

M. Kirane, A. Youkana

A REACTION-DIFFUSION SYSTEM MODELLING THE POST IRRADIATION OXYDATION OF AN ISOTACTIC POLYPROPYLENE

1. Introduction

The spontaneous oxydation of isotactic polypropylene is a reaction of great interest not only in practice but also in modelling theory.

So in [2] a kinetic submodel have been studied, describing the reaction of post-irradiation between oxygen and the most stable macro-radical alkyl, produced by irradiation in vacuum, of an isotactic polypropylene.

Here, we are concerned with the reaction-diffusion system originated from [2] which is the following weakly coupled system of nonlinear partial differential equations

$$(1.i) \quad \partial_t u_i - \mu_i \partial_{xx} u_i = F_i(U), \quad i \in I := \{1, 2, 3, 4\}; \quad x \in \Omega := (0, 1), \quad t \geq 0,$$

in the concentration functions u_1, u_2, u_3, u_4 with

$$U = (u_1, u_2, u_3, u_4),$$

$$F_1(U) = -k_1 u_1 u_2 + k_2 u_3^2,$$

$$F_2(U) = -k_1 u_1 u_2 - 2k_6 u_2^2 - k_5 u_3 u_2 + k_3 u_3 + k_8 u_4,$$

$$F_3(U) = k_1 u_1 u_2 - k_5 u_2 u_3 - (k_2 + k_3) u_3 - 2k_3 u_3^2,$$

$$F_4(U) = 2k_3 u_3^2 - (k_7 + k_8) u_4.$$

The diffusivities μ_i , $i \in I$, and the coefficients k_j , $j = 1, \dots, 8$, are positive constants, they are factors of proportionality and measure the proportion of reactional collisions.

The concentrations u_i , $i \in I$, satisfy the boundary conditions

$$(1.5) \quad \begin{cases} u_i(t,0) = u_i(t,1) = 0, & t > 0 \text{ for } i=2,3,4, \\ \partial_x u_2(t,0) = \partial_x u_2(t,1) = 0, & t > 0, \end{cases}$$

and the initial data

$$(1.6) \quad u_i(0,x) = \phi_i(x), \quad x \in \bar{\Omega}, \quad i \in I,$$

where $\phi_i(0) = \phi_i(1) = 0$, $i = 1, 2, 3$, and $\phi'_2(0) = \phi'_2(1) = 0$.

Given are the initial concentrations $\phi_i(x)$, $i \in I$, all of which are assumed to be nonnegative and continuous on $[0,1]$.

Our aim will be to establish the existence of global bounded solutions to problem (1.1)-(1.6) and analyze their large time behaviour by methods of functional analysis, specifically the theory of semigroups of linear operators in Banach spaces. We shall prove that for problem (1.1)-(1.6) there exists a unique nonnegative solution which goes to 0, uniformly in every closed interval contained in Ω , for each $i \in I$. Moreover, we shall show that there exist a positive T large enough, positive constants $K_i > 0$, $i = 1, 3, 4$, and α , C_0 , C_1 with $C_0 < C_1$ such that for any $t \geq T$, we have

$$\|u_i\|_{\infty} \leq K_1 \exp(-\alpha t) \quad \text{for } i=1,3,4,$$

$$C_0/t \leq \|u_2\|_{\infty} \leq C_1/t.$$

It is worth noting that the problem (1.1)-(1.6) can be analyzed neither in the framework of the theory of monotonic or quasimonotonic systems nor by the techniques of comparison [1], [4], [8], [12].

2. Notations and preliminary results

In order to study the problem (1.1)-(1.6), we introduce the Banach space $X := C([0,1], \mathbb{R}^4)$ (of the functions $u = (u_1, u_2, u_3, u_4)^T$ (T for transpose) which are continuous in $[0,1]$), endowed with the norm

$$\|U\| = \sum_{j=1}^4 \sup |u_j(x)| \text{ for } x \in [0,1].$$

Let A be defined as the linear operator $D\partial_{xx} = \text{diag}(\mu_1, \mu_2, \mu_3, \mu_4)\partial_{xx}$ with domain

$$D(A) := \left\{ U \in X \mid D\partial_{xx} U \in X \text{ and } u_i(t,0) = u_i(t,1) = 0, i=1,3,4, \right. \\ \left. \partial_x u_2(t,0) = \partial_x u_2(t,1) = 0 \right\}$$

and let F denote the nonlinear operator

$$F(U) = (F_1(U), F_2(U), F_3(U), F_4(U))^T \in X \text{ for } U \in X,$$

so (1.1)-(1.6) can be written in the abstract form

$$(2.1) \quad d/dt(U(t)) = AU(t) + F(U(t)),$$

$$(2.2) \quad U(0) = \phi \in X_+,$$

where X_+ denotes the set of nonnegative functions from X .

By Theorem 1.5 of [10] we can show that a unique local classical solution of problem (2.1)-(2.2) exists; by this we mean that

$$U \in (C^{2,1}(\Omega \times (0,T), \mathbb{R}) \cap C^{1,0}(\bar{\Omega} \times (0,T), \mathbb{R}))^4$$

and satisfies system (1.1)-(1.6). This can be proved using general results concerning the semigroup theory because each operator $\mu_i \partial_{xx}$ generates an analytic semigroup on $C(\bar{\Omega})$.

Moreover, we have the following alternative:

$$(Alt.) \quad \begin{cases} \text{Either } T = \infty, \\ \text{or } T < \infty \text{ and } \lim_{t \rightarrow \infty} \|U\| = \infty. \end{cases}$$

An important fact is that $U(t,x)$ remains nonnegative, if $\phi_i(x) \geq 0$, $i \in I$.

Lemma 2.1. Let U be a local solution to (1.1)-(1.6). If $\phi_i(x) \geq 0$, $i \in I$, then $u_i \geq 0$, $i \in I$, on $[0, T) \times \Omega$.

Proof. Observe first that u_4 satisfies the inequality

$$\partial_t u_4 - \mu_4 \partial_{xx} u_4 + (k_7 + k_8)u_4 = 2k_3 u_3^2 \geq 0$$

as $\phi_4 \geq 0$, by the maximum principle $u_4 \geq 0$.

Now we restrict ourselves to $t \in [0, T_0]$ for a fixed $T_0 < T$. By the local result, we can choose a constant $C = C(T_0)$ such that $p(t, x) = C + k_1 u_1(t, x) \geq 0$, then we can write

$$\partial_t (\exp(-Ct) u_1) - \mu_1 \partial_{xx} (\exp(-Ct) u_1) + p(t, x) (\exp(-Ct) u_1) = k_3 \exp(-Ct) u_3^2 \geq 0$$

so, again by the maximum principle $u_1 \geq 0$.

For the positivity of u_2 and u_4 , we multiply (1.2) by $u_2^-(t) = (|u_2(t)| - u_2(t))/2$ and (1.3) by $u_3^-(t)$ and integrating over Ω to obtain

$$\begin{aligned} \int_{\Omega} u_2' u_2^- &= \mu_2 \int_{\Omega} \partial_{xx} u_2 u_2^- - k_1 \int_{\Omega} u_1 u_2 u_2^- - 2k_6 \int_{\Omega} u_2^2 u_2^- - k_5 \int_{\Omega} u_2 u_3 u_2^- + \\ &+ k_3 \int_{\Omega} u_3 u_2^- + k_8 \int_{\Omega} u_4 u_2^- \end{aligned}$$

and

$$\begin{aligned} \int_{\Omega} u_3' u_3^- &= \mu_3 \int_{\Omega} \partial_{xx} u_3 u_3^- + \int_{\Omega} u_1 u_2 u_3^- - k_5 \int_{\Omega} u_2 u_3 u_3^- - \\ &- (k_2 + 2k_4) \int_{\Omega} u_3 u_3^- - 2k_3 \int_{\Omega} u_3^2 u_3^-, \end{aligned}$$

where we have suppressed the dependence on t .

By the local existence, we clearly have

$$u_3 \in C^1((0, T); L^2(\Omega)) \quad \text{and} \quad u_3 \in C((0, T); H_0^1(\Omega)).$$

$$\text{Thus } \int_{\Omega} u_3' u_3^- = -\frac{1}{2} \frac{d}{dt} \int_{\Omega} (u_3^-)^2 \quad \text{and} \quad \int_{\Omega} \partial_{xx} u_3 u_3^- = \int_{\Omega} |\partial_x u_3^-|^2.$$

The first formula above follows from the definition of u_3^- (multiply out $(u_3^-)^2$) and the second formula from well-known facts about $\partial_x u_3^-$ ([5], section 7.4). Once again we restrict ourselves to T_0 . By the local existence, there exists a constant $C = C(T_0)$ such that

$$\frac{d}{dt} \int_{\Omega} (u_2(t)^-)^2 + (u_3(t)^-)^2 \leq 2C \int_{\Omega} (u_2(t)^-)^2 + (u_3(t)^-)^2$$

it follows that

$$\int_{\Omega} (u_2(t)^-)^2 + (u_3(t)^-)^2 \leq \int_{\Omega} (\phi_2^-)^2 + (\phi_3^-)^2.$$

By assumption, $\phi_2^- \geq 0$ and $\phi_3^- \geq 0$, so $\phi_2^- = 0$ and $\phi_3^- = 0$ for a.e. $x \in \Omega$ and $u_2^- \geq 0$, $u_3^- \geq 0$ for a.e. $x \in \Omega$. Since $T_0 > 0$ is arbitrary, the result is true for all $t \in [0, T)$.

3. Global existence and precompactness of trajectories

First, let us establish the following preparatory lemma.

Lemma 3.1. Denoting by $\| \cdot \|_1$ the $L^1(\Omega)$ norm, we have

$$(3.1) \quad \|u_i(t)\|_1 \leq C, \quad i \in I,$$

$$(3.2) \quad \int_0^t \|u_j(s)\|_1 ds \leq C, \quad j = 3, 4.$$

Proof. Integrating (1.1) and (1.3) over $Q_t = \Omega \times (0, t)$ and adding up, we find

$$\int_{\Omega} (u_1 + u_3) + k_3 \int_{Q_t} u_3^2 + (k_5 + 2k_4) \int_{Q_t} u_3 \leq -k_5 \int_{Q_t} u_2 u_3 + \int_{\Omega} (\phi_1 + \phi_3) \leq C,$$

hence, in particular, (3.1) for $i = 1, 3$ and (3.2) for $j = 3$. Moreover, we have

$$(3.3) \quad \int_{Q_t} u_3^2 \leq C.$$

On the other hand, integrating (1.1) over Q_t , we have

$$\int_{\Omega} u_1 + k_1 \int_{Q_t} u_1 u_2 \leq \int_{\Omega} \phi_1 + k_3 \int_{Q_t} u_3^2 \leq C,$$

hence, in particular

$$(3.4) \quad \int_{Q_t} u_1 u_2 \leq C.$$

Now, integrating (1.3) over Q_t , we get

$$\int_{\Omega} u_3 + (k_2 + k_4) \int_{Q_t} u_3 \leq \int_{\Omega} \phi_3 + k_1 \int_{Q_t} u_1 u_2,$$

hence, by (3.4)

$$(3.5) \quad \int_{Q_t} u_3 \leq C.$$

Finally, adding up (1.2) and (1.4) and integrating over Q_t , we find

$$\int_{\Omega} (u_2 + u_4) + k_7 \int_{Q_t} u_4 \leq \int_{\Omega} (\phi_2 + \phi_4) + k_3 \int_{Q_t} u_3 + 2k_3 \int_{Q_t} u_3^2.$$

Using (3.3) and (3.5), we deduce

$$\int_{\Omega} (u_2 + u_4) + k_7 \int_{Q_t} u_4 \leq C,$$

so, in particular (3.1) for $i = 2, 4$ and (3.2) for $j = 4$.

Theorem 3.2. Let U be a local solution of (1.1)-(1.6). Then we have

$$(3.6) \quad u_i \in C_B(\mathbb{R}^+; C(\bar{\Omega})), \quad i \in I,$$

where $C_B(\mathbb{R}^+; C(\bar{\Omega}))$ is the space of continuous bounded functions from \mathbb{R}^+ to $C(\bar{\Omega})$.

Proof. We are going to show only how to obtain $u_2 \in C_B(\mathbb{R}^+; C(\bar{\Omega}))$, because the same analysis works to obtain $u_i \in C_B(\mathbb{R}^+; C(\bar{\Omega}))$, $i=1,3,4$.

With $w = u_2$ and $\mu = \mu_2$, the equation (1.2) can be written in the following form

$$(3.7) \quad \partial_t w - (\mu \partial_{xx} - b)w = M(t, x),$$

where $M(t, x) = bu_2(t, x) + F_2(U(t, x))$, and $w(0, x) = \phi_2(x)$. Without loss of generality it may be assumed that $\phi_2 \in C^2(\bar{\Omega})$, for otherwise the initial value problem starting at $t = \delta > 0$ may be considered. There is a constant $C > 0$ such that

$$\|M(t)\|_{\infty} \leq C, \quad t \geq 0.$$

By [11, p.88], for some b , under homogeneous boundary conditions $\partial_{xx} - bI$ generates an analytic semigroup in $L^p(\bar{\Omega})$ for $p > 1$, and with the associated operator A , there is a $\delta > 0$ such that $\operatorname{Re} \sigma(A) > \delta$ (where $\sigma(A)$ denotes the spectrum of A).

The integral solution of (3.7) is

$$(3.8) \quad w(t) = \exp(-At)\phi_0 + \int_0^t \exp(-A(t-s))M(s)ds.$$

From [7, p.26], for $\sigma > 0$, we have

$$(3.9) \quad \|A^\sigma \exp(-At)\| \leq C(\sigma)t^{-\sigma} \exp(-\delta t).$$

Taking some $\sigma \in (0, 1)$ and applying A^σ to (3.8), we obtain

$$\begin{aligned} \|A^\sigma w(t)\|_{\infty} &\leq \|A^\sigma \exp(-At)\|_{\infty} \|\phi_2\|_{\infty} + \int_0^t \|A^\sigma \exp(-A(t-s))\|_{\infty} ds \leq \\ &\leq C(\sigma)t^{-\sigma} \exp(-\delta t) \|\phi_2\|_{\infty} + \max_{0 \leq s \leq t} \|M(s)\|_{\infty} \int_0^t (t-s)^{-\sigma} \exp(-\delta(t-s)) ds, \end{aligned}$$

by (3.9). It follows from the bounds on ϕ_2 and M that there is a constant C such that

$$(3.10) \quad \|A^\sigma w(t)\|_{\infty} \leq C, \quad (t \geq 1).$$

From the definition of the fractional space $(L^p)^\sigma$ [7, p.29], and a standard imbedding theorem [7, p.39], we have

$$(3.11) \quad \|A^\sigma w(t)\| = \|w(t)\|_{(L^p)^\sigma},$$

$$(3.12) \quad \|w(t)\|_{C^\gamma} \leq k \|w(t)\|_{(L^p)^\sigma}, \quad 0 \leq \gamma \leq 2\alpha - 1/p,$$

where k is independent of w . Taking $\alpha = 1/2$ and $p = 1$, $\gamma = 0$ we obtain the result on combining (3.10), (3.11) and (3.12). By the alternative (Alt.), not only the solution exists for all $t > 0$ but also is bounded.

4. Large time behaviour

Lemma 4.1. If $\phi \in C^1(\mathbb{R}^+)$, $\phi \geq 0$ is such that

$$\int_0^\infty \phi(t) dt < \infty \quad \text{and} \quad d/dt(\phi) \leq C < \infty, \quad t \geq 0,$$

then $\lim_{t \rightarrow \infty} \phi(t) = 0$.

Proof. Let $\varepsilon > 0$, then there is $M = M(\varepsilon) > 0$ such that $\int_M^\infty \phi(t) dt \leq \varepsilon$. Let t and $t_e \geq M$ with $t > t_e$. Integrating by parts, we get

$$\int_{t_e}^t (s - t_e) d/ds(\phi) ds = (t - t_e) \phi(t) - \int_{t_e}^t \phi(s) ds,$$

hence

$$\begin{aligned} (*) \quad (t - t_e) \phi(t) &= \int_{t_e}^t \phi(s) ds + \int_{t_e}^t (s - t_e) d/ds(\phi) ds \leq \\ &\leq \int_{t_e}^t \phi(s) ds + \frac{C}{2} (t - t_e)^2, \end{aligned}$$

where $C > 0$ is a constant such that $d/ds \phi \leq C$. From (*) and choosing t_e such that $t - t_e = \varepsilon^{1/2}$ we obtain

$$(\ast\ast) \quad \phi(t) \leq \frac{1}{\sqrt{\varepsilon}} \int_M^\infty \phi(s) ds + \frac{C}{2} \frac{1}{\sqrt{\varepsilon}} \leq \frac{1}{\sqrt{\varepsilon}} (1 + \frac{C}{2})$$

hence, $\varepsilon > 0$ given, there is $T_M = M + \frac{1}{\sqrt{\varepsilon}}$ such that $(\ast\ast)$ holds as soon as $t = t_e + \frac{1}{\sqrt{\varepsilon}} \geq M + \frac{1}{\sqrt{\varepsilon}}$.

Theorem 4.1. There holds $\lim_{t \rightarrow \infty} \|u_i(t)\|_\infty = 0$, $i \in I$.

Proof. Integrating (1.3) and (1.4) over Ω we get

$$\frac{d}{dt} \int_{\Omega} u_3 \leq k_1 \int_{\Omega} u_1 u_2 \quad \text{and} \quad \frac{d}{dt} \int_{\Omega} u_4 \leq 2k_3 \int_{\Omega} u_3^2.$$

As U is bounded, we can write

$$\frac{d}{dt} \int_{\Omega} u_3 \leq C \quad \text{and} \quad \frac{d}{dt} \int_{\Omega} u_4 \leq C.$$

On the other hand, from Lemma 3.1.,

$$\int_{\Omega} u_3 \in L^1(\mathbb{R}^+) \quad \text{and} \quad \int_{\Omega} u_4 \in L^1(\mathbb{R}^+),$$

so, using Lemma 4.2, we obtain

$$(4.1) \quad \lim_{t \rightarrow \infty} \|u_j(t)\|_1 = 0, \quad j = 3, 4.$$

Now multiplying (1.2) by u_2 , integrating the result over Ω , we get

$$\frac{d}{dt} \left(\int_{\Omega} u_2^2 \right) + 2\mu_2 \int_{\Omega} (\partial_x u_2)^2 \leq 2 \int_{\Omega} (k_3 u_3 + k_8 u_4) u_2,$$

hence

$$\frac{d}{dt} \left(\int_{\Omega} u_2^2 \right) \leq C.$$

On the other hand, integrating (1.2) over $\Omega \times (0, t)$ we can state that

$\int_{\Omega} u_2^2(t) \in L^1(\mathbb{R}^+)$. So, by Lemma 4.2, we find

$$(4.2) \quad \lim_{t \rightarrow \infty} \|u_2(t)\|_2 = 0.$$

Finally, multiplying (1.1) by u_1 and integrating the result over Ω , we have

$$(4.3) \quad d/dt \left(\int_{\Omega} u_1^2 \right) + 2\mu_1 \int_{\Omega} (\partial_x u_1)^2 \leq 2k_3 \int_{\Omega} u_3^2 u_1 \leq C_{\epsilon} \int_{\Omega} u_3^4 + \epsilon \int_{\Omega} u_1^2.$$

Using Poincaré's inequality, choosing ϵ , and integrating over $(0, t)$, we obtain by (3.3)

$$\int_{\Omega} u_1^2 + C_0 \int_0^t \int_{\Omega} u_1^2 \leq C \int_0^t \int_{\Omega} u_3^2 + \int_{\Omega} \phi_1^2 \leq C.$$

Hence

$$\int_{\Omega} u_1^2 \in L^1(\mathbb{R}^+).$$

Now, from (4.3), we have $d/dt \int_{\Omega} u_1^2 \leq C$. So, by Lemma 4.2 we get

$$(4.4) \quad \lim_{t \rightarrow \infty} \|u_1(t)\|_2 = 0.$$

Finally, as the trajectories $\bigcup_{t>0} \{u_i(t)\}$, $i \in I$ are precompact in $C(\bar{\Omega})$, so (4.1), (4.2) and (4.4) lead to

$$\lim_{t \rightarrow 0} \|u_i(t)\|_{\infty} = 0, \quad i \in I.$$

Theorem 4.2. Let U be a solution of (1.1)-(1.6). Then there exist strict positive constants $T, \alpha, K_i, i \in I, C_0, C_i$ with $C_0 < C_i$ such that for any $t \geq T$ we have $\|u_i(t)\|_{\infty} \leq K_i \exp(-\alpha t)$, $i = 1, 3, 4$ and $C_0/t \leq \|u_2(t)\|_{\infty} \leq C_1/t$.

Proof. Let

$$A_i := \mu_i \partial_{xx}, \quad i = 1, 2,$$

$$A_3 := \mu_3 \partial_{xx} - (k_3 + 2k_4) \cdot \text{Id} =: \mu_3 \partial_{xx} - \lambda_3 \text{Id},$$

$$A_4 := \mu_4 \partial_{xx} - (k_7 + k_8) \cdot \text{Id} =: \mu_4 \partial_{xx} - \lambda_4 \text{Id},$$

where $\text{Id} :=$ identity. It is simple to show for any $t \geq 0$ the following estimates

$$\|\exp(t A_1)\| \leq \exp(-(\pi/1)^2 t),$$

$$\|\exp(t A_2)\| \leq 1,$$

$$\|\exp(t A_i)\| \leq \exp(-\lambda_i t), \text{ for } i=3,4.$$

So, if we set $\delta = \min\{(\pi/1)^2, \lambda_3, \lambda_4\} > 0$ we will have

$$(4.5) \quad \|\exp(t A_i)\| \leq \exp(-\delta t), \quad i = 1, 3, 4, \quad \text{for any } t \geq 0.$$

On the other hand, by Theorem 4.1, we state that for any $\varepsilon > 0$ there exists $T > 0$, such that for any $t \geq T$, we have

$$(4.6) \quad \|u_i(t)\|_\infty \leq \varepsilon, \quad i \in I.$$

Using (4.6), the positivity of semigroups $\exp(t A_i)$, $i \in I$, and the integral formulation of the solution, we have for any $t \geq 0$

$$u_1(t) \leq \exp((t-T)A_1) u_1(T) + \varepsilon k_3 \int_T^t \exp((t-\sigma)A_1) u_3(\sigma) d\sigma,$$

$$u_3(t) \leq \exp((t-T)A_3) u_3(T) + \varepsilon k_1 \int_T^t \exp((t-\sigma)A_3) u_1(\sigma) d\sigma,$$

Now, setting $\psi(t) := \|u_1(t)\|_\infty + \|u_3(t)\|_\infty$ and using (4.5), we have

$$\exp(\delta t) \psi(t) \leq \psi(T) \exp(\delta T) + \varepsilon (k_1 + k_3) \int_T^t \exp(\delta \sigma) \psi(\sigma) d\sigma.$$

By Gronwall's lemma, we have

$$\psi(t) \leq \psi(T) \exp(-(t-T)(\delta - \varepsilon(k_1 + k_3))).$$

Hence, for any $t \geq T$

$$(4.7) \quad \|u_i(t)\|_\infty \leq K_i \exp(-\alpha t), \quad i = 1, 3,$$

where we set

$$\alpha = \delta/2, \quad K_1 = K_3 = \exp((\delta - \varepsilon(k_1 + k_3))T) \psi(T), \quad \varepsilon = \delta(k_1 + k_3)/2.$$

On the other hand, using (4.5), (4.6) and (4.7) yields

$$\|u_4(t)\|_{\infty} \leq \exp(\delta(t-T)) \|u_4(T)\|_{\infty} + 2k_3 k_1 \int_T^t \exp(-\delta(t-\sigma/2)) d\sigma.$$

Hence, for any $t \geq T$,

$$(4.8) \quad \|u_4(t)\|_{\infty} \leq K_4 \exp(-\alpha t).$$

Finally, for any $t \geq T$, there holds $\partial_t u_2 - \mu_2 \partial_{xx} u_2 \geq -2k_6 u_2^2$,
so, u_2 is a sup-solution of

$$(d/dt)v(t) = -2k_6 v(t)^2, \quad v(T) = \min_x u_2(T, x).$$

A simple integration, yields $u_2(t, x) \geq v(t) \geq C_0/t$.

On the other hand, multiplying (1.2) by u_2^m , and integrating over Ω , one can find a constant $\gamma > 0$ such that

$$(1/m) \times \left\{ (d/dt \phi(t)) / \phi(t)^{(m+1)/m} \right\} \leq -\gamma,$$

where we set $\phi(t) = \int_0^t u^m(t, x) dx$. Integrating this inequality over (t, T) , one can find a positive constant C_1 such that $\|u_2(t)\|_{\infty} \leq C_1/t$ for any $t \geq T > 0$. Hence, we have found constants $T \geq 0$, $C_1 \geq C_0 \geq 0$ such that $C_0/t \leq \|u_2(t)\|_{\infty} \leq C_1/t$ for any $t \geq T$.

Remarks:

1) If instead of $F_2(U)$, we have $F_2(U) - a u_2$, for example, with $a > 0$, then we would have $\|u_2(t)\|_{\infty} \leq K_4 \exp(-\alpha t)$ for any $t \geq T$ and for certain positive constants K_4, α .

2) It will be interesting to have the same result for a domain Ω in \mathbb{R}^2 or in \mathbb{R}^3 .

3) It will be interesting to have an estimate of the form

$\|u_i - \beta_i\|_{L^{\infty}((0, +\infty; L^2(\Omega)))} \leq C(\mu_i)$, $i = 1, 2, 3, 4$, where β_i , $i \in I$, are the solutions of the corresponding ordinary differential system.

REFERENCES

- [1] H. Amman: Invariant sets and existence theorems for semilinear parabolic and elliptic systems. *J. Math. Anal. Appl.* 65 (1978) 432-467.
- [2] A. Faucitano, A. Buttafava, F. Martinotti, V. Comincioli: Kinetic modelling and ESR study of solid state chemical reactions: The post irradiation oxydation of isotactic polypropylene (to appear).
- [3] K. Deimling, V. Lakshmikantham: Quasi-solutions and their role in the theory of differential equation, *Nonlinear Analysis T M. A.* 4 (1980), 657-663.
- [5] D. Gilbarg, N. Trudinger: *Elliptic partial differential equation of second order*, Springer-Verlag, Berlin (1977).
- [6] A. Haraux, M. Kirane: Estimations C^1 pour des problèmes paraboliques semilinéaires, *Ann. Fac. Sci. Toulouse*, 5 (1983), 265-280.
- [7] D. Henry: *Geometric theory of semi-linear parabolic equations*, *Lect. Notes in Math.* 842, Springer-Verlag (1981).
- [8] J. Hernandez: Some existence and stability for reaction-diffusion systems with nonlinear boundary conditions in nonlinear differential equations: Invariance, Stability and Bifurcation, de Mottoni P. and Salvadori L. eds. New York, Academic Press (1981), 161-174.
- [9] C.V. Pao: On nonlinear reaction-diffusion systems. *J. Math. Anal. Appl.* 87 (1982), 165-198.
- [10] J. Stakgold: Reaction-diffusion problems in chemical engineering. *Lect. Notes in Math.* 1224, Springer-Verlag (1986).
- [11] H. Tanabe: *Equations of evolution*. Pitman, London, (1979).
- [12] W. Walter: *Differential and integral inequalities*. Springer-Verlag, Berlin-Heidelberg, (1970).

UNIVERSITE DE ANNABA, INSTITUT DE MATHÉMATIQUES,
P.P.12, EL-HADJAR, ANNABA, ALGERIA;

UNIVERSITÉ PIERRE ET MARIE CURIE, LABORATOIRE D'ANALYSE
NUMÉRIQUE (LA 189), 75230 PARIS cedex 05, FRANCE.

Received July 13, 1988.

