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THE NUMBER OF GENERATORS
OF THE ALGEBRA OF KAHLER DIFFERENTIALS

In this paper R denotes an integrity domain (i.e. R is a commuta-
tive ring with unit without zero divisors), R is the field of fractions
of R and A is an associative and commutative R-algebra with a unit
and containing R as a subalgebra.

Associated with A we have the A-module of Kahler differentials

Qp (A) defined by
2
Qpla) = 1/1

where 1 is the kernel of the multiplication AG’R A —A.

The purpose of this paper is to find lower bounds for the number
of generators of .QR(A). n particular we show that for most algebras
of real continuous functions the cardinal of any set of generators of
QR(A) is at least that of the real numbers. This is in contrast to the
A-module of derivations of A in A, DerR(A,A) , which is the dual of
QR(A) and is zero for A = CR(X) (algebra of real continuous func-

tions on any topological space X).

(1) Definition of n(p). 1Let p be a prime ideal of A such
that PN R = O and let kp be the field of fractions of A/p (which is ca-
nonically isomorphic to the residue field of the local ring Ap). We de-
fine then n(p) as the degree of transcendence of the canonical inclu-
sion Rc kp.
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2 F. Gémez

(2) Theorem. Let p be as above, then n(p) is a lower bound for
the cardinal of any set of generators of .QR(A).
Proof. Let Rp be the algebraic closure of R in kp and consi-

der the homomorphisms of kp-vector spaces

2p Uep) 25 (0 ) =g, Uiy

As a consequence of the first fundamental exact sequence, see
page 186 of [3], we obtain that the left map is an isomorphism (be-
cause .QR(ﬁ) = 0) and the right map is an epimorphism, which is also
an isomorphism whenever the characteristic of R is zero.

Therefore

(3) dimkp.QR(kp) adimQRp(kp) = n(p).

We consider next the composite of the following sequence of homo-

morphisms of kp-vector spaces, which are defined in the obvious way,

(4) kn® .0 (A) Zek,o,(Ale,0(A)) —=k;@,Q, (Afp) == 2, (ky)
POAR Y PA P®A*R ) P%A%R (o) R
where (a) is clearly an isomorphism, (b) is an epimorphism because
of the second fundamental exact sequence, see page 187 of [3], and

(¢) is an isomorphism since QR commutes with formation of fractions.

Therefore (3) and (4) yield

(5) dir:uk (kp @AQR(A)) =nlp).
p

Finally, if (ori)ieI is any set of generators of QR(A) as an A-mo-

dule we have an epimorphism & A —-QR(A) which sends (ai)iel to
iel

Z ao, and so we obtain an epimorphism of kp vector spaces

iel

1:[ ky ——ky OAQR(A) and this, together with (5), shows that

ITi 2n(p), where |11l denotes the cardinal of 1. Q.E.D.
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The number of generators 3

(6) Proposition. Let {ai}iel be a set of elements of A such that
the canonical map R [(Xi)iel] —=R [(ai)iel] is an isomorphism (i.e.
the elements a, are algebraically independent over R). There exists
then a prime ideal p of A with p NR = O and such that the canonical
image of the elements a, in kp are algebraically independent over R
and so |I|sn(p). In particular we have, because of theorem (2),
that |1| is a lower bound for the cardinal of any set of generators

of .QR(A).

Proof. Let p be an ideal of A which is maximal among those
ideals p of A such th&th[(ai)ieI] Np=0. The ideal. p is clearly
prime because of the hypothesis on ai} iel and the canonical images of
the a, in kp are algebraically independent over R because

pAR [(a), ] = 0. QE.D.

Remark. The idea for considering A/p, where p 1is a prime

ideal satisfying p ﬂR[(ai)] iel = 0, was given to me by R. Swan.

(7) Proposition. If da =0 for aec A, then a is a zero of a
nonzero polynomial in R[X]. Here d denotes the universal deriva-
tion on A, d:A-——_QR(A), which sends x to dx = class of (x®1 - 18x)
modulo 12 (with [ = kernel of the multiplication A @, A —=A).

Proof. If a was not a zero of any nonzero polynomial of
R[X], proposition (6) would imply the existence of a prime ideal p
of A such that the image a of a in kp would be transcendental
over R. Therefore da # O and so da # 0, which would contradict our

hypothesis.
(8) Theorem. Let A be a subalgebra of the algebra CR(X) of

real continuous functions on a topological space X. Then QR(A) =0

if and only if each element of A has finite image.
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Proof. Assume QR(A) = 0. Thus df = O for all fe. A and now (7)
implies that we have A, *+ 7\1f + ...+ Anfn = 0 with 2 € R (i=0,...,n),
An £ 0. This shows that f takes only a finite number of values.

Conversely assume that each element of A takes only a finite num-
ber of vqlues. Let 7\1,. . ’7‘n be the nonzero values taken by fe A with
A ¢ 7\]. if i £ j. The sets X, = {xe X|£(x) = ?\i} (i=1,...,n) are both
open and closed and so they are union of connected components of X.
Then 1,f,... ,fn-l is a basis of the real vector space R[f] because

of the following determinant (Vandermonde) being nonzero:

1 ... 1
Ay e Ay
- T (-2,
s 1]
. i>j
n-1 n-1
S
In particular the functions e (i=1,...,n) equal 1 on X, and 0]

on X'Xi belong to R[f ] and they consitute a basis. Now, since

n

f = Z’ A.e. and e.2 = ¢, we have df = O in view of the following
s B RR i i v

lemma. Q.E.D.

(9) Lemma, Let x be an idempotent element of A (i.e. x2 =x),
then dx = 0. In particular _QR(A) = 0 if A is generated by idempotent

elements.

Proof. x®1 . 1®8x = (x®1 - x®x)2 - (1ex - x@x)zelz
where 1 is the kernel of the multiplication AORA —= A. Therefore

dx = 0. Q.E.D.

(10) Theorem. Let A be a subalgebra of the algebra of real conti-
nuous functions Cp(X), on an arbitrary topological space X and assume
that there exists a function fe€ A satisfying the following three proper-

ties:
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a) f is nonnegative,

b) fr € A for each positive real number r,

c¢) f takes arbitrarily small positive values.
In these hypotheses any set of generators of S?R(A) has cardinal at
least that of the real numbers.

Proof. The idea for this proof is taken from theorem on page
173 of [2].

Let fe A satisfying (a), (b) and (c) above and choose a family
of positive real numbers (ri)iel which are taken to be §-linearly in-

dependent and with 1 having the cardinal of the reals. We show now that
r,
the functions (f 1) iel are R-algebraically independent and this completes

the proof by using propesition (6).
Let P be a real polynamial in the variables (Xi)ieI and suppose
Pe R[Xl, . ,Xq] . Assume that P has m distinct monomials with non-

zero coefficients (m>1):

ul 1 fr1
P = kZl, aXy . X O with &y £ 0 (ks=l,...,m) and

(nkl""’nkq) = (nk.l,...,nk,q)ék =K.

T T
We want to show that P(f 1,... £ %) £ 0. Let xe X, we have then
T T m r .. 4T
P(f 1,...,f ) (x) = Z a.kf(x) 17k1 anq.
k=1

Set s =Tyn, + ... +ranq (k = 1,...,m).

The numbers s, are clearly nonnegative and distinct because when-
q
ever s, = s, We have Z‘ ri(nki-nk i) = 0 and so, the r, being Q-li-

i=1
nearly independent, o= Ty (i=1,..,,q). Thus k = K.
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6 F. Gémez

Let s, be the minimum of {s 9.+ 3sS } and write
j 1 m

m s s, s, -8,
3. a f(x) Ko px) o, + 2 a,flx) k ]> with s, -s.>0 for all k £ 3j.
k=1 U wE kT

But now, since f takes arbitrarily small positive values, there

exists x ¢ X such that f{x)> 0 and

| 2 a0 €< o
f(x) |< al.
K ’
S-S
Therefore, for this x, we have that a, + Z a, f(x) } has the
kej

same sign as a,. In particular it is nonzero and therefore
m

*k
Y, aflx) © 40. Q.E.D.
k=1

(11) Theorem. 1If we replace condition {c) of theorem (10) by
condition (d) below, the same result holds.
(@) f(X) has nonempty interior in R.

Proof. We follow word for word the proof of (10) until we have
m sk )
Z a, f(x) ~ with all s, 20 and distinct.
k=1 k k

Condition (d) implies the existence of an interval [a,b] contained

in f(X) and such that a>0. Choose then a real number A such that

0<A<1 and A“‘>% . Therefore

acbA™<ba™ 1o <ba<h.

But now, by hypothesis, ‘there exist points Xqeee s X in X such

that f(xk) - b?\k (k=1,...,m) and we have
1 sm

f(xl) f(xl) sl+...+sm’\sl+...+sm s s

: -b - JT(tr-adh 4o

) sy ) Sh i>j
flx ) fx_ )

m m
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The number of generators 7

m s
Thus, Z al’f(xi) k # O for some i, because if not we had
k=1 *
= 0 (k=1,...,m) contrary to our hypothesis. This shows that

A
T

P(f 1,...,;‘*) 0.

(12) Remark. Condition (d) of theorem (11) above can be, of course,
replaced by the following weaker condition, which is really what is
used in the proof:

(d') For each finite set of nonnegative distinct real numbers SyreeeaS
there exist real numbers ?\1,. - ’)m in the image of f such that

-] s
1 m
M M
40
S S
Al a ™
m m

(13) Definition, For each topological space X there exists a com-
pletely regular space X' and a surjective continuous map r :X —=X'
such that f —= for is an isomorphism from CRX' onto CRX t(see
Theorem 3.9 page 41 of [2]). The space X' is the quotient of X by
the equivalence relation x~ x'<= f(x) = f(x') for all f € CRX (i.e.
it identifies points that camnot be separated by real continuous func-
tions). X' is endowed with the weak topology with respect to the fa-
mily of maps {f:X'—'- lerecR (X)} where 7:X —X' is the canonical

map. We say that X' is the completely regular space associated to X.

(14) Corollary (of Theorem 10). Let X be a topological space whose
completely regular space associated have infinite by many points, then
any set of generators of S?R(CR(X)) has at least the cardinal of the

reals.
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Proof. a) Suppose first that X is not pseudocompact, i.e. there

exists a non bounded function g € CR(X). Define then f = ! 5. Itis
1+g
clear that f satisfies conditions (a), (b) and (c) of Theorem (10)

and so the Corollary holds in this case,

b) Suppose now that X is pseudocompact, then its associate com-
pletely regular space X' is again pseudocompact and has an infinite
number of points by hypothesis. Let 8X' be the Stone-éech compacti-

fication of X' and we have isomorphisms
CRBX) — = LX) — = ()

1

(i:X'<«pX' and r:X —X' is’the canonical projection). Let X, be

a connected component of /3_x' having at least two points. Tt exists
because if all components of BX' were points, AX' would have a finite
number of points and the same wouid happen to X" contrary to our
hypothesis. Let f:AX'—= R be continuous not vanishing identically

on Xo, but having one zero in Xo' 'Clearly f2 gatisfies the hypothesis

of Theorem (10) and so the Corollary also holds now.

(15)Corollary (of Theorem 11). Let X be a C®-manifold of dimen-
sion n> 1, Then the cardinal of any set of generators of QR(C‘”(X))
is at least that of the real numbers,

Proof. It is clear the existence of a function fe C™(X) such
that is positive and f{X) has nonempty interior. Then we apply theo-
rem (11) since f  is also C* for all r>0 since we are away from

zero.

(16) Theorem. Let X be a C*™ manifold of dimension n20 and let
¢: .QR(C“(X)) —= AY(X) be the canonical epimorphism, where Altx)
denotes the C* 1-forms on X and ¢ is the unique homomorphism of

C”(X)-modules making commutative the diagram
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The number of generators 9

c*(X) Alx)
d )
QR(C (x)

Then ¢ is an isomorphism if and only if X consists of a finite
number of points, and then both QR(C(”(X)) and Al(X) are zero.

Proof. Tt is an easy consequence of (14) and (15) together
with the fact that Al(X) is a finitely generated C™(X)-module when X

is connected, see Corollary on page 107 of [1]).

(17)Remark. 1 X is a C” manifold with an infinite number of com-
ponents we have two differentials defined on C*™(X): the algebraic
differential d:C*™(X) —-QR(C“(X)) and the usual exterior derivative
d:C¥(X) — AI(X) . We have shown that the functions with zero dif-
ferential are not the same for both ,. since if f 1is constant on each
component but having an infinite image the algebraic differential is

nonzero but the usual exterior derivative is zero.
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