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1. Introduction 

The spontaneous oxydation of isotactic polypropylene i s a reaction 

of great interest not only in practice but a l so in modelling theory. 

S o in [ 2 ] a kinetic submodel have been studied, describing the reac-

tion of post-irridiaton between oxygen and the most stable macro-radical 

alkyl, produced by irridiation in vacuum, of an isotactic polypropylene. 

Here , we are concerned with the reaction-diffusion system origi-

nated from C2] which i s the following weakly coupled system of nonli-

near partial differential equations 

( l . i ) 3 tu. - ^ S ^ u . - F.(U) , i e l : - { l , 2 , 3 , 4 } ; x « f l : - ( 0 , l ) , t > 0 , 

in the concentratioi 

U = ( U j . U g . U g . U ^ , 

F 1 C U ) - - k l u l U 2 + k 2 U 3 ' 

F 2 CU) - - k l U l u 2 - 2k 6 u* - k 5 u 3 u 2 + k 3 u 3 + k g u 4 , 

F 3 ( U ) - k i u i u 2 - k 5 u 2 u 3 - ( k 2 + k 3 ) u 3 - 2 ^ , 

F 4 ( U ) - 2 ^ - ( k y + k 8 ) u 4 . 

The diffusitivities /jl^ , i e l , and the coefficients k^, j = l , . . . ,8, a re 
positive constants, they are fac tors of proportionality and measure the 

proportion of reactional col l is ions. 
- 309 -
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The concentrations , i e I , satisfy the boundary co nditions 

( 1 . 5 ) 
u . ( t , 0 ) - u . ( t , l ) - 0 , t > 0 for i = 2 , 3 , 4 , 

8 x u 2 C t , 0 ) - 9 x u 2 U , 1 ) - 0 , t > 0 , 

and the initial data 

( 1 . 6 ) u . ( 0 , x ) - 0 i ( x ) , x e i 2 , i e l , 

where 0 . ( 0 ) «= 0 . ( 1 ) = 0 , i - 1 , 2 , 3 , and 0 ^ ( 0 ) = <P'2W " 

Given are the initial concentrations ^ ( x ) , i e l , all of which are 

assumed to be nonnegative and continuous on [ 0 , l ] . 

Our aim will be to establish the existence of global bounded solu-

tions to problem ( l . l ) - ( 1 . 6 ) and analyze their large time behaviour 

by methods of functional analysis , specif ically the theory of semigroups 

of linear operators in Banach spaces . We shall prove that for problem 

( 1 . 1 ) - ( 1 . 6 ) there exists a unique nonnegative solution which goes to 0 , 

uniformly in every closed interval contained in Si, for each ii 1. 

Moreover, we shall show that there exist a positive T large enough, 

positive constants ^ > 0 , i = 1 , 3 , A , and a , Cq, C j with C q < C ^ such 

that for any t ^ T , we have 

llu. II ^K,exp( -or t ) for i - 1 , 3 , 4 , 1 OO X 

It i s worth noting that the problem ( l . l ) - ( 1 . 6 ) can be analyzed 

neither in the framework of the theory of monotonic or quasimonotonic 

systems nor by the techniques of comparison c i ] , m , M , c i 2 ] , 

2 . Notations and preliminary resul ts 

In order to study the problem ( 1 . 1 ) - ( 1 . 6 ) , we introduce the Ba-
^ T nach space X C ( Q ) , l ] ) (of the functions u - ( u ^ ^ . u ^ j u ^ ) 

(T for transpose) which are continuous in E o , l ] ) , endowed with the 

norm 
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Hull - YL s u p | u . ( x ) | f o r x e [ 0 , l ] . 
j -1 1 

Let A be defined a s the l inear opera tor D a ^ - d i a g ^ » ^ " ^ " " ¿ ^ x x 

with domain 

D(A) { u e X | D 8 x x U e X and u . ( t , 0 ) - u . ( t , l ) - 0 , i - 1 , 3 , 4 , 

3 x u 2 ( t , 0 ) - 3 x U 2 U,1) - o } 

and let F denote the nonlinear opera tor 

F ( U ) = C F 1 C U ) , F 2 ( U ) , F 3 ( U ) , F 4 ( U ) ) T e X fo r U e X , 

so ( 1 . 1 ) - ( 1 . 6 ) can be wri t ten in the abs t rac t form 

( 2 . 1 ) d/dt(XJ(t)) - AU(t) + F ( U ( T ) ) , 

( 2 . 2 ) U ( O ) - 0 € X + , 

where X+ denotes the set of nonnegative functions from X. 

By Theorem 1 . 5 of [lO] we can show that a unique loce.1 c l a s s i -

ca l solution of problem ( 2 . 1 ) - ( 2 . 2 ) ex i s ta ; by this we mean that 

U e ( C 2 , 1 ( £ x ( 0 , T ) t R ) n C ^ ^ S x i O . T j . R ) ) 4 

and sa t i s f i es system ( 1 . 1 ) - ( 1 . 6 ) . This can be proved using general 

r e s u l t s concerning the semigroup theory because each opera tor 

generares an analytic semigroup on C(i?) . 

Moreover , we have the following a l te rna t ive : 

Ei ther T = oo , 

o r T < 0 0 and lim | |U | t-»«o 
(Al t . ) 

An important fact i s that U ( t , x ) remains nonnegative, if <pAx)>0, 

i e I. 

L e m m a 2 . 1 . Let U be a local solution to ( 1 . 1 ) - ( 1 . 6 ) . If 

<^.(x) > 0 , i e I , then u ^ O , i e I , on [ 0 , T ) x Q . 
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P r o o f . Observe f i rs t that u^ satisfies the inequality 

\ \ " < V x x U 4 + ( k
7

 + k 8 ) u 4 = 2 k 3 U 3 > 0 

as by the maximum principle u^^-0. 

Now we restr ict ourselves to t e , TQJ for a fixed TQ < T . By the 

local result , we can choose a constant C » C ( T Q ) such that p( t ,x) •» 

= C + k j U ^ ( t , x ) > 0 , then we can write 

2 
a ^ e x p i - C O u ^ - ^ a ^ C e x p C - C t ) ^ ) +p(t,x)(exp(-Ct)u^) - k 3 e x p ( - C t ) u 3 0 

so, again by the maximum principle 

For the positivity of M^ and u^, we multiply ( 1 2 ) by ^ ( t ) » 

- (|u2(t)|- u 2 ( t ) ) / 2 and (1.3) by u^(t)" and integrating over Si 

to obtain 

/ U 2 U 2 - ^ 2 / 3 x x U 2 U ^ " k l / U l U 2 U 2 " 2 k 6 / U 2 U 2 " k s / W 2 + 

+ k 3 / U 3 U 2 + k s / V 2 

and 

/ U 3 U 3 ' < " 3 / 3xxU3U3 + / U1U2U3 " k s / u 2 u 3 u 3 " 

- ( k 2 + 2 V / U 3 U 3 " 2 k 3 / U 3 U 3 ' 

where we have suppressed the dependence on t . 

B y the local existence, we clearly have 

u 3 e C 1 ( ( 0 , T ) ; L 2 ( Q ) ) and u 3 e C( ( 0 , T ) ; hJ(O)) . 

2 2 
T h u s ^ u - - - -| -d/dt^ (u3) and ^ ^ u " V 3 I ' 

- 3 1 2 -
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The f i r s t formula above follows from the definition of u_ (multiply out 
2 -(u„) ) and the second formula from well-known facts about 3 u~ ( [ 5 l , J x J 

section 7.4-). Once again we restr ic t ourselves to TQ. By the local 

existence, there exists a constant C C(TQ) such that 

d / d t ^ \ u 2 ( t ) - ) 2 + Cu3Ct)")2^ 2 c / ( n 2 ( t ) " ) 2 + ( u 3 ( t ) " ) 2 

it follows that 

/Ci i 2U)") 2 + U 3 ( t )~)2*f(<t>~2)2 + (*~)2 . 

By assumption, 311(1 so = 0 and = 0 for a . e . xe !3 

and f o r a , e ' x e S 3 > Since T o > 0 i s arl5itrary> the r e _ 

sult i s true for al l t eCO»T) . 

3. Global existence and precompactness of tra jector ies 

Firs t , let us establish the following preparatory lemma. 

Lemma 3 .1 . Denoting by || the L*(i2) norm, we have 

13.1) |Iu.(t)||lS£C, i e l , 

13.2) /||u(t)|| df f^C, j - 3 , 4 . 

0 J 

P r o o f . Integrating (1 .1 ) and (1 .3 ) over Q̂  - P x ( 0 , t ) and 

adding up, we find 

/ ( u l + V + k 3 / u 3 + Ck5 + 2 V / u 3 ^ " k 5 / U2U3 + / C 

hence, in part icular , ( 3 . 1 ) for i - 1,3 and ( 3 . 2 ) for j - 3 . Moreover, 

we have 

(3 .3 ) J * u 2 i ; C . 

« t 
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Chi the other hand, integrating (1.1) over Q ,̂ we have 

/ u 1 + k l / U 1 U 2 ^ / + k3 / U 3 ^ C ' 

hence, in particular 

(3.4-) / u u ^ C . 
Qt 

Now, integrating (1.3) over Q .̂, we get 

/ u3 + U 2 + V / V / h + k l / U1U2' 
» Qj. Si Qj. 

hence, by (3.4-) 

(3.5) / u 
. Qt 

Finally? adding up (1.2) find (1.4.) and integrating over Q ,̂ we find 

/ ( u + u4) + k / u i / (0 + i> ) + k / u + 2k / u*. 
c * ' Q^ ^ a * * Q^ Qj 

Using (3.3) and (3 .5) , we deduce 

/ U ^ u ^ l ^ / u ^ c , 

so, in particular (3.1) for i » 2, 4 and (3.2) for j = 4. 
Theorem 3.2. Let U be a local solution of ( l . l ) - ( 1 . 6 ) . Then 

we have 

(3.6) u. e C ' R + ; C(O)), i e l , 1 D 
where CB(R ; C(C)) is the space of continuoiis bounded functions from 
R + to C(O). 

P r o o f . We are going to show only how to obtain Cg(R+;C(S?)), 
because the same analysis works to obtain u. 6 C_ 

(R ;C(£5)), i -1 ,3 ,4 . 
With w = U£ and = the equation (1.2) can be written in the 
following form - 314 -
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( 3 . 7 ) 3tw - (<"3X X - b)w = M ( t , x ) , 

where M ( t , x ) = b u 2 ( t , x ) + F 2 ( U ( t , x ) ) , and w ( 0 , x ) = £ 2 ( x ) . Without 

loss of generali ty it may be assumed that <p~ e C' for otherwise 

the initial value problem starting at t = <5 > 0 may be considered. There 

i s a constant C > 0 such that 

I IMCOII^ssc , t ^ O . 

By [ l ] , p. 8 8 ] , for some b , under homogeneous boundary conditions 

3 -b l generates an analytic semigroup in 

for p > 1, and with 

the associated operator A, there i s a 6 > 0 such that Reff ( A ) > 6 

(where 6 ( A ) denotes the spectrum of A ) . 

The integral solution of ( 3 . 7 ) i s 
t 

( 3 . 8 ) w ( t ) = e x p ( - A t ) 0 n •<• f e x p ( - A ( t - s ) ) M ( s ) d s . 
U 0 From [ 7 . p . 2 6 ] , for 6 > 0 , we have 

( 3 . 9 ) || Aff e x p ( - A t ) | | « C ( S ) t " f f e x p ( - 6 t ) . 

Taking some ff e ( 0 , 1 ) and applying A® to ( 3 . 8 ) , we obtain 

l|Aew(t)||00«||Aeexp(-At)||J|^ X . + j * | | A % x P ( - A ( t - s ) ) | U d s * 
' 0 

< C ( © ) t " S exp(-«t)||^9|| + max ||M(s)y / ( t - s ) " ^ exp( -<5( t - s ) )ds , 
Z 0 i s « t 0 

by ( 3 . 9 ) . It follows from the bounds on 0 2 a n" i M that there is a con-

stant C such that 

( 3 . 1 0 ) l | A S w ( t ) I L « C , ( t ^ l ) . 

From the definition of the fract ional space ( L p f 1 7 , p. 2 9 ] , and 
a standard imbedding theorem \_7, p . 3 9 ] > we have 
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C 3 . l l ) l|Affw(t)|| = ||w(t)|| 
(L ) 

( 3 . 1 2 ) I M O H „<k||w(t)|| 0 < V « 2 ® . l / p , 
Ctf a P f 

where k i s independent of w. Taking a = 1 /2 and p = 1, 9 = 0 we 

obtain the result on combining ( 3 . 1 0 ) , ( 3 . 1 1 ) and ( 3 . 1 2 ) . By the al -

ternative ( A l t . ) , not only the solution exists for all t > 0 but also is 

bounded. 

A. Large time behaviour 

L e m m a 4 . 1 . If <f> e C 1 ( R + ) , <p >0 is such that 

OP 

J V t t ) d t < o o and d / d t ( 0 ) j $ C < o o , t > 0 , 
0 

then lim 0 ( t ) = 0 . 
t-—o° 
P r o o f . Let 6 > 0 , then there i s M = M ( e ) > 0 such that oo 

, / ¿ ( t ) d t « c . Let t and t with t > t . Integrating by p a r t s , we 
M 
get 

t t 
J ( s - t e ) d /ds (0 )ds = ( t - t £ ) ^ ( t ) - j s ) d s , 

t e 

hence 
t t 

(*-) (t - t ) 0 ( 0 - J 4>{s) ds + C ( s - t ) d /ds (0 ) d s « 
e t *t 6 

e e 

« / ¿ ( s ) ds + - | ( t - t e ) 2 , 
t e 

where C > 0 is a constant such that d/ds <f> £ C . From { * ) and choosing 
I 1/2 

t such that t - t = Z we obtain e e 
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PQ 

( * * ) t{tU±£<t>(s)ds + ^ r ( l + § ) 

hence, £>0 given, there is T ^ = M + such that ( * * ) holds as 

soon as t = t + -¿r > M + . 
e VF i? 

T h e o r e m 4.1. There holds lim II u. i t ) II = 0 , i e l . i 00 
t —00 

P r o o f . Integrating (1 .3 ) and (1.4-) over Q we get 

^ d / d t / U ^ 2 k 3 / 4 

As U is bounded, we can write 

d/dt J a n d d / d t £ 

On the other hand, from Lemma 3. .1., 

^ > u 3 e L 1 ( R + ) and J ^ e L ^ R * ) , 

so, using Lemma 4-. 2, we obtain 

( 4 . 1 ) l im || u Xt)\\l = 0 , j = 3 , 4 . 
t—00 

Now multiplying (1 .2 ) by u^, integrating the result over Q , we get 

d / d t ( / + 2 P 2 / t 9 - U 2 ) 2 ^ 2 / U 3 u 3 + k 8 u 4 ) u 2 ' 
hence 

d / d t f ^ u ^ C . 

On the other hand, integrating (1 .2 ) over £2x(0,t) we can state that 

J*u^(t ) e L ^ ( R + ) . So, by Lemma 4 .2 , we find 
a 

( 4 .2 ) lim||u2(.t)||2 = 0. 
t —~oo 
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Finally, multiplying (1 .1) by u^ and integrating the result over£2, 

we have 

(4 .3) - ( a x u l ) 2 ^ 2 k 3 / u 3 u l ^ C e / u 3 + £ / V 

Using Poincaré's inequality, choosing £ , and integrating over ( 0 , t ) , 

we obtain.by (3 .3) 

/ ^ c j j ^ c f j ^ ^ c . 
Hence 

/ u J e L 1 ! ^ ) . 
£2 

Now, from ( 4 . 3 ) , we have d / d t ^ * u ? « C . So , by Lemma 4.2iwe get S2 
(4 .4) lim | | U l U ) | ] 2 - 0. 

t—eo 

Finally, as the trajectories l^J { uXt) J , i e l . are precompact in C(i2), 

so ( 4 . 1 ) , (4 .2 ) and (4 .4) l e & to 

lim ||u (OH^ - 0 , i € 1. 
t - 0 

T h e o r e m 4 . 2 . Let U be a solution of ( 1 . 1 ) - ( 1 . 6 ) . Then there 

exist strict positive constants T,<* , K^, i e l , CQ, C^ with CQ< C. 

such that for any t ^ T we Iiave l l u ^ t ) ! ! ^ « ! ^ exp(-ott), i - 1 ,3 ,4 and 

c 0 / t ^ | | u 2 ( t ) I U « c 1 / t . 

P r o o f . Let 

A 3 : " ^ 3 8 X X ' " 5 < V x x " V d ' 

A 4 ! = < V x x ' V k 8 M d " : < V x x " V l d ' 

where Id identity. It i s simple to show for any t è 0 the following 

estimates 
- 318 -
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HexpCt A 1 ) | k e x p ( - ( j r / . l ) 2 t ) > 

||expU A 2 ) | | ^ l , 

||exp(t A i ) | k e x p ( - ^ . t ) , for i«3,4 . 

S o , if we set $ - M i n j ( j r / 1 ) 2 , "X ,̂ a^} >0 we will have 

( 4 . 5 ) ||expU A i ) | | ^ e x p ( - 6 t ) , i - 1 , 3 , 4 , f o r a n y t ^ O . 

On the other hand, by Theorem 4 . 1 , we state that for any C >0 

there exists T > 0 , such that for any t ^ T , we have 

( 4 . 6 ) l l u . W H ^ e , i e I. 

Using ( 4 . 6 ) , the positivity of semigroups exp(t A j , i e l , and the in-

tegral formulation of the solution, we have for any t > 0 

U j ( t ) ^ e x p U t - D A j ) u x ( T ) + £ 1 ^ / exp(( t -©)A 1 )u 3 (6)df f , 

t 

u 3 ( t ) ^ e x p ( ( t - T ) A 3 ) u 3 ( T ) + £ k 1 / exp((t-0) A ^ u ^ G M ® , 

Now, setting y ( t ) s — M ix^ Ct) H eso + II ^ ( t ) ! ! ^ and using ( 4 . 5 ) , we have 

e x p t e t t y U i s c y C T ) exp(<5T) + e t k j + k 3 ) / e x j j ^ ^ ^ d e . 
T B y G r o n w a l l ' s lemma, we have 

* ( t ) < a f ( T ) e x p i - C t . T X d - c i k j + k 2 ) ) ) . 

Hence, for any t ^ T 

( 4 . 7 ) l l u - U ) ! ! ^ « ^ exp(-ort), i - 1 , 3 , 

where we set 

a m 6 / 2 , K j « K - - exp((<5 - c (k| + k..) )T)<j»(T), i - <5(k +k^)/2. 
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On the other hand, using (4 .5 ) , (4 .6) and (4.7) yields 

t 

||u4(t)||oo^exp(6(t-T)U|u^(T)||00+ exp(-<5(t-<?/2))d . 

Hence, for any t ^.T, 
(4.8) Hu^COII^K^ exp(-oit). 

2 
Finally, for any t , there holds - ^2 3xxU2 ^~2 k6U2' 

so, U2 is a sup-solution of 

(d/dt)v(t) = -2kgv(t )2 , v ( T ) = M i n u 2 ( T , x ) . 
x 

A simple integration, yields u 2 ( t ,x ) > v ( t ) > Cp/t. 

On the other hand, multiplying (1.2) by u^1, and integrating over 52, 

one can find a constant ^>0 such that 

(l/m)x{(d/dt # ( t ) ) / $ ( t ) ( m + 1 ) / m } « -Z, 

where we set $ ( t ) = / um ( t ,x )dx, Integrating this inequality over ( t , T ) , 
0 

one can find a positive constant C j such that ]|u2(t) H^̂ S C^/1 for any 

t ^ T > 0 . Hence, we have found constants 1 > 0 , C ^ C Q ^ O such that 

C0/t^||u2Ct)lloo«C1/t for any t > T . 

R e m a r k s : 

1) If instead of F 2 ( U ) , we have F 2 ( U ) - a u2 , for example, with 

a> 0, then we would have l|u2(t)||oo^K^ exp(-at) for any t and for 

certain positive constants K^, a . 

2) It will be interesting to have the same result for a domain Q 
2 3 

in R or in R ^ 

3) It will be interesting to have an estimate of the form 

I K - A II 9 i - 1,2,3,4, where y0 , i e l , are the 
1 1 L~( (0, + « ;L2 (S2) ) 1 1 

solutions of the corresponding ordinary differential system. 
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