

Francisco Gómez

**THE NUMBER OF GENERATORS
OF THE ALGEBRA OF KÄHLER DIFFERENTIALS**

In this paper R denotes an integrity domain (i.e. R is a commutative ring with unit without zero divisors), \tilde{R} is the field of fractions of R and A is an associative and commutative R -algebra with a unit and containing R as a subalgebra.

Associated with A we have the A -module of Kähler differentials $\Omega_R(A)$ defined by

$$\Omega_R(A) = I/I^2$$

where I is the kernel of the multiplication $A \otimes_R A \rightarrow A$.

The purpose of this paper is to find lower bounds for the number of generators of $\Omega_R(A)$. In particular we show that for most algebras of real continuous functions the cardinal of any set of generators of $\Omega_R(A)$ is at least that of the real numbers. This is in contrast to the A -module of derivations of A in A , $\text{Der}_R(A, A)$, which is the dual of $\Omega_R(A)$ and is zero for $A = C_R(X)$ (algebra of real continuous functions on any topological space X).

(1) **Definition of $n(\mathfrak{p})$.** Let \mathfrak{p} be a prime ideal of A such that $\mathfrak{p} \cap R = 0$ and let $k_{\mathfrak{p}}$ be the field of fractions of A/\mathfrak{p} (which is canonically isomorphic to the residue field of the local ring $A_{\mathfrak{p}}$). We define then $n(\mathfrak{p})$ as the degree of transcendence of the canonical inclusion $\tilde{R} \subset k_{\mathfrak{p}}$.

(2) Theorem. Let \mathfrak{p} be as above, then $n(\mathfrak{p})$ is a lower bound for the cardinal of any set of generators of $\Omega_R(A)$.

Proof. Let $R_{\mathfrak{p}}$ be the algebraic closure of \tilde{R} in $k_{\mathfrak{p}}$ and consider the homomorphisms of $k_{\mathfrak{p}}$ -vector spaces

$$\Omega_R(k_{\mathfrak{p}}) \xrightarrow{\cong} \Omega_{\tilde{R}}(k) \rightarrow \Omega_{R_{\mathfrak{p}}}(k_{\mathfrak{p}}).$$

As a consequence of the first fundamental exact sequence, see page 186 of [3], we obtain that the left map is an isomorphism (because $\Omega_R(\tilde{R}) = 0$) and the right map is an epimorphism, which is also an isomorphism whenever the characteristic of R is zero.

Therefore

$$(3) \quad \dim_{k_{\mathfrak{p}}} \Omega_R(k_{\mathfrak{p}}) \geq \dim \Omega_{R_{\mathfrak{p}}}(k_{\mathfrak{p}}) = n(\mathfrak{p}).$$

We consider next the composite of the following sequence of homomorphisms of $k_{\mathfrak{p}}$ -vector spaces, which are defined in the obvious way,

$$(4) \quad k_{\mathfrak{p}} \otimes_A \Omega_R(A) \xrightarrow[\text{(a)}]{\cong} k_{\mathfrak{p}} \otimes_A (A/\mathfrak{p} \otimes_A \Omega_R(A)) \xrightarrow[\text{(b)}]{} k_{\mathfrak{p}} \otimes_A \Omega_R(A/\mathfrak{p}) \xrightarrow[\text{(c)}]{\cong} \Omega_R(k_{\mathfrak{p}})$$

where (a) is clearly an isomorphism, (b) is an epimorphism because of the second fundamental exact sequence, see page 187 of [3], and (c) is an isomorphism since Ω_R commutes with formation of fractions.

Therefore (3) and (4) yield

$$(5) \quad \dim_{k_{\mathfrak{p}}} (k_{\mathfrak{p}} \otimes_A \Omega_R(A)) \geq n(\mathfrak{p}).$$

Finally, if $(\alpha_i)_{i \in I}$ is any set of generators of $\Omega_R(A)$ as an A -module we have an epimorphism $\bigoplus_{i \in I} A \rightarrow \Omega_R(A)$ which sends $(a_i)_{i \in I}$ to $\sum_{i \in I} a_i \alpha_i$, and so we obtain an epimorphism of $k_{\mathfrak{p}}$ vector spaces

$\bigoplus_{i \in I} k_{\mathfrak{p}} \rightarrow k_{\mathfrak{p}} \otimes_A \Omega_R(A)$ and this, together with (5), shows that $|I| \geq n(\mathfrak{p})$, where $|I|$ denotes the cardinal of I . Q.E.D.

(6) **Proposition.** Let $\{a_i\}_{i \in I}$ be a set of elements of A such that the canonical map $R[(X_i)_{i \in I}] \rightarrow R[(a_i)_{i \in I}]$ is an isomorphism (i.e. the elements a_i are algebraically independent over R). There exists then a prime ideal p of A with $p \cap R = 0$ and such that the canonical image of the elements a_i in k_p are algebraically independent over R and so $|I| \leq n(p)$. In particular we have, because of theorem (2), that $|I|$ is a lower bound for the cardinal of any set of generators of $\Omega_R(A)$.

Proof. Let p be an ideal of A which is maximal among those ideals p of A such that $R[(a_i)_{i \in I}] \cap p = 0$. The ideal p is clearly prime because of the hypothesis on $\{a_i\}_{i \in I}$ and the canonical images of the a_i in k_p are algebraically independent over R because $p \cap R[(a_i)_{i \in I}] = 0$. Q.E.D.

Remark. The idea for considering A/p , where p is a prime ideal satisfying $p \cap R[(a_i)_{i \in I}] = 0$, was given to me by R. Swan.

(7) **Proposition.** If $da = 0$ for $a \in A$, then a is a zero of a nonzero polynomial in $R[X]$. Here d denotes the universal derivation on A , $d: A \rightarrow \Omega_R(A)$, which sends x to $dx = \text{class of } (x \otimes 1 - 1 \otimes x)$ modulo I^2 (with $I = \text{kernel of the multiplication } A \otimes_R A \rightarrow A$).

Proof. If a was not a zero of any nonzero polynomial of $R[X]$, proposition (6) would imply the existence of a prime ideal p of A such that the image \bar{a} of a in k_p would be transcendental over \bar{R} . Therefore $d\bar{a} \neq 0$ and so $da \neq 0$, which would contradict our hypothesis.

(8) **Theorem.** Let A be a subalgebra of the algebra $C_R(X)$ of real continuous functions on a topological space X . Then $\Omega_R(A) = 0$ if and only if each element of A has finite image.

Proof. Assume $\Omega_R(A) = 0$. Thus $df = 0$ for all $f \in A$ and now (7) implies that we have $\lambda_0 + \lambda_1 f + \dots + \lambda_n f^n = 0$ with $\lambda_i \in R$ ($i=0, \dots, n$), $\lambda_n \neq 0$. This shows that f takes only a finite number of values.

Conversely assume that each element of A takes only a finite number of values. Let $\lambda_1, \dots, \lambda_n$ be the nonzero values taken by $f \in A$ with $\lambda_i \neq \lambda_j$ if $i \neq j$. The sets $X_i = \{x \in X | f(x) = \lambda_i\}$ ($i=1, \dots, n$) are both open and closed and so they are union of connected components of X . Then $1, f, \dots, f^{n-1}$ is a basis of the real vector space $R[f]$ because of the following determinant (Vandermonde) being nonzero:

$$\begin{vmatrix} 1 & \dots & 1 \\ \lambda_1 & \dots & \lambda_n \\ \vdots & & \vdots \\ \lambda_1^{n-1} & \dots & \lambda_n^{n-1} \end{vmatrix} = \prod_{i>j} (\lambda_i - \lambda_j).$$

In particular the functions e_i ($i=1, \dots, n$) equal 1 on X_i and 0 on $X - X_i$ belong to $R[f]$ and they constitute a basis. Now, since

$f = \sum_{i=1}^n \lambda_i e_i$ and $e_i^2 = e_i$ we have $df = 0$ in view of the following lemma. Q.E.D.

(9) Lemma. Let x be an idempotent element of A (i.e. $x^2 = x$), then $dx = 0$. In particular $\Omega_R(A) = 0$ if A is generated by idempotent elements.

Proof. $x \otimes 1 - 1 \otimes x = (x \otimes 1 - x \otimes x)^2 - (1 \otimes x - x \otimes x)^2 \in I^2$ where I is the kernel of the multiplication $A \otimes_R A \rightarrow A$. Therefore $dx = 0$. Q.E.D.

(10) Theorem. Let A be a subalgebra of the algebra of real continuous functions $C_R(X)$, on an arbitrary topological space X and assume that there exists a function $f \in A$ satisfying the following three properties:

- a) f is nonnegative,
- b) $f^r \in A$ for each positive real number r ,
- c) f takes arbitrarily small positive values.

In these hypotheses any set of generators of $\Omega_R(A)$ has cardinal at least that of the real numbers.

Proof. The idea for this proof is taken from theorem on page 173 of [2].

Let $f \in A$ satisfying (a), (b) and (c) above and choose a family of positive real numbers $(r_i)_{i \in I}$ which are taken to be Q -linearly independent and with I having the cardinal of the reals. We show now that the functions $(f^{r_i})_{i \in I}$ are R -algebraically independent and this completes the proof by using proposition (6).

Let P be a real polynomial in the variables $(X_i)_{i \in I}$ and suppose $P \in R[X_1, \dots, X_q]$. Assume that P has m distinct monomials with non-zero coefficients ($m \geq 1$):

$$P = \sum_{k=1}^m a_k X_1^{n_{k1}} \dots X_q^{n_{kq}} \text{ with } a_k \neq 0 \quad (k=1, \dots, m) \text{ and}$$

$$(n_{k1}, \dots, n_{kq}) = (n_{k'1}, \dots, n_{k'q}) \Leftrightarrow k = k'.$$

We want to show that $P(f^{r_1}, \dots, f^{r_q}) \neq 0$. Let $x \in X$, we have then

$$P(f^{r_1}, \dots, f^{r_q})(x) = \sum_{k=1}^m a_k f(x)^{r_1 n_{k1} + \dots + r_q n_{kq}}.$$

Set $s_k = r_1 n_{k1} + \dots + r_q n_{kq}$ ($k = 1, \dots, m$).

The numbers s_k are clearly nonnegative and distinct because whenever $s_k = s_{k'}$, we have $\sum_{i=1}^q r_i (n_{ki} - n_{k'i}) = 0$ and so, the r_i being Q -linearly independent, $n_{ki} = n_{k'i}$ ($i=1, \dots, q$). Thus $k = k'$.

Let s_j be the minimum of $\{s_1, \dots, s_m\}$ and write

$$\sum_{k=1}^m a_k f(x)^{s_k} = f(x)^{s_j} \left(a_j + \sum_{k \neq j} a_k f(x)^{s_k - s_j} \right) \text{ with } s_k - s_j > 0 \text{ for all } k \neq j.$$

But now, since f takes arbitrarily small positive values, there exists $x \in X$ such that $f(x) > 0$ and

$$\left| \sum_{k \neq j} a_k f(x)^{s_k - s_j} \right| < |a_j|.$$

Therefore, for this x , we have that $a_j + \sum_{k \neq j} a_k f(x)^{s_k - s_j}$ has the same sign as a_j . In particular it is nonzero and therefore $\sum_{k=1}^m a_k f(x)^{s_k} \neq 0$. Q.E.D.

(11) Theorem. If we replace condition (c) of theorem (10) by condition (d) below, the same result holds.

(d) $f(X)$ has nonempty interior in \mathbb{R} .

Proof. We follow word for word the proof of (10) until we have $\sum_{k=1}^m a_k f(x)^{s_k}$ with all $s_k \geq 0$ and distinct.

Condition (d) implies the existence of an interval $[a, b]$ contained in $f(X)$ and such that $a \geq 0$. Choose then a real number λ such that $0 < \lambda < 1$ and $\lambda^m > \frac{a}{b}$. Therefore

$$a < b\lambda^m < b\lambda^{m-1} < \dots < b\lambda < b.$$

But now, by hypothesis, there exist points x_1, \dots, x_m in X such that $f(x_k) = b\lambda^k$ ($k=1, \dots, m$) and we have

$$\begin{vmatrix} f(x_1)^{s_1} & \dots & f(x_1)^{s_m} \\ \vdots & \vdots & \vdots \\ f(x_m)^{s_1} & \dots & f(x_m)^{s_m} \end{vmatrix} = b^{s_1 + \dots + s_m} \lambda^{s_1 + \dots + s_m} \prod_{i > j} (\lambda^{s_i} - \lambda^{s_j}) \neq 0.$$

Thus, $\sum_{k=1}^m a_k f(x_i)^{s_k} \neq 0$ for some i , because if not we had $a_k = 0$ ($k=1, \dots, m$) contrary to our hypothesis. This shows that $P(f^{r_1}, \dots, f^{r_q}) \neq 0$.

(12) Remark. Condition (d) of theorem (11) above can be, of course, replaced by the following weaker condition, which is really what is used in the proof:

(d') For each finite set of nonnegative distinct real numbers s_1, \dots, s_m , there exist real numbers $\lambda_1, \dots, \lambda_m$ in the image of f such that

$$\begin{vmatrix} s_1 & \dots & s_m \\ \lambda_1 & \dots & \lambda_1 \\ \vdots & & \vdots \\ s_1 & \dots & s_m \\ \lambda_m & \dots & \lambda_m \end{vmatrix} \neq 0.$$

(13) Definition. For each topological space X there exists a completely regular space X' and a surjective continuous map $\tau: X \rightarrow X'$ such that $f \rightarrow f \circ \tau$ is an isomorphism from $C_R(X')$ onto $C_R(X)$ (see Theorem 3.9 page 41 of [2]). The space X' is the quotient of X by the equivalence relation $x \sim x' \iff f(x) = f(x')$ for all $f \in C_R(X)$ (i.e. it identifies points that cannot be separated by real continuous functions). X' is endowed with the weak topology with respect to the family of maps $\{f: X' \rightarrow \mathbb{R} \mid f \circ \tau \in C_R(X)\}$ where $\tau: X \rightarrow X'$ is the canonical map. We say that X' is the completely regular space associated to X .

(14) Corollary (of Theorem 10). Let X be a topological space whose completely regular space associated have infinite by many points, then any set of generators of $\Omega_R(C_R(X))$ has at least the cardinal of the reals.

Proof. a) Suppose first that X is not pseudocompact, i.e. there exists a non bounded function $g \in C_R(X)$. Define then $f = \frac{1}{1+g}$. It is clear that f satisfies conditions (a), (b) and (c) of Theorem (10) and so the Corollary holds in this case.

b) Suppose now that X is pseudocompact, then its associate completely regular space X' is again pseudocompact and has an infinite number of points by hypothesis. Let $\beta X'$ be the Stone-Čech compactification of X' and we have isomorphisms

$$C_R(\beta X') \xrightarrow[i^*]{\cong} C_R(X') \xrightarrow[\tau^*]{\cong} C_R(X)$$

($i: X' \hookrightarrow \beta X'$ and $\tau: X \rightarrow X'$ is the canonical projection). Let X_0 be a connected component of $\beta X'$ having at least two points. It exists because if all components of $\beta X'$ were points, $\beta X'$ would have a finite number of points and the same would happen to X' contrary to our hypothesis. Let $f: \beta X' \rightarrow \mathbb{R}$ be continuous not vanishing identically on X_0 , but having one zero in X_0 . Clearly f^2 satisfies the hypothesis of Theorem (10) and so the Corollary also holds now.

(15) Corollary (of Theorem 11). Let X be a C^∞ -manifold of dimension $n \geq 1$. Then the cardinal of any set of generators of $\Omega_R(C^\infty(X))$ is at least that of the real numbers.

Proof. It is clear the existence of a function $f \in C^\infty(X)$ such that is positive and $f(X)$ has nonempty interior. Then we apply theorem (11) since f^r is also C^∞ for all $r > 0$ since we are away from zero.

(16) Theorem. Let X be a C^∞ manifold of dimension $n \geq 0$ and let $\phi: \Omega_R(C^\infty(X)) \rightarrow A^1(X)$ be the canonical epimorphism, where $A^1(X)$ denotes the C^∞ 1-forms on X and ϕ is the unique homomorphism of $C^\infty(X)$ -modules making commutative the diagram

$$\begin{array}{ccc}
 C^\infty(X) & \xrightarrow{d} & A^1(X) \\
 \downarrow d & & \nearrow \phi \\
 \Omega_R(C^\infty(X)) & &
 \end{array}$$

Then ϕ is an isomorphism if and only if X consists of a finite number of points, and then both $\Omega_R(C^\infty(X))$ and $A^1(X)$ are zero.

Proof. It is an easy consequence of (14) and (15) together with the fact that $A^1(X)$ is a finitely generated $C^\infty(X)$ -module when X is connected, see Corollary on page 107 of [1]).

(17) **Remark.** If X is a C^∞ manifold with an infinite number of components we have two differentials defined on $C^\infty(X)$: the algebraic differential $d: C^\infty(X) \rightarrow \Omega_R(C^\infty(X))$ and the usual exterior derivative $d: C^\infty(X) \rightarrow A^1(X)$. We have shown that the functions with zero differential are not the same for both, since if f is constant on each component but having an infinite image the algebraic differential is nonzero but the usual exterior derivative is zero.

REFERENCES

- [1] W. Greub, S. Halperin, R. Vanstone: Connections, Curvature and Cohomology, vol. I, Academic Press (1972).
- [2] L. Gillman, M. Gerison: Rings of continuous functions. Springer Verlag (1976).
- [3] H. Matsumura: Commutative Algebra, 2nd Ed., Benjamin (1980).

DEPARTAMENTO DE ALGEBRA, GEOMETRIA Y TOPOLOGIA,
 FACULTAD DE CIENCIAS, UNIVERSIDAD DE MÁLAGA,
 29080 MÁLAGA, ESPAÑA

Received October 5, 1988.

