convex and nonempty closed compact, respecti-
vely, subsets of metric spaces X.

Let (T,¥) be a measurable space, X be a metric space. A set-va-
lued function F: T —=P(X) is said to be measurable (weakly measu-
rable), if {t eT:F(t)NU 4 ¢} € F for every closed (open) set
UcX (see [3]).

If F:Y —= P(X), where Y is a topological space, then the asser-
tion that F is measurable (weakly measurable) means that F is mea-

surable (weakly measurable) when Y is assigned by 6-algebra B(Y) of
Borel subsets of Y.

If F:TxY —s P(X) then the various kinds of measurability of F
are defined in terms of the product 6-algebra ¥@ A(Y) on TxY.

(For T = R we will consider T together with the G-algebra of all its
Lebesgue measurable subsets).

A multivalued mapping F:X —= P(Y) is lower semicontinuous if
the set {xe X: Fx)NZ ¢ ¢} is open for every open subset Z of Y.

Let CCI(R™) be the family of all nonempty closed convex subsets
of R%,QcC RxCOT be an open set. Assume that F:Q—=CCUR™) sa-
tisfies the following conditions:

(i) F:Q—=CCLR™) is weakly measurable,

(ii) F(t,') is lower semicontinuous for each fixed te R,

(iii) there is a Lebesgue integrable function m:R —=R"* such that
h(F(t,$), {O})s m(t) for (t,§)eR , where h denotes the Hausdorff
metric in CCL(R™).

Definition 1. Suppose $2 is an open set in RxCor, D:Q —R"

is continuous, ¢—=D(t,$) has a continuous Fréchet derivative

Dj (t,$) and

0
Dg;(t,¢)yl=f [dgn(t,$,0)] y(8)
-r
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Neutral functional-differential inclusions 3

for (t,9)eQ , weCor, where p(t,$,8) is an nxn matrix function with
elements of bounded variation in 8¢[-r,0]. For any B¢ [-r,0] we say
tha. D(t,$) is atomic at B on R, if

p(t, 8,87 - plt,8,87) = Alt,§,8), det Alt,§,8) 4O

for some nxn matrix function A(t,$,8) continuous in (t,$) and there

is a scalar function 2(t,$,s,3) continuous for (t,§)eQ, s>0,
Bts :

S [d0(1,8,0)]p(8) - Al1,8,8)y(p)<
B-s '
<7(t,$,5,8) "y for (t,8)eQ, s20,peC_ .

J(toéyovp) = 0 such that

Definition 2.  Suppose Q(;.Rxcor is an open set, D:Q —=R"

is a given continuous function atomic at zero. The relation
(1) 4 p(t,x,)e Flt,x,)
dt "t Tt

is called the neutral functional-differential inclusion (NFDI1).

Definition 3. For a given NFDI a function x:[6-r,6+a) —Rr"
is said to be a solution of (1) if there are 6e¢R, a>0, such that
xe C([6-r,6+a) ,Rn) , (t,xt)eQ , tel6,6+a), t —-D(t,xt) is continu-
ously differentiable and satisfies (1) a.e. on [6,6+a).

Definition 4. TFor a given GeR,d e C,, and (t,§)e Q we
say that x is a solution of inclusion (1) with initial value ¢ at 6 or
simply a solution through (6,$), if there 'is an a>0 such that x is
a solution of (1) on [6-r,6+a) and xGg = .

Definition 5. Let T be measurable space and X be a metric
space. A function f: TxT —R" is said to be a Carathéodory selector
of a set-valued function F: TxX —e CCI(R™), if f is a selector for
F and f is such that f(-,x) is measurable for x e X and f(t,*) is con-
tinuous for te€ T. )

Definition 6. A set-valued function F:TxX —=P(R"), where
T and X are as above,v is called an M-mapping if every its lower semi-

continuous restriction has a continuous selector.
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4 E. Luczak-Kumorek

3. Existence theorem
Theorem 1. lf_QC_:Rxcor is an open set, (1) is NFDI and
F: Q—CCUHR™) satisfies conditions (i)-(iii) then fur any (6,$)eQ

there exists a solution of (1) througk (6,¢).
Proof. A function x 1is a solution of (1) through (6,§) if
there is an a>0 such that x€ C{[6-r,6+a),R™) and

%t D(t,xt) € F(t,xt) for a.e. te[6,6+a],
(2)
xg=6¢.

Since F: Q —=CCI(R™) satisfies the conditions (i)-(iii) then, in vir-
tue of [2], there exists a mapping f: 2 —R" such that:

(a) f(t,:) is continuous for each fixed teR,

(b) f is measurable,

(¢) f(t,2)eF(t,z) for (t,z)eR.
Clearly, f is a Carathéodory selection for F. Then x is a solution

of (1) through (6,$), whenever there is an a >0 such that x satisfies

D(t,xt) = D(o,$) +j flr,x,)dr
G
(3) for a.e. te[6 ,6+a],
XG "§ ’
where f is a Carathéodory selection of a set-valued map F. Let

A
@2 [-r,00) —=R" be defined by

#(t) for te[-r, O],
ﬁ(t) = _
$(0) for te [0,),

and let Co([ﬁ G+al, Rn) denote the Banach space of all continuous
functions z:[6,6+a]—-Rn such that z(6) = O, For every
ze C°([6,64a], R™) let
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Neutral functional-differential inclusions 5

z(t) for te[6,6+a],
2(¢) =

0 for te[6-r,6] .

We have, of course, 2¢ C{[6-r,6+a], R") and 2 [6,6+a] = %
Now, we can define for each fixe! 6e€R and a>0 a mapping
é ® Z by setting
5(1:-6) for tel6-r,6],
(4) (d@ ) -
$(O)+'z\(t) for te[o ,6+4a] .

In what follows, we shall denote 5@ Zby §@ =z.
Let us observe that the functional-integral equation {(3) is equi-

valent to the following one

t
D(t,(¢® 2),) = D(6,3) + | flr,(§d® z). ) dr
t T
o

(3" for a.e. te[6 ,6+a],
Zs - 0.

In this way x is a solution of (1) through (G,8), if there is an
a>0 and ze C([6,86+a], R™) such that z satisfies (3') and x =F @ z.

Since D(t,$) is continuously differentiable in ¢, then

(5) D(t,(¢ ® 2),) = D(t,(§ ®. 0)) +
+ Dy (1,($© 0)) [(§ @ 2),-( © 0) J+alt, ($© 0), [(§@ 2)-(g® O), ]),

where g(t,go,O) - o, | g(t,(,o,ly) - g(t,Sl’,E)ls E(tvsova)"lp'gll for
(t,p)e Q ,|l¥ll, 1)< 6 and E(t,p,8) is continuous in t,®, S for
(t,p)eQ , 620 and E(t,p,0) = 0. By (4), we have (§® 2), -

- (8@ 0), = z.

.- Hence, by (5), it follows that
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6 E. Luczak-Kumorek

Dg's(t,(§® 0) )z, = D(t,($ @ z),) - Dt,(§® 0))) - glt,(§ ® 0),,z,).

Therefore, by (3'), x is a solution of (1) through (6,8), if x(t) =
= (§ @ z)(t) for te[6-r,6+a] and z satisfies

DQ; (t,(gS@G)t)zt - D(6,$) - D(t,(¢® O)t) -

t
(6) ﬂ - glt, (@ O)t’zt) +| fr,(§@ 2) )dT for a.e. te [6,6+a] ,
6

‘26-00

Using the fact that D is atomic at O on £, we have (as long as
(t,(8 ® 0),)e @)
0-
Alt,($ ® 0),,0)z,(0) +f [d,p(t,(§® 0),0)] z,(6) -

- t

= D(G,§) - D(t,(;s@O)t) - glt,(g® O)t,zt) +ff(*r,(9§@ z), ) dt.
G

Then, since zt(O) = z(t), we have

0-
z(t) = [A(t,(Q@O)t’O)]-l {f [dg0(t,($® 0),,0)]2,(8) +
t
-r
(7) { + D©,§)-D(t,(§® 0))-g(t, (g ® 0) ,z) +f flr, (g @ 2z),.)dr
(-4
for a.e. te [6,6+a],
Zg = 0.
If we let

( 0 for te[G-r,G],

. 0-
(8) (»’i‘ﬂz)(t) ={ [Alt, (g ® O)t,O)] -1 -! [derz(t,(é@ e)t,e)] z (8) +

-r
+ D6,¢) - Dlt,(g@ 0)) - glt, (@ O)t,zt)]
for a.e. te [6,6+a],
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Neutral functional-differential inclusions 7

0 for te[6-r,5],
t

(9) (5z)(t) =4 [Alt,(§ @ o)t,o)J'lf f0,(§ ® 2),) dr
G

for a.e. te[6 ,6+a],

then (7) is equivalent to z(t) = (Tz){(t) + (Sz){(t) where
ze C([6 -r,6+a] ,Rn), zg = 0.

The proof of Theorem 1 will be complete if we show the existence
of a fixed point of T + S in £ (a,b) = {§€ C([6 -r,6+a] ,R™): Es= 0.
”Etllsb for te[6 ,6+a]}. For this purpose we will show the following
lemma.

Lemma 1. There are positive real numbers a, b and E,-I_),O<E<a,
0<b<b, such that T:#(a,b) —= C([6-r,6+a],R") and S:A(a,b)—
—=C([6-r,6+a) ,R™), have the properties

1°T is a contraction,

2° s is completely continuous,

P T + 5 : £(a,b)—4£(3,b),
where T and S are mappings defined.by (8) and (9), respectively.

Proof. For any v, 0<v<% , there are a>0, b>0, such that

(t,@@O)t)e.Q and
|[att, (3@ 01,007 Ete, (@ 0) D)< v,
| [Alt, (6@ 01,0017 | 7(t,(§ @ 0),,8,0)< v

for te [6,6+a] where 7(t,$,s,8) is the function from Definition 1
and E(t,p,5) is the function in the proof of Theorem 1. For any non-

-negative real @ and b let

£(d,b) = { tec([6-r,6+&] ,R") : §s= 0, ”Et]]s b for te[6,6+a]}.
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8 . E. Luczak-Kumorek

For any O<b<b, there is an @, O<&<a, so that |[(¢ ® O)t- & ||<b-b.

Further, we restrict @ so that for te[6,6+a] we have

Ila(t,(g@ O)t,O)]'ll ID(6,4) - D(t,(d@ o)t)lsvﬁ,

t
At g © 0,074 | f miriar) < v,
6

We now show that T and S satisfy the conditions 1° - 3°. = fact,
by (8) and the above restrictions on @ and b, for any z,ye £(d,0)

we have

1(T2)(t) - (Ty) ()] =

[ 9
- [A(t,(qs@o)t,o)]‘l{-f [d42(t, (@ 0),,6)]2,(8) - Dlt,(F® 0)) +

‘r 0-
+ DG,H) - g, (@ 0),,z,) +f [4g2(t,(§® 0),,0)15,(0) +
-

+ D(t{g® 0)) - DO,H + glt,(d @ 0)"yt)]| <
<|[At,($ © 0,017 | (e, (§ ® O, D)1z, | +
— 1
+3(, (3@ O)t,a,O)-” zt-ytu)s Vllz-y, il + RS A L EXS AR

Hence, T is a contraction.
Let z,y ¢ £(&,b) and let M= Tz + Sy. Since, for te[6-r,6],
by (8), (9), (Tz)(t) + (Sy)(t) = O and for te [6,6+3d] we have

0.
jult)| = ['_A(t,(g@o)t,oj'l{-f[der;(t,(qS@ O)t,e)] zt(e) +
-r

t
+ D(G,§) - D(t,(é@O)t) - gly,(d@® O)t,zt) +f flr,(d® y)r)dt}ls
[

<ib + vb + »b + Vb <D,
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Neutral functional-differential inclusions 9

therefore T + & :£(a,b) —#(a,b). It is not difficult to show that S
is continuous. Moreover, S is compact, since for every tl,tze

€ r_G -r ,6+§]

|(s2)(t)) - (82)(t)|< 3 B

This completes the proof of Lemma 1.

Lemma 1 yields the existence of a fixed point of T + S in £(&,b)
(see [5], Lemma 2.1) and thus a solution of (1) through (6,§). Then
the proof of Theorem 1 is completed.

Remark. Theorem 1 will be true in the case of the multjvalued
mapping F : Q—»Comp(Rh) if F is an M-mapping such that F is mea-
surable on 2, F(t,:) is lower semicontinuous for each fixed t and
PrR (Q) has a finite measure, where 1229 () denotes the projection of
on the real line. Then, in virtue of [1]QF has a Carathéodory seleg-

tor f and the proof of Theorem 1 will be analogous.
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