DEMONSTRATIO MATHEMATICA

Yol. X0 No2 1990

B.G. Pachpatte

ON ABSTRACT SECOND ORDER DIFFERENTIAL EQUATIONS

1. Introduction

In this paper we study the problem

(1) u’ (1) + Au' (1) + Bult) = £f(t,ult)),
(2) u(0) = é, u'(0) = v,
in an arbitrary Banach space E with norm |I*l, where A, B are

usually unbounded linear operators in E and fe C[IxE,EJ y I = [O,a] ,
a>0. Equation (1) serves as an abstract model for the semilinear
versions of the wave equation, the telegraph equation, and the equa-
tion of motion for a vibrating plate (see[ 1]). In [11] there was used
a factoring technique and the method of successive approximations to
study the existence, uniqueness and stability of solutions of (1), (2)
(see also [1]-[4], [10]-[23], [15D).

In this paper we use the theory of infinitesimal generator of
(Co)-semigroup in a Banach space, a factoring technique and the gene-
ral method of successive approximations based on the idea of Wazewski
[14] (see also [6]-[8]). The results obtained here are nonlocal and

the required conditions differ from those in [11].

2, Statement of results .
The set of bounded linear operators {T(t); teR' := [0,00)} is

a (Co)-semigroup on E, if
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2 B.G. Pachpatte

(1)  T(t+s) = T()T(s) = T(s)T(s), t,s>0,
(it)  T(0) = 1 (the identity operator) ,

(iii) T(-) is strongly continuous in te rRY,
(iv) 1T(th<Q ' for some Q,u>0, teR".
The operator A is the generator of T(-), if

Ag = lim ((T(h) ;IT(O))>¢
h=0*

and D{(A), the domain of A, is the set of ¢p ¢ E for which the limit
exists. Formally T(t) ¢ satisfies the Cauchy problem

(3) u'(t) = Ault), ul0) =¢.

¥ ¢eD(A), then u(-)eCl(R+,E) and (3) holds. More generally,
u(t) = T(t)¢ is said to be a mild solution of (3) when ¢¢ D(A).
Following [11] , we assume the existence of linear (possibly unbounded)
operators Al’ A2 such that Al + A2 s -A, A2A1 = B and A]. generates
the (Co)-semigroup T]., j = 1,2, The operators Al, A2 need not com-
mute. For the elementary properties of strongly continuous semigroups
we refer to [5], [9].

We say that a function u is a mild solution of (1), (2), if u is

continuous and satisfies

-t T
(4) u(t) = uo(t) +ff Tl(t-t’)Tz(r-s)f(s,u(s))dsdr,
00
where
t
(5) u (t) = Tl(t)¢+j T, (-0 T, (7)(g-A, pdT
0
and ¢eD(A1.).
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Second order differential equations 3

By letting z{t) = f(t,ult)), we rewrite (4) as

t T
(6) z(t) + f<t,u°(t) +ffTl(t-t)Tz(T-s)z(s)dsd'L>.
00

Now, by substituting F(t,r) = f(t,uo(t) + 1) in (6), we get an integral

equation of the form
t T

(7 z(t) = F<t,fle(t-r)Tz(r-s)z(s)dsdr =: Lz(t).
00

We make the following hypotheses used throughout this paper.
(Hl) Assume that:
(i) there exists a continuous function g:IxR+—- rRY nondecreasing
with respect to r such that g(t,0) = 0,
(ii) for (t,yl), (t,yz) ¢ IxE there is

“F(t,yl) - F(t,y2)||$8(tr”yl - YZH)'

(H2) There exists a continuous function T : 1 —= R satisfying the

inequality Mr(t) + p(t)<r(t), where

t T
(8) Mr(t) = g<t, szjr(s)dsdt) ,
0%

(9) plt) = sup ||F(g, O]
Ogést

and N> 0 is a constant.
(H3) In the set of functions, satisfying the condition O0<r(t)<¥(t) for
te 1, the function r such that r(t) = O for tel is the only mea-

surable solution of the equation

(10) r(t) = Mr(t), tel.
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Define the sequence {zn} by the relations

(11) zo(t) = 0, zn+1(t) - LG(t),.

for tel, n = 0,1,2,...
To prove the convergence of {z } to the solution Z of (7), we

define the sequence {rn} by the relations
(12) ro(t) = T(t), rn+1(t) = Mrn(t),

for tel, n = 0,1,2,..., where T(t) is defined in hypothesis (HZ)'
Theorem 1. Let the hypotheses (Hl)-(Hs) " hold. Then there
exists a continuous solution Z(t), tel, of equation (7). The sequence

{zn} defined by (11) converges uniformly to Z in | and the following

estimates
(13) lIZ(t) - zn(t)||$rn(t), tel, n =0,1,2,...,
(14) Nz« r(t), tel,

hold. Moreover, the solution Z of equation (7) is unique in the set
of functions satisfying the condition (14).

The next theorem gives conditions under which equation (7) has
at most one solution. These conditions do not guarantee the existence
of a solution of equation (7).

Theorem 2. Let hypothesis (Hl) be fulfilled. Tf the function
r, v{t)=0, tel, is the only nonnegative, finite and measurable solution

of the inequality
(15) r{t)<Mr(t), tel,

then equation (7) has at most one solution in 1.

Consider now the equation

t T
(16) v(t) = H<t,ffTl(t-t)Tz(T-s)v(s)dsd't> ,
00

where He C[IxE, EJ.
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Second order differential equations 5

Theorem 3. Assume that the hypothesis (H,) holds and
(i) Z and ¥ are solutions of equations (7) and (16), respectively,

(ii) the sequence {hn(t)}, tel, defined by the relations

ho(t)>||2(t)ll + W,

(17)

hn+1(t) - =th(t) + qlt).
for tel, n = 0,1,2,..., where
(18) q(t) = ILw(e) - w0,

has the limit h(t) for te 1. Then we have
(19) 1z(t) - #(t)]l<hlt), tel.

Remark 1. We note that Theorems 1-3 also yield the existen-
ce, uniqueness, error estimations and stability of the solutions of
equivalent integral equation (4) and, consequently, of the mild solu-
tions of the problem (1), (2). As shown in [11], Theorems 1-3 can
be also extended to the initial value problems for a large class of

partial differential equations.

3. Proofs of Theorems 1-3
Lemma 1. Tf the condition (i) of hypothesis (Hl) and hypothe-
ses (HZ)—(Hs) are satisfied, then

(20) Osrn+1(t)s rn(t)s (1),

for tel, n = 0,1,2,... and rn=>0 for n—e oo , where =2 denotes
the uniform convergence in 1.

The relation (20) follows by induction, in view of (12). But (20).
implies the convergence of L to some nonnegative measurable func-
tion m(t) such that 0<m(t) ¥(t) for te 1. By the Lebesque theorem
and the continuity of g, the function m(t) satisfies (10) and, by
(H3)’ we have m(t) =0, te 1. The uniform convergence of {rn} in 1

follows from the Dini theorem. This completes the proof of Lemma 1.
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In order to prove Theorem 1, first we prove that the sequence

{zn(t)} defined by (11) satisfies the conditions

(21) ||zn(t)[|$1_*(t), tel, n = 0,1,2,...

Obviously, || zo(t)" = 0<¥(t), tel. Furthermore, if we suppose that
(21) is true for n>0, then, by (H,), (H,) and by the fact that for
tel, ITj(t)ll<N, j = 1,2, N> O with constant, we have

||zn+1(t)||$M||zn(t)|| + pl)<MT(t) + plt)=<T(t),

for te 1. The relation (21) follows by induction. Next we prove that
(22) ||zn+k(t) - zn(t)llsrn(t), tel, =n, k=0,1,2,...

By (21), we have
2 () - z (D] = liz (D]l F(t) = r_(1),

for te'l, k = 0,1,2,... . Suppose that (22) is true for n, k>0; then,
by the hypothesis (H;) and by the fact that for tel, ||T].(t)||$N,

j = 1,23 N>0 with a constant, we have

20 e () = 21 (O = l1Lz (1) - Lz (1)][<

$M|]zn+k(t) - zn(t)]|<M rn(t) - rn+1(t),

and we obtain (22) by induction. By Lemma 1, rn(t) =>0in | and so
we have from (22) z =>7Z in 1. The continuity of Z follows from the
uniform convergence of {zn} and from the continuity of all functions z .
f k—= oo , then (22) gives estimation (13) and estimation (14) is im-
plied by (21). Tt is obvious that Z 1is a solution of (7).
To prove that the solution Z of (7) is unique, let us suppose

that there exists another solution z of (7) such that Z(t) = z(t) and
lz(t)]|l< F(t) for tel. By induction we get ||2(t) - zn(t)”srn(t), tel,
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Second order differential equations 7

n=0,1,2,..., and hence it follows that z(t)=2(t), te[. This contra-
diction proves the uniqueness of z in the set of functions satisfying
relation {(14). This completes the proof of Theorem 1.

To prove Theorem 2, let us suppose that there exist two solutions
Z and 2z of equation (7) in 1, Z(t) # 2(t), tel. Now, by (H,) and by
the fact that for tel, IITj(t)HSN, j = 1,23 N>0O with a constant,

we have

(23) lZ(t) - 2()]l<M||Z(t) - 2(0)).

Taking r(t) =||z(t) - z(t)||, tel, in (23), we infer from (15) that
r(t)=0 for tel, i.e. z(t) = 2(t), t €1. This contradiction completes
the proof of Theorem 2.

To prove Theorem 3, let

(24) h(t) = z(t) - #(t)]], tel,

then we have

(25) ht) <||LE(t) - LT + || L¥(t) - w(t)] <
<M||z(t) - ()] + q(t) = Mh(t) + qlt).

From (25) and (17) we obtain

(26) )< |lz]l + [ 7()li<h (1), tel.

Now, by induction, we get

(27) h(t)éhn(t), tel, n =0,1,2,....

The inequality (19) is implied by (27) as n —= oo . This completes the
proof of Theorem 3.
Remark 2. Theorems 1-3 can be easily extended to the Volterra

integro-differential equation of the form

t
(28) u” (1) + Au'(t) + Buft) = f<,u(t),f]([t,s,u(s):|ds ,
0
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with the given initial conditions (2), where A, B are as in (1) and
K e C[IxIxE,E], fe C[IxExE, E]. In [13] were obtained some results
on the existence and uniqueness of the solutions slightly different than

(28) by using cosine families and fixed point theorems.

4. Further applications

Consider now the problem
(29) u’(1) + Au'(t) = f(t,ult),v' (1)),
(30) uw(0) = u_, u(0) = u,,
() 1

where A generates a strongly continuous semigroup (T(t)) on a Banach
space E.

Recently, in [2] was used the Banach fixed point theorem to the
mild solutions of (29), (30). Particular examples of (29) are, among
others, the strongly damped nonlinear Klein-Gordon equation and the
vibrating beam equation (see [2]).

To solve (29), (30), consider the system of integral equations
t

ts
u(t) = u + ulf T(s)ds +ff T(s-t)f(r,ulr),v(r))drds,
0 00
(31) .
v(t) = T('c)u1 +f T(t-s)}(s,uls),v(s))ds.
0

. t
i (u(t), v(t)) is a solution of :71), then ult) = u +f v(s)ds is
0

called a mild solution of (29), (30). By letting z(t) = f(t,ult),v(t)),

we rewrite (31) as

, t t s
(32) z(t) = f<t,u° +ulj T(s)ds +ff T(s-tr)z(r)drds,
0 0o

t
T(t)u1 +f T(t-s)z(s)ds> .
0
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Second order differential equations 9

Now, by substituting :

F(t,rl,rz) = f<c,u° +ulf T(s)ds + L T(t)u1+ r2>.
0

in (32) we get
t

ts
(33) z(t) = F Q,ff T(s-t)z(7)drds, f T(t-s)z(s)ds> .
00 0

Theorems 1-3 can be naturally extended to (33) under some modi-
ficated hypotheses (Hl)-(Hs).
We also note that our method can be easily extended to the problem

t

(34)  u"(t) + Au'(t) = fé,u(t),u'(t),f K[t,s,u(s),u’(s)]ds) ,
0
(35) u(0) = u . u'(0) = u,

where A is from (29) and K e C[IXIxExE, E], fe C[IXExExE, E].

For the several interesting results on the existence and uniqueness

of the solutions for slightly different versions .of problems {29), (30)
and (34), (35), by using different techniques, we refer to [12], [13].
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