

Cornelia-Livia Bejan

**CR-SUBMANIFOLDS
OF HYPERBOLICAL ALMOST HERMITIAN MANIFOLDS**

Introduction

The aim of this paper is to study the class of CR-submanifolds of hyperbolical almost Hermitian manifolds, by following the same ideas of those used in the case of CR-submanifolds of almost Hermitian manifolds [5]. We mention that the class considered here is different of that studied in [2]. A corresponding notion of semi-invariant submanifolds of locally product Riemannian manifolds was given by A. Bejancu in [4], but the condition satisfied by the metric in our case lead to different results. Throughout the paper some examples are also included.

1. CR-submanifolds of hyperbolical almost Hermitian manifolds

We assume here \tilde{M} to be a hyperbolical almost Hermitian manifold, i.e. M is endowed with an almost product structure F (that is $F^2 = -\text{Id}$ and $F \neq \pm \text{Id}$) and a semi-Riemannian metric g such that $g(FX, FY) = -g(X, Y)$ for $X, Y \in \Gamma(T\tilde{M})$. It follows that $\dim \tilde{M} = 2n$ and the index of g is n . We denote by $\tilde{\nabla}$ the Levi-Civita connection on (\tilde{M}, g) .

Let M be a semi-Riemannian submanifold of \tilde{M} , i.e. M is a submanifold of \tilde{M} on which g is nondegenerate and of constant index, [6]. Thus, for any $X \in \Gamma(TM)$ and $V \in \Gamma(TM^\perp)$, we put:

$$(1.1) \quad FX = fX + tX,$$

$$(1.2) \quad FV = BV + CV,$$

where $BV, fX \in \Gamma(TM)$ and $tX, CV \in \Gamma(T\tilde{M})$.

Also, by taking $\{N_i\}_{i=1,s}$ to be a local orthonormal basis of TM^\perp have locally

$$(1.3) \quad FX = fX + \sum_{i=1}^s \eta_i(X) N_i,$$

where $\eta_i, i = \overline{1,s}$ are some local 1-forms.

Let ∇ , h , A and ∇^\perp be the induced covariant differentiation on M , the second fundamental form, the second fundamental tensor and the normal connection, respectively.

The Gauss and Weingarten formulas are given by

$$(1.4) \quad \tilde{\nabla}_X Y = \nabla_X Y + h(X, Y),$$

$$(1.5) \quad \tilde{\nabla}_X \xi = -A_\xi X + \nabla_X^\perp \xi, \quad \text{for } X, Y \in \Gamma(TM), \quad \xi \in \Gamma(TM^\perp),$$

The Codazzi equation is

$$(1.6) \quad [\tilde{R}(X, Y)Z]^\perp = (\bar{\nabla}_X h)(Y, Z) - (\bar{\nabla}_Y h)(X, Z) \quad \text{for } X, Y, Z \in \Gamma(TM),$$

where \perp denotes the normal component and $\bar{\nabla}$ is defined by

$$(\bar{\nabla}_X h)(Y, Z) = \nabla_X^\perp h(Y, Z) - h(\nabla_X Y, Z) - h(Y, \nabla_X Z) \quad \text{for } X, Y, Z \in \Gamma(TM).$$

We say that a semi-Riemannian submanifold M of \tilde{M} is a CR-submanifold if it carries a differential distribution D which is nondegenerate and of constant index with respect to g (if D is non null), satisfying:

$$(1.7) \quad F(D_p) = D_p \quad \text{and}$$

$$(1.8) \quad F(D_p^\perp) \subset (T_p M)^\perp \quad \text{for } p \in M,$$

where D^\perp is the orthogonal complementary distribution of D with respect to g .

We denote by $\gamma_p^\perp = F(D_p^\perp)$ for $p \in M$ and we obtain that γ^\perp is a vector subbundle of TM^\perp . From the assumption made for D , it follows that if it is non null, then D^\perp (resp. γ^\perp , γ) is nondegenerate and of constant index with respect to g , where γ is the orthogonal complementary vector subbundle of γ^\perp in TM^\perp .

In particular, we say that M is:

1. invariant, when $D^\perp = \{0\}$,
2. anti-invariant, when $D = \{0\}$,
3. proper CR, when $D \neq \{0\}$ and $D^\perp \neq \{0\}$,
4. generic, when $\dim_p D^\perp = \dim(T_p M)^\perp \neq 0$ for $p \in M$.

By a semi-Riemannian hypersurface of \tilde{M} , we mean a semi-Riemannian submanifold of codimension one.

In the case of locally product Riemannian manifolds, not all hypersurfaces are proper semi-invariant [4]. But similarly to the case of CR-submanifolds of almost Hermitian manifolds (see [5]), in our case, every semi-Riemannian hypersurface of \tilde{M} is an example of a generic proper CR-submanifold of \tilde{M} (for $n \geq 2$) and generic anti-invariant submanifold of \tilde{M} (for $n = 1$), since no normal vector at a point of a semi-Riemannian hypersurface of \tilde{M} can be an eigenvector of F .

We give now an example of a proper CR-submanifold which is not generic.

Let's take the 3-dimensional torous $T^3 = S^1 \times S^1 \times S^1$, endowed with the Riemannian metric g obtained as a product of the standard metric on S^1 and let $\{X_i\}_{i=1,3}$ be an orthonormal basis giving a parallelization of T^3 , with X_3 normal to T^2 and X_1 tangent to S^1 , where

$S^1 \times \{0\} \times \{0\} \subset T^2 \times \{0\} \subset T^3$. By taking $\bar{M} = T^3 \times T^3$ and $\bar{g} = \begin{pmatrix} -g & 0 \\ 0 & g \end{pmatrix}$, we define F pointwise by $F_{(p,q)} = \begin{pmatrix} 0 & I_3 \\ I_3 & 0 \end{pmatrix}$ with respect to

$\{(x_i, 0), i=1,3; (0, x_k), k=1,3\}$ for $(p, q) \in \bar{M}$. Thus $T^2 \times S^1$ is a proper CR-submanifold of the hyperbolical almost Hermitian manifold (\bar{M}, F, \bar{g}) , which is not generic.

Next we shall give a way to construct some proper CR-submanifolds of \tilde{M} .

Proposition 1.1. Let (L_i, F_i, g_i) , $i=1,2$ be two hyperbolic almost Hermitian manifolds with $\dim L_i > 2$. Then $L = L_1 \times L_2$ endowed with $F = \begin{pmatrix} F_1 & 0 \\ 0 & F_2 \end{pmatrix}$ and $g = \begin{pmatrix} g_1 & 0 \\ 0 & g_2 \end{pmatrix}$ is a hyperbolical almost Hermitian manifold and therefore any semi-Riemannian hypersurface of L_1 provides an example of a proper CR-submanifold of L which is not generic.

Remark The previous example is not a particular case of Proposition 1.1.

Proposition 1.2. Let M be a semi-Riemannian hypersurface of \tilde{M} having a spacelike unit normal vector field N (i.e. $g(N, N) = 1$). Then M is a hyperbolical almost paracontact manifold (said also almost paracohermitian manifold, see [3]).

Proof. Let $X \in \Gamma(TM)$. From (1.3), we get $f^2 X = X - \varphi(X)FN$ and $\varphi(FN) = 1$. We also have $g(fX, fY) = g(FX, FY) + \varphi(X)\varphi(Y) = -g(X, Y) + \varphi(X)\varphi(Y)$ for $X, Y \in \Gamma(TM)$.

As a consequence of this proposition, we get the following

Example. Let $(R_k^m, \langle \cdot, \cdot \rangle)$ be the semi-Euclidean space and let $S_k^{m-1}(r) = \{x \in R_k^m \mid \langle x, x \rangle = r^2\}$ be the pseudosphere, where $\langle \cdot, \cdot \rangle = \begin{pmatrix} -I_k & 0 \\ 0 & I_{m-k} \end{pmatrix}$ with respect to the standard basis of R^m , $m \geq 2$, $0 < k \leq m$, see [6]. We remark that $(R_n^{2n}, F, \langle \cdot, \cdot \rangle)$ and $S_n^{2n-1}(r)$ satisfy the conditions assumed in Proposition 1.2 for \tilde{M} and M respectively, where F is given by $F = \begin{pmatrix} 0 & I_n \\ I_n & 0 \end{pmatrix}$ with respect to the standard

basis of R^{2n} , $n \geq 1$. Thus, we obtain that all $(2n-1)$ -dimensional pseudospheres of index $n \geq 1$ are hyperbolical almost paracontact manifolds.

Now, we take M to be a CR-submanifold of \tilde{M} . For any $x \in \Gamma(TM)$, we put

$$(1.9) \quad X = PX + QX,$$

where $PX \in \Gamma(D)$ and $QX \in \Gamma(D^\perp)$.

Remark. From (1.9) it follows that f is an f -structure on M [7]. M is said to be D -geodesic, D^\perp -geodesic or (D, D^\perp) -geodesic if $h(D, D) = \{0\}$, $h(D^\perp, D^\perp) = \{0\}$ or $h(D, D^\perp) = \{0\}$, respectively.

2. CR-submanifolds of hyperbolical Kählerian manifolds

We assume in this section \tilde{M} to be a hyperbolical Kählerian manifold, i.e. (\tilde{M}, F, g) is a hyperbolical almost Hermitian manifold such that

$$(2.1) \quad \tilde{\nabla}F = 0,$$

where $\tilde{\nabla}$ is the Levi-Civita connection of g . Now, from §1 it follows that $(R_n^{2n}, F, < , >)$ is a hyperbolical Kählerian manifold, $n \geq 1$. As it is well known that a connected, simply connected, complete m -dimensional semi-Riemannian manifold of index k and zero sectional curvature is isometric to R_k^m and as it can be proved similarly to the Kählerian case that a q -dimensional hyperbolical Kählerian manifold ($q > 2$) of constant sectional curvature c has $c = 0$, then it follows that $(R_n^{2n}, F, < , >)$ is the only one (up to isometry) among all connected, simply connected and complete $2n$ -dimensional hyperbolical Kählerian manifolds of constant sectional curvature, with $n > 1$. Let $H_{k-1}^{m-1}(r) = \{x \in R_k^m \mid \langle x, x \rangle = -r^2\}$ be the pseudohyperbolic space. Thus $S_n^{2n}(r)$ and $H_n^{2n}(r)$ can not be endowed with hyperbolical Kählerian

structure for $n > 1$. For $n = 1$, we get that the 2-dimensional de Sitter space $(S_1^2(r), F_1, < , >)$ and $(H_1^2(r), F_2, < , >)$ are hyperbolical Kählerian manifolds, where $F_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ with respect to the orthonormal basis $\left\{ X_1 = (1/\sqrt{r^2+x_1^2})(-x_3e_2+x_2e_3); X_2 = (1/r\sqrt{r^2+x_1^2})[(r^2+x_1^2)e_1 + x_1x_2e_2 + x_1x_3e_3] \right\}$ on $S_1^2(r)$ and $F_2 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ with respect to the orthonormal basis $\left\{ Y_1 = (1/\sqrt{r^2+x_3^2})(x_2e_1-x_1e_2); Y_2 = (1/r\sqrt{r^2+x_3^2})x_1[x_1x_3e_1+x_2x_3e_2+(r^2+x_3^2)e_3] \right\}$ on $H_1^2(r)$, where $\{e_i\}_{i=1,3}$ denotes the standard basis of \mathbb{R}^3 .

From now on, we assume in this section M to be a CR-submanifold of \tilde{M} . If in Proposition 1.1 we take L_i , $i = \overline{1,2}$ to the hyperbolical Kählerian manifolds, then we get some examples of proper CR-submanifolds of hyperbolical Kählerian manifolds.

We deal here with the integrability of the distributions of M and we omit the proofs which are similar to those given in the Kählerian case, [5].

First, remark that from (1.9) it follows

$$(2.2) \quad \nabla_X FPY - A_{FQY} X = FP\nabla_X Y + Bh(X, Y),$$

$$(2.3) \quad h(X, FPY) + \nabla_X^1 FQY = FQ\nabla_X Y + Ch(X, Y) \text{ for } X, Y \in \Gamma(TM).$$

From (2.2) and (2.3) we get the following

Proposition 2.1. a) D is integrable if and only if

$$(2.4) \quad B[h(X, FY) - h(Y, FX)] = 0 \text{ for } X, Y \in \Gamma(D).$$

b) D is integrable and its leaves are totally geodesic in \tilde{M} if and only if M is D -geodesic.

c) D is integrable and its leaves are totally geodesic in M if and only if $h(D, D) \subset \Gamma(\nu)$.

Remark. The relation (2.4) is equivalent with

$$h(X, FY) - h(Y, FX) = 0 \quad \text{for } X, Y \in \Gamma(D).$$

By using (2.2) we get

Lemma 2.1. If $X, Y \in \Gamma(D^\perp)$, then

$$(2.5) \quad A_{FX}Y = A_{FY}X.$$

Proposition 2.2. a) D^\perp is always integrable.

b) $h(D, D) \subset \Gamma(\gamma)$ if and only if the leaves of D^\perp are totally geodesic in M .

In particular, when M is (D, D^\perp) -geodesic, the leaves of D^\perp are totally geodesic in M .

Proposition 2.3. The following assertions are equivalent:

a) D is parallel; b) D^\perp is parallel; c) $h(X, Y) \in \Gamma(\gamma)$ for $X \in \Gamma(TM)$ and $Y \in \Gamma(D)$; d) D and D^\perp are integrable and their leaves are totally geodesic in M ; e) $(\nabla_X f)Y = 0$ for $X \in \Gamma(TM)$ and $Y \in \Gamma(D)$.

Proof. We assume M to be a proper CR-submanifold, otherwise the assertion is trivial. We get a) \Leftrightarrow b) since ∇ is the Levi-Civita connection of M . To prove b) \Leftrightarrow c), we take $Z \in \Gamma(D^\perp)$. From (2.2) we get $-A_{FZ}X = FP\nabla_XZ + Bh(X, Z)$. Since $g(A_{FZ}X, Y) = g(h(X, Y), FZ)$, then $h(X, Y) \in \Gamma(\gamma) \Leftrightarrow A_{FZ}X \in \Gamma(D^\perp) \Leftrightarrow \nabla_XZ \in \Gamma(D^\perp)$. Next, c) \Leftrightarrow d) follows from Proposition 2.1 and 2.2. To prove c) \Leftrightarrow e), we remark that for any $V, W \in \Gamma(TM)$, the relation (2.2) can be written as $(\nabla_V f)W - A_{FQW}V = Bh(V, W)$ from which we complete the proof.

Corollary 2.1. If $h(TM, D) \subset \Gamma(\gamma)$, then

$$(2.6) \quad M = M_1 \times M_2 \quad (\text{locally}),$$

where M_1 is a leaf of D and M_2 is a leaf of D^\perp .

3. Totally umbilical CR-submanifolds of hyperbolical Kählerian manifolds

In this section, we assume that M is a totally umbilical CR-submanifold of a hyperbolical Kählerian manifold \tilde{M} , i.e. M is a CR-sub-

manifold of \tilde{M} such that $h(X, Y) = g(X, Y)H$ for $X, Y \in \Gamma(TM)$, where $H \in \Gamma(TM^\perp)$. Remark that $S_k^{2k-1}(r)$ and $H_{k-1}^{2k-1}(r)$ are, for instance, totally umbilical CR-submanifolds of $(\mathbb{R}_k^{2k}, F, <, >)$, $k \geq 1$.

Proposition 3.1. If $\dim D^\perp > 1$, then either M is totally geodesic or M is anti-invariant.

Proof. We suppose $H \neq 0$. From Lemma 2.1 we get $A_{FX}BH = A_{FBH}X$ for $X \in \Gamma(D^\perp)$. Thus $g(A_{FX}BH, X) = g(A_{FBH}X, X) \Leftrightarrow \Leftrightarrow g(h(BH, X), FX) = g(h(X, X), FBH)$ and we get

$$(3.1) \quad [g(BH, X)]^2 = g(X, X)g(BH, BH) \quad \text{for } X \in \Gamma(D^\perp).$$

We obtain that BH is isotropic, for if we suppose not, as $\dim D^\perp > 1$, we can take $Y \in \Gamma(D^\perp)$ to be a unit vector field orthonormal to BH and from (3.1) we get that BH is isotropic again. Thus, from (3.1) it follows $g(BH, X) = 0$ for $X \in \Gamma(D^\perp)$ and as D^\perp is non-degenerate with respect to g , we get $BH = 0$. We have that M is anti-invariant, for if we suppose not, then $D \neq \{0\}$ and we take $Z \in \Gamma(D)$ to be a unit vector field (i.e. $|g(Z, Z)| = 1$). From (2.3) we get $g(Z, FZ)H = FQ\nabla_Z Z + g(Z, Z)CH$. We have $g(Z, FZ) = 0$, since F is skew-symmetric with respect to g . As we have $FQ\nabla_Z Z \in \Gamma(\gamma^\perp)$, then $CH = 0$ and we complete the proof.

Corollary 3.1. If M is a proper CR-submanifold, with $\dim D^\perp > 1$, then M can be written as in (2.6).

Now, by using (1.6) and since $\tilde{R}(FX, FY) = -\tilde{R}(X, Y)$ for $X, Y \in \Gamma(T\tilde{M})$, we get $\tilde{K}(X \wedge Y) = 0$, where $X \in \Gamma(D)$ and $Y \in \Gamma(D^\perp)$ span a nondegenerate plane with respect to g and \tilde{K} is the sectional curvature of \tilde{M} . Thus we obtain

Proposition 3.2. There are no proper totally umbilical CR-submanifolds in any positively (or negatively) curved hyperbolical Kählerian manifold.

REFERENCES

- [1] T. Adati: Submanifolds of an almost product Riemannian manifold, *Kodai Math. J.* 4 (1981) 327-343.
- [2] P. Amato: CR-sous-variétés d'une variété parakahlerienne possédant la propriété de Poisson, *Rend. Math.* 7, vol.4, 3(1984), p.351-355.
- [3] C.L. Bejan: Almost parahermitian structures on the tangent bundle of an almost paracohermitian manifold, to appear in Proceedings of the 5-th Mat. Sem. on Finsler spaces, Brasov, Romania, 1988.
- [4] A. Bejancu: Semi-invariant submanifolds of locally product Riemannian manifolds, *An. Univ. Timisoara*, 22, fasc.1-2(1984).
- [5] A. Bejancu: Geometry of CR-submanifolds. Reidel Dordrecht, 1986.
- [6] B. O'Neill: Semi-Riemannian geometry with applications to relativity. Academic Press, 1983.
- [7] K. Yano: On a structure defined by a tensor field of type (1,1) satisfying $f^3 + f = 0$. *Tensor N.S.*, 14(1963), 99-109.

SEMINARUL MATEMATIC, UNIVERSITATEA "AL.I.CUZA",
IASI 6600 ROMANIA

Received September 26, 1988.

