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CR-SUBMANIFOLDS
OF HYPERBOLICAL ALMOST HERMITIAN MANIFOLDS

Introduction

The aim of this paper is to study the class of CR-submanifolds of
hyperbolical almost Hermitian manifolds, by following the same ideas of
those used in the case of CR-submanifolds of almost Hermitian mani-
folds [5]. We mention that the class considered here is different of
that studied in [2] A corresponding notion of semi-invariant submani-
folds of locally product Riemannian manifolds was given by A. Bejancu
in [4], but the condition satisfied by the metric in our case lead to

different results. Throughout the paper some ex&mples are also included.

1. CR-submanifolds of hyperbolical almost Hermitian manifolds

We assume here M to be a hyperbolical almost Hermitian manifold,
i.e. M is e¢ndowed with an almost product structure F (that is F2 -
= 1d and F ¢ + 1d) and a semi-Riemannian metric g such that
g(FX,FY) = -g{X,Y) for X,Ye (TM). Tt follows that dim M = 2n and
the index of g is n. We denote by V the Levi-Civita connection
on (M,g).

Let M be a semi-Riemannian submanifold of f/[, i.e. M is a subma-
nifold of M on which g is nondegenerate and of constant index, [6].
Thus, for any X € "' (TM) and V ¢ I (TMY), we put:
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2 C.-L. Bejan

(1.1) FX = fX + tX,
(1.2) FV = BV + CV,

where BV, fX € " (TM) and tX,CVe " (TM ).

Also, by taking {Ni}i Ts be a local orthonormal basis of TM"
=Ly

have locally

S
(1.3) FX = fX + 2 p,(X) N,
jml © '

where Dy i= ]T; are some local 1-forms.

LetV, h, A and V' be the induced covariant differentiation on M,
the second fundamental form, the second fundamental tensor and the
normal connection, respectively.

The Gauss and Weingarten formulas are given by

(1.4) VXY - VXY + h(X,Y),

(1.5) ¥y 8a-AX +VyE, for X,Yer(TM), §er(Tmb),
The Codazzi equation is
(1.6) [R(x,Y)z]" - (Vxh)(Y,z) - (Vyh)(X,2) for X,Y,Zer(TM),

where 1 denotes the normal component and V is defined by

(Vxh)(Y,z) -V)L(h(Y,Z) - RV, Y,2) - h(Y,V Z) for X,Y,Z e P(TM).

We say that a semi-Riemannian submanifold M of M is a CR-sub-
marnifold if it carries a differential distribution D which is nondegenera-

te and of constant index with respect to g (if D is non null), sa-
tisfying:

(1.7) F(D ) = D and
P P

(1.8) F(D;)C(TPM)J' for peM,
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where D' is the orthogonal complementary distribution of D with res-
pect to g. -
We denote by v; = F(D;) for pe M and we obtain that ‘v7 is

a vector subbundle of TMJ'. From the assumption made for D, it follows
that if it is non null, then pt (resp. V’L, ¥) is nondegenerate and of
constant index with respect to g, where v is the orthogonal comple-
mentary vector subbundle of viin T™™.

In particular, we say that M is:

1. invariant, when Dl = {O},

2. a.nti-inva’ria.nt,b when D = {0},

3. proper CR, \;rhen D¢ {0} and Dt ¢4 {O},

4. generic, when dim D; - dim(TpM)L # 0 for pe M.

By a semi-Riemannian hypersurface of M, we mean a semi-Rie-
mannian submanifold of codimension one.

In the case of locally product Riemannian manifolds, not all hyper-
surfaces are broper semi-invariant [4]. But similarly to the case of
CR - submanifolds of almost Hermitian manifolds (see [5]), in our case,
every semi-Riemannian hypersurface of M is an example of a generic
proper CR-submanifold of M (for n2>2) and generic anti-invariant sub-
manifold of M (for n = 1), since no normal vector at a point of a se-
mi-Riemannian hypersurface of M can be an eigenvector of F.

We give now an example of a proper CR-submanifold which is not
generic. |

Let’s take the 3-dimensional torous T3 - Slx Slx Sl, endowed with
the Riemannian metric g obtained as a product of the standard metric
on S1 and let {Xi} i=1,3 be an orthonormal basis giving a paralleliza-

tion of T3, with X, normal to T2 and )(:l tangent to Sl, where

3

_ & 0
s’ {o}x{o} «eT? {0} =13, By taking M = TT> and 7 - ,
01 0 g
we define F pointwise by F - with respect to
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{(Xi’O)’ i=l,3; (O,Xk), k-lTS} for (p,q)e M. Thus T2xS1 is a proper
CR-submanifold of the hyperbolical almost Hermitian manifold (ﬁ,F,E),
which is not generic.

Next we shall give a way to construct some proper CR-submanifolds
of M.

Proposition 1.1. Let (Li’Fi’gi)’ i=1,2 be two hyperbolic
almost Hermitian manifolds with dim L.>2. Then L = L1XL2 endowed
with F -<F1 ° > and g -<81 ° is a hyperbolical almost Her-

0 F2 0 8,
mitian manifold and therefore any semi-Riemannian hypersurface of L1
provides an example of a proper CR-submanifold of L which is not ge-
neric.

Remark The previous example is not a particular case of Pro-
position 1.1.

Proposition 1.2, Let M be a semi-Riemannian hypersurface
of M having a spacelike unit normal vector field N {i.e. g(N,N) = 1).
Then M is a hyperbolical almost paracontact manifold (said also almost
paracohermitian manifold, see [31).

Proof. Let X € M(TM). From (1.3), we get f2X = X - p{(X)FN
and p (FN) = 1. We also have g{fX,fY) = g(FX,FY) +p(X)p(Y) =
= -g(X,Y) + 2(X)p(Y) for X,Y e F(TM).

As a consequence of this proposition, we get the following

Example. Let (RI]:I,< .>) be the semi-Euclidean space and let

S]T'l(r) - {x eRE kx x> = rz} be the pseudosphere, where

- 0
gy D> = lk with respect to the standard basis of Rm, m>2,
0 1
m-k 2n 2n-1
0<k<m, see [6]. We remark that (Rn , F,<,>) and Sn
tisfy the conditions assumed in Proposition 1.2 for M and M respecti-
o 1
vely, where F is given by F -< ™) with respect to the standard
. O
h o}

(r) sa-
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basis of R2n’ n>1. Thus, we obtain that all (2n-1)-dimensional pseu-
dospheres of index n>1 are hyperbolical almost paracontact manifolds,
Now, we take M to be a CR-submanifold of M. For any x € " (TM),

we put
(1.9) X = PX + QX,

where PX ¢ M(D) and QX € I (D%).

Remark. From (1.9) it follows that f is an f-structure
on M [7] M is said to be D-geodesic, Dl-geodesic or (D,Dl)-geo-
desic if h(D,D) = {0}, n(D*,D*) = {0} or h(D,D*) = {0}, respecti-
vely.

2. CR-submanifolds of hyperbolical K&hlerian manifolds

We assume in this section M to be a hyperbolical Kdhlerian mani-
fold, i.e. (M,F,g‘) is a hyperbolical almost Hermitian manifold such

that

~

(2.1) VF = 0,

where 6 is the Levi-Civita connection of g. Now, from §1 it fol-
lows that (erln, F, <,>) is a hyperbolical Kdhlerian manifold, n>1.
As it is well known that a connected, simply connected, complete m-di-
mensional semi-Riemannian manifold of index k and zero sectional
curvature is isometric to Rr and as it can be proved similarly to the
Kahlerian case that a g-dimensional hyperbolical Kahlerian manifold
(@>2) of constant sectional curvature c¢ has ¢ = 0, then it follows
that (erln, F,<,>) is the only one (up to isometry) among all connect-
ed, simply connected and complete 2n-dimensional hyperbolical K&hle-
rian manifolds of constant sectional curvature, with n>1. Let'

Hrl?__ll(r) = { xXe R]Tl<x,x> = -rz} be the pseudohyperbolic space. Thus

Slzln(r) and Hﬁn(r) can not be endowed with hyperbolical Kahlerian
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structure for n>1. For n = 1, we get that the 2-dimensional de Sitter
space (Sf(r), F1,<,>) and (Hf(r), F,
0 1

<,>) are hyperbolical X&-

hlerian manifolds, where F1 - < >with respect to the orthonormal

1 0

basis {Xl = (1/Vr2+xf) (- “Xqe,tX e 3) XO-(I/r r +x )[(r +X )e
1

2
X Xpe, + X Xe 3]} on Sl(r) and F, =

229 >with respect to the

1 0

. 2 2 2 2
orthonormal basis Y = (1/hr +x3)(x2e1-x1e2), Y2- (1/r +x3)x

2
x[_x1x3e1+x2x3 2+(r +X )es]} on Hl(r), where {ei}i-l_,:; denotes the

standard basis of R3.

From now on, we assume in this section M to be a CR-submanifold
of M. Tf in Proposition 1.1 we take Li’ i-l,_2 to the hyperbolical Ka-
hlerian manifolds, then we get some examples of proper CR-submani-
folds of hyperbolical Kédhlerian manifolds.

We deal here with the integrability of the distributions of M and
we omit the proofs which are similar to those given in the Kahlerian
case, [5].

First, remark that from (1.9) it follows

(2.2) VYFPY - A yX = FPV, Y + Bh(X,Y),

(2.3) h(X,FPY) + V;(FQY - FQV, Y + Ch(X,Y) for X,Ye I'(TM).
From (2.2) and (2.3) we get the following
Proposition 2.1, a) D is integrable if and only if

(2.4) B[h(X,FY) - h(Y,FX)] = 0 for X,Y e /(D).

b) D is integrable and its leaves are totally geodesic in M if and
only if M is D-geodesic.
¢) D is integrable and its leaves are totally geodesic in M if and

enly if h(D,D)c (V).
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Remark. The relation (2.4) is equivalent with
h(X,FY) - W{Y,FX) = 0 for X,Ye (D).

By using (2.2) we get
Lemma 2.1, I X,Ye r(p'), then

(2.5) AFXY - AFYX.

Proposition 2.2. a) D% is always integrable.

b) h(D,D Y I (V) if and only if the leaves of D' are totally
geodesic in M.

Tn particular, when M is (D,D!)-geodesic, the leaves of D* are
totally geodesic in M.

Proposition 2.3. The following assertions are equivalent:

a) D is parallel; b) D* is parallel; ¢) h(X,Y) € I (V) for
Xe P(TM) and Ye(D); d) D and D' are integrable and their leaves
are totally geodesic in M; e) (Vyof)Y = O for X e F(TM) and Ye /(D).

Proof. We-assume M to be a proper CR-submanifold, otherwise
the assertion is trivial. We get a) < b) since V is the Levi-Civita
connection of M. To prove b) &> ¢), we take Z € " (D*). From (2.2)
we get -AFZX = FPVXZ + Bh(X,2). Since g(AFZX,Y)=g(h(X,Y),FZ),
then h(X,Y) € M(») €A Xe (DY &V, Ze P (D*). Next, c¢) «sd)
follows from Proposition 2.1 and 2.2. To prove c) & e), we remark

that for any V,W € "(TM), the relation (2.2) can be written as

(Vv.f)W - AFQWV = Bh(V,W) from which we complete the proof.
Corollary 2.1. ¥ h(TM,D)C I (v), then
(2.6) M = MxM, (locally),

where M, is a leaf of D and M, is a leaf of DY,

3. Totally umbilical CR-submanifolds of hyperbolical K&hlerian

manifolds
In this section, we assume that M is a totally umbilical CR-sub-

manifold of a hyperbolical K&dhlerian manifold 1\7{, i.e. M is a CR-sub-
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manifold of M such that h(X,Y) = g(X,¥)H for X,Ye I (TM), where

He r{TM!'). Remark that Sik-l(r) and Hi]_(il(r) are, for instance,

totally umbilical CR -submanifolds of (Rik, F,<,>, k2>1.

Yroposition 3.1. 1If dim D' >1, then either M is totally
geodesic or M is anti-invariant.
Proof. We suppose H # O, From Lemma 2.1 we get A_,BH =

FX

L
= AFBHX for Xe"(D"). Thus g(AFXBH,X) = g(A_FBHX,X) aed

&> g(h{BH,X),FX) = g{h(X,X),FBH) and we get
(3.1) [g;(BH,x)]2 - g(X,X)g(BH,BH) for X e I(D%).

We obtain that BH is isotropic, for if we suppose not, as
dim DJ'>1, we can take Ye 7 (Dl) to be a unit vector field orthonor-
mal to BH and from (3.1) we get that BH is isotropic again. Thus,
from (3.1) it follows g(BH,X) = O for X € I'(D*) and as D' is non-
degenerate with respect to g, we get BH = 0. We have that M is
anti-invariant, for if we suppose not, then D # {0} and we take
Z ¢ (D) to be a unit vector field (i.e. |g(Z,Z)| = 1). From (2.3)
we get g(Z,FZ)H = FQV,Z + g(Z,Z)CH. We have g(Z,FZ) = 0,
since F is sqew-symmetric with respect to g. As we have FQVZZe
e M(y1), then CH = O and we complete the proof.

Corollary 3.1. If M is a proper CR-submanifold, with
dim D1>1, then M can be written as in (2.6).

Now, by using (1.6) and since R(FX,FY) = -R(X,Y) for X,Ye
eM(TM), we get K(XAY) = O, where X € (D) and Y € (D) span
a nondegenerate plane with respect to g and X is the sectional cur-
vature of M. Thus we obtain

Proposition 3.2. There are no proper totally umbilical
CR-submanifolds in any positively {or negatively) curved hyperbolical

Kahlerian manifold.
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