

Elżbieta Łuczak-Kumorek

**THE EXISTENCE THEOREM
FOR NEUTRAL FUNCTIONAL-DIFFERENTIAL INCLUSIONS**

1. Introduction

The aim of this paper is to present the existence theorem for functional-differential inclusions of the form

$$\frac{d}{dt} D(t, x_t) \in F(t, x_t)$$

where F is a multivalued mapping having a Carathéodory selector and taking as its values nonempty closed compact but not necessarily convex or nonempty closed convex subsets of \mathbb{R}^n and D is a single-valued mapping with values in \mathbb{R}^n . We extend the results of J.K. Hale [4] on the functional-differential inclusions of neutral type.

2. Notations and definitions

Suppose $r \geq 0$ is a given real number, $\mathbb{R} = (-\infty, +\infty)$, \mathbb{R}^n is a n -dimensional linear vector space with a norm $|\cdot|$, $C([a, b], \mathbb{R}^n)$ is the Banach space of continuous functions endowed with the topology of uniform convergence. If $[a, b] = [-r, 0]$ we let $C_{or} = C([-r, 0], \mathbb{R}^n)$ and denote the norm of an element $\phi \in C_{or}$ by $\|\phi\| = \sup_{-r \leq \theta \leq 0} |\phi(\theta)|$.

If $\theta \in \mathbb{R}$, $a \geq 0$ and $x \in C([-r, \theta+a], \mathbb{R}^n)$, then for any $t \in [\theta, \theta+a]$, we define $x_t \in C_{or}$ by $x_t(\theta) = x(t+\theta)$, $-r \leq \theta \leq 0$.

By $P(X)$, $CC1(X)$ and $Comp(X)$ we denote the spaces of all nonempty, nonempty closed convex and nonempty closed compact, respectively, subsets of metric spaces X .

Let (T, \mathcal{F}) be a measurable space, X be a metric space. A set-valued function $F: T \rightarrow P(X)$ is said to be measurable (weakly measurable), if $\{t \in T : F(t) \cap U \neq \emptyset\} \in \mathcal{F}$ for every closed (open) set $U \subset X$ (see [3]).

If $F: Y \rightarrow P(X)$, where Y is a topological space, then the assertion that F is measurable (weakly measurable) means that F is measurable (weakly measurable) when Y is assigned by σ -algebra $\beta(Y)$ of Borel subsets of Y .

If $F: T \times Y \rightarrow P(X)$ then the various kinds of measurability of F are defined in terms of the product σ -algebra $\mathcal{F} \otimes \beta(Y)$ on $T \times Y$. (For $T = R$ we will consider T together with the σ -algebra of all its Lebesgue measurable subsets).

A multivalued mapping $F: X \rightarrow P(Y)$ is lower semicontinuous if the set $\{x \in X : F(x) \cap Z \neq \emptyset\}$ is open for every open subset Z of Y .

Let $CC1(\mathbb{R}^n)$ be the family of all nonempty closed convex subsets of \mathbb{R}^n , $\Omega \subseteq \mathbb{R} \times C_{or}$ be an open set. Assume that $F: \Omega \rightarrow CC1(\mathbb{R}^n)$ satisfies the following conditions:

- (i) $F: \Omega \rightarrow CC1(\mathbb{R}^n)$ is weakly measurable,
- (ii) $F(t, \cdot)$ is lower semicontinuous for each fixed $t \in \mathbb{R}$,
- (iii) there is a Lebesgue integrable function $m: \mathbb{R} \rightarrow \mathbb{R}^+$ such that $h(F(t, \phi), \{0\}) \leq m(t)$ for $(t, \phi) \in \Omega$, where h denotes the Hausdorff metric in $CC1(\mathbb{R}^n)$.

Definition 1. Suppose Ω is an open set in $\mathbb{R} \times C_{or}$, $D: \Omega \rightarrow \mathbb{R}^n$ is continuous, $\phi \rightarrow D(t, \phi)$ has a continuous Fréchet derivative

$D'_\phi(t, \phi)$ and

$$D'_\phi(t, \phi)\psi = \int_{-r}^0 [d_\theta \eta(t, \phi, \theta)] \psi(\theta)$$

for $(t, \phi) \in \Omega$, $\psi \in C_{\text{or}}$, where $\varrho(t, \phi, \theta)$ is an $n \times n$ matrix function with elements of bounded variation in $\theta \in [-r, 0]$. For any $\beta \in [-r, 0]$ we say that $D(t, \phi)$ is atomic at β on Ω , if

$$\varrho(t, \phi, \beta^+) - \varrho(t, \phi, \beta^-) = A(t, \phi, \beta), \det A(t, \phi, \beta) \neq 0$$

for some $n \times n$ matrix function $A(t, \phi, \beta)$ continuous in (t, ϕ) and there is a scalar function $\gamma(t, \phi, s, \beta)$ continuous for $(t, \phi) \in \Omega$, $s \geq 0$,

$$\begin{aligned} \gamma(t, \phi, 0, \beta) &= 0 \text{ such that } \left| \int_{\beta-s}^{\beta+s} [d_\theta \varrho(t, \phi, \theta)] \psi(\theta) - A(t, \phi, \beta) \psi(\beta) \right| \leq \\ &\leq \gamma(t, \phi, s, \beta) \|\psi\| \text{ for } (t, \phi) \in \Omega, s \geq 0, \psi \in C_{\text{or}}. \end{aligned}$$

Definition 2. Suppose $\Omega \subseteq \mathbb{R} \times C_{\text{or}}$ is an open set, $D: \Omega \rightarrow \mathbb{R}^n$ is a given continuous function atomic at zero. The relation

$$(1) \quad \frac{d}{dt} D(t, x_t) \in F(t, x_t)$$

is called the neutral functional-differential inclusion (NFDI).

Definition 3. For a given NFDI a function $x: [\sigma-r, \sigma+a] \rightarrow \mathbb{R}^n$ is said to be a solution of (1) if there are $\sigma \in \mathbb{R}$, $a > 0$, such that $x \in C([\sigma-r, \sigma+a], \mathbb{R}^n)$, $(t, x_t) \in \Omega$, $t \in [\sigma, \sigma+a]$, $t \mapsto D(t, x_t)$ is continuously differentiable and satisfies (1) a.e. on $[\sigma, \sigma+a]$.

Definition 4. For a given $\sigma \in \mathbb{R}$, $\phi \in C_{\text{or}}$ and $(t, \phi) \in \Omega$ we say that x is a solution of inclusion (1) with initial value ϕ at σ or simply a solution through (σ, ϕ) , if there is an $a > 0$ such that x is a solution of (1) on $[\sigma-r, \sigma+a]$ and $x_\sigma = \phi$.

Definition 5. Let T be measurable space and X be a metric space. A function $f: T \times T \rightarrow \mathbb{R}^n$ is said to be a Carathéodory selector of a set-valued function $F: T \times X \rightarrow CCl(\mathbb{R}^n)$, if f is a selector for F and f is such that $f(\cdot, x)$ is measurable for $x \in X$ and $f(t, \cdot)$ is continuous for $t \in T$.

Definition 6. A set-valued function $F: T \times X \rightarrow P(\mathbb{R}^n)$, where T and X are as above, is called an M -mapping if every its lower semi-continuous restriction has a continuous selector.

3. Existence theorem

Theorem 1. If $\Omega \subseteq R \times C_{\text{or}}$ is an open set, (1) is NFDI and $F: \Omega \rightarrow \text{CCl}(R^n)$ satisfies conditions (i)-(iii) then for any $(\sigma, \phi) \in \Omega$ there exists a solution of (1) through (σ, ϕ) .

Proof. A function x is a solution of (1) through (σ, ϕ) if there is an $a > 0$ such that $x \in C([\sigma-r, \sigma+a], R^n)$ and

$$(2) \quad \left\{ \begin{array}{l} \frac{d}{dt} D(t, x_t) \in F(t, x_t) \text{ for a.e. } t \in [\sigma, \sigma+a], \\ x_\sigma = \phi. \end{array} \right.$$

Since $F: \Omega \rightarrow \text{CCl}(R^n)$ satisfies the conditions (i)-(iii) then, in virtue of [2], there exists a mapping $f: \Omega \rightarrow R^n$ such that:

- (a) $f(t, \cdot)$ is continuous for each fixed $t \in R$,
- (b) f is measurable,
- (c) $f(t, z) \in F(t, z)$ for $(t, z) \in \Omega$.

Clearly, f is a Carathéodory selection for F . Then x is a solution of (1) through (σ, ϕ) , whenever there is an $a > 0$ such that x satisfies

$$(3) \quad \left\{ \begin{array}{l} D(t, x_t) = D(\sigma, \phi) + \int_{\sigma}^t f(\tau, x_{\tau}) d\tau \\ \text{for a.e. } t \in [\sigma, \sigma+a], \\ x_\sigma = \phi, \end{array} \right.$$

where f is a Carathéodory selection of a set-valued map F . Let $\hat{\phi}: [-r, \infty) \rightarrow R^n$ be defined by

$$\hat{\phi}(t) = \begin{cases} \phi(t) & \text{for } t \in [-r, 0], \\ \phi(0) & \text{for } t \in [0, \infty), \end{cases}$$

and let $C^0([\sigma, \sigma+a], R^n)$ denote the Banach space of all continuous functions $z: [\sigma, \sigma+a] \rightarrow R^n$ such that $z(\sigma) = 0$. For every $z \in C^0([\sigma, \sigma+a], R^n)$ let

$$\hat{z}(t) = \begin{cases} z(t) & \text{for } t \in [\delta, \delta+a], \\ 0 & \text{for } t \in [\delta-r, \delta]. \end{cases}$$

We have, of course, $\hat{z} \in C([\delta-r, \delta+a], \mathbb{R}^n)$ and $\hat{z}|_{[\delta, \delta+a]} = z$.

Now, we can define for each fixed $\delta \in \mathbb{R}$ and $a > 0$ a mapping $\hat{\phi} \oplus \hat{z}$ by setting

$$(4) \quad (\hat{\phi} \oplus \hat{z})(t) = \begin{cases} \hat{\phi}(t-\delta) & \text{for } t \in [\delta-r, \delta], \\ \hat{\phi}(0) + \hat{z}(t) & \text{for } t \in [\delta, \delta+a]. \end{cases}$$

In what follows, we shall denote $\hat{\phi} \oplus \hat{z}$ by $\hat{\phi} \oplus z$.

Let us observe that the functional-integral equation (3) is equivalent to the following one

$$(3') \quad \begin{cases} D(t, (\hat{\phi} \oplus z)_t) = D(\delta, \hat{\phi}) + \int_{\delta}^t f(\tau, (\hat{\phi} \oplus z)_{\tau}) d\tau \\ \text{for a.e. } t \in [\delta, \delta+a], \\ z_{\delta} = 0. \end{cases}$$

In this way x is a solution of (1) through $(\delta, \hat{\phi})$, if there is an $a > 0$ and $z \in C([\delta, \delta+a], \mathbb{R}^n)$ such that z satisfies (3') and $x = \hat{\phi} \oplus z$.

Since $D(t, \hat{\phi})$ is continuously differentiable in $\hat{\phi}$, then

$$(5) \quad D(t, (\hat{\phi} \oplus z)_t) = D(t, (\hat{\phi} \oplus 0)_t) + \\ + D'_{\hat{\phi}}(t, (\hat{\phi} \oplus 0)_t) [(\hat{\phi} \oplus z)_t - (\hat{\phi} \oplus 0)_t] + g(t, (\hat{\phi} \oplus 0)_t, [(\hat{\phi} \oplus z)_t - (\hat{\phi} \oplus 0)_t]),$$

where $g(t, \varphi, 0) = 0$, $|g(t, \varphi, \psi) - g(t, \varphi, \xi)| \leq \xi(t, \varphi, \delta) \|\psi - \xi\|$ for $(t, \varphi) \in \Omega$, $\|\psi\|, \|\xi\| \leq \delta$ and $\xi(t, \varphi, \delta)$ is continuous in t, φ, δ for $(t, \varphi) \in \Omega$, $\delta \geq 0$ and $\xi(t, \varphi, 0) = 0$. By (4), we have $(\hat{\phi} \oplus z)_t - (\hat{\phi} \oplus 0)_t = z_t$. Hence, by (5), it follows that

$$D'_{\phi}(t, (\phi \oplus 0)_t) z_t = D(t, (\phi \oplus z)_t) - D(t, (\phi \oplus 0)_t) - g(t, (\phi \oplus 0)_t, z_t).$$

Therefore, by (3'), x is a solution of (1) through (σ, ϕ) , if $x(t) =$
 $= (\phi \oplus z)(t)$ for $t \in [\sigma-r, \sigma+a]$ and z satisfies

$$(6) \quad \begin{cases} D'_{\phi}(t, (\phi \oplus 0)_t) z_t = D(\sigma, \phi) - D(t, (\phi \oplus 0)_t) - \\ \quad - g(t, (\phi \oplus 0)_t, z_t) + \int_{\sigma}^t f(\tau, (\phi \oplus z)_\tau) d\tau \text{ for a.e. } t \in [\sigma, \sigma+a], \\ z_{\sigma} = 0. \end{cases}$$

Using the fact that D is atomic at 0 on Ω , we have (as long as
 $(t, (\phi \oplus 0)_t) \in \Omega$)

$$\begin{aligned} & A(t, (\phi \oplus 0)_t, 0) z_t(0) + \int_{-r}^{0-} [d_{\theta} \varrho(t, (\phi \oplus 0)_t, \theta)] z_t(\theta) = \\ & = D(\sigma, \phi) - D(t, (\phi \oplus 0)_t) - g(t, (\phi \oplus 0)_t, z_t) + \int_{\sigma}^t f(\tau, (\phi \oplus z)_\tau) d\tau. \end{aligned}$$

Then, since $z_t(0) = z(t)$, we have

$$(7) \quad \begin{cases} z(t) = [A(t, (\phi \oplus 0)_t, 0)]^{-1} \left\{ - \int_{-r}^{0-} [d_{\theta} \varrho(t, (\phi \oplus 0)_t, \theta)] z_t(\theta) + \right. \\ \left. + D(\sigma, \phi) - D(t, (\phi \oplus 0)_t) - g(t, (\phi \oplus 0)_t, z_t) + \int_{\sigma}^t f(\tau, (\phi \oplus z)_\tau) d\tau \right\} \\ \text{for a.e. } t \in [\sigma, \sigma+a], \\ z_{\sigma} = 0. \end{cases}$$

If we let

$$(8) \quad (Tz)(t) = \begin{cases} 0 \text{ for } t \in [\sigma-r, \sigma], \\ [A(t, (\phi \oplus 0)_t, 0)]^{-1} \left\{ - \int_{-r}^{0-} [d_{\theta} \varrho(t, (\phi \oplus 0)_t, \theta)] z_t(\theta) + \right. \\ \left. + D(\sigma, \phi) - D(t, (\phi \oplus 0)_t) - g(t, (\phi \oplus 0)_t, z_t) \right\} \\ \text{for a.e. } t \in [\sigma, \sigma+a], \end{cases}$$

$$(9) \quad (Sz)(t) = \begin{cases} 0 & \text{for } t \in [6-r, 6], \\ [A(t, (\phi \oplus 0)_t, 0)]^{-1} \int_6^t f(\tau, (\phi \oplus z)_\tau) d\tau & \text{for a.e. } t \in [6, 6+a], \end{cases}$$

then (7) is equivalent to $z(t) = (Tz)(t) + (Sz)(t)$ where $z \in C([6-r, 6+a], \mathbb{R}^n)$, $z_6 = 0$.

The proof of Theorem 1 will be complete if we show the existence of a fixed point of $T + S$ in $\mathcal{A}(a, b) = \{\xi \in C([6-r, 6+a], \mathbb{R}^n) : \xi_6 = 0, \|\xi_t\| \leq b \text{ for } t \in [6, 6+a]\}$. For this purpose we will show the following lemma.

Lemma 1. There are positive real numbers a, b and $\bar{a}, \bar{b}, 0 < \bar{a} < a, 0 < \bar{b} < b$, such that $T: \mathcal{A}(\bar{a}, \bar{b}) \rightarrow C([6-r, 6+a], \mathbb{R}^n)$ and $S: \mathcal{A}(\bar{a}, \bar{b}) \rightarrow C([6-r, 6+a], \mathbb{R}^n)$, have the properties

- 1° T is a contraction,
- 2° S is completely continuous,
- 3° $T + S: \mathcal{A}(\bar{a}, \bar{b}) \rightarrow \mathcal{A}(\bar{a}, \bar{b})$,

where T and S are mappings defined by (8) and (9), respectively.

Proof. For any ν , $0 < \nu < \frac{1}{4}$, there are $a > 0$, $b > 0$, such that $(t, (\phi \oplus 0)_t) \in \Omega$ and

$$| [A(t, (\phi \oplus 0)_t, 0)]^{-1} | \xi(t, (\phi \oplus 0)_t, b) < \nu,$$

$$| [A(t, (\phi \oplus 0)_t, 0)]^{-1} | \gamma(t, (\phi \oplus 0)_t, a, 0) < \nu$$

for $t \in [6, 6+a]$ where $\gamma(t, \phi, s, \beta)$ is the function from Definition 1 and $\xi(t, \phi, \delta)$ is the function in the proof of Theorem 1. For any non-negative real \bar{a} and \bar{b} let

$$\mathcal{A}(\bar{a}, \bar{b}) = \{ \xi \in C([6-r, 6+\bar{a}], \mathbb{R}^n) : \xi_6 = 0, \|\xi_t\| \leq \bar{b} \text{ for } t \in [6, 6+a] \}.$$

For any $0 < \bar{b} < b$, there is an \bar{a} , $0 < \bar{a} < a$, so that $\|(\phi \oplus 0)_t - \phi\| < b - \bar{b}$. Further, we restrict \bar{a} so that for $t \in [\bar{c}, \bar{c} + \bar{a}]$ we have

$$|[(A(t, (\phi \oplus 0)_t, 0))]^{-1}| |D(\bar{c}, \phi) - D(t, (\phi \oplus 0)_t)| \leq \gamma \bar{b},$$

$$|[(A(t, (\phi \oplus 0)_t, 0))]^{-1}| \left| \int_{\bar{c}}^t m(\tau) d\tau \right| \leq \gamma \bar{b}.$$

We now show that T and S satisfy the conditions $1^o - 3^o$. In fact, by (8) and the above restrictions on \bar{a} and \bar{b} , for any $z, y \in \mathcal{A}(\bar{a}, \bar{b})$ we have

$$\begin{aligned} & |(Tz)(t) - (Ty)(t)| = \\ & = \left| [A(t, (\phi \oplus 0)_t, 0)]^{-1} \left\{ - \int_{-r}^{0-} [d_\theta \varphi(t, (\phi \oplus 0)_t, \theta)] z_t(\theta) - D(t, (\phi \oplus 0)_t) + \right. \right. \\ & + D(\bar{c}, \phi) - g(t, (\phi \oplus 0)_t, z_t) + \int_{-r}^{0-} [d_\theta \varphi(t, (\phi \oplus 0)_t, \theta)] y_t(\theta) + \\ & \left. \left. + D(t, (\phi \oplus 0)_t) - D(\bar{c}, \phi) + g(t, (\phi \oplus 0)_t, y_t) \right\} \right| \leq \\ & \leq |[A(t, (\phi \oplus 0)_t, 0)]^{-1}| (\xi(t, (\phi \oplus 0)_t, \bar{b}) \|z_t - y_t\| + \\ & + \gamma(t, (\phi \oplus 0)_t, \bar{a}, 0) \cdot \|z_t - y_t\|) \leq \gamma \|z_t - y_t\| + \gamma \|z_t - y_t\| < \frac{1}{2} \|z_t - y_t\|. \end{aligned}$$

Hence, T is a contraction.

Let $z, y \in \mathcal{A}(\bar{a}, \bar{b})$ and let $\mu = Tz + Sy$. Since, for $t \in [\bar{c} - r, \bar{c}]$, by (8), (9), $(Tz)(t) + (Sy)(t) = 0$ and for $t \in [\bar{c}, \bar{c} + \bar{a}]$ we have

$$\begin{aligned} |\mu(t)| & = \left| [A(t, (\phi \oplus 0)_t, 0)]^{-1} \left\{ - \int_{-r}^{0-} [d_\theta \varphi(t, (\phi \oplus 0)_t, \theta)] z_t(\theta) + \right. \right. \\ & + D(\bar{c}, \phi) - D(t, (\phi \oplus 0)_t) - g(t, (\phi \oplus 0)_t, z_t) + \int_{\bar{c}}^t f(\tau, (\phi \oplus 0)_\tau, y_\tau) d\tau \left. \right\} \right| \leq \\ & \leq \bar{b} + \gamma \bar{b} + \gamma \bar{b} + \gamma \bar{b} < \bar{b}, \end{aligned}$$

therefore $T + S : \mathcal{A}(\bar{a}, \bar{b}) \rightarrow \mathcal{A}(\bar{a}, \bar{b})$. It is not difficult to show that S is continuous. Moreover, S is compact, since for every $t_1, t_2 \in [6-r, 6+\bar{a}]$

$$|(Sz)(t_1) - (Sz)(t_2)| \leq \frac{1}{2} \bar{b}.$$

This completes the proof of Lemma 1.

Lemma 1 yields the existence of a fixed point of $T + S$ in $\mathcal{A}(\bar{a}, \bar{b})$ (see [5], Lemma 2.1) and thus a solution of (1) through $(6, \emptyset)$. Then the proof of Theorem 1 is completed.

Remark. Theorem 1 will be true in the case of the multivalued mapping $F : \Omega \rightarrow \text{Comp}(\mathbb{R}^n)$ if F is an M -mapping such that F is measurable on Ω , $F(t, \cdot)$ is lower semicontinuous for each fixed t and $\text{pr}_R(\Omega)$ has a finite measure, where $\text{pr}_R(\Omega)$ denotes the projection of Ω on the real line. Then, in virtue of [1] ΩF has a Carathéodory selector f and the proof of Theorem 1 will be analogous.

REFERENCES

- [1] Z. Artstein, K. Prikry: Carathéodory selections and the Scorza Dragoni property, J. Math. Anal. Appl. 127 (1987) 540-547.
- [2] C. Castaing: À propos de l'existence des sections séparément mesurables et séparément continues d'une multi-application séparément mesurables et séparément semi-continue inférieurement, Séminaire d'Analyse Convexe, Montpellier 1976, Ex.6.
- [3] C.J. Himmelberg: Measurable relations, Fund. Math. 87 (1975) 53-72.
- [4] J.K. Hale: Forward and backward continuation for neutral functional-differential equations, J. Diff. Equations 9 (1971) 168-181.
- [5] J.K. Hale, M.A. Cruz: Existence, uniqueness and continuous dependence for hereditary systems, Ann. Math. Pura Appl. 85 (1970) 63-82.

INSTITUTE OF MATHEMATICS AND PHYSICS, HIGHER COLLEGE OF ENGINEERING, 65-246 ZIELONA GÓRA, POLAND

Received October 13, 1988.

