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A REACTION-DIFFUSION SYSTEM MODELLING THE POST
IRRIDIATION OXYDATION OF A.i ISOTACTIC POLYPROPYLENE

1. Introduction

The spontancous oxydation of isotactic polypropylene is a reaction
of great interest not only in practice but also in modelling theory.

So in [2] a kinetic submodel i:ave been studied, describing the reac-
tion of post-irridiaton between oxygen and the most stable macro-radical
alkyl, produced by irridiation in vacuum, of an isotactic polypropylene,

Here, we are concerned with the reaction-diffusion system origi-
nated from [2] which is the following weakly coupled system of nonli-
near partial differential equations
(1.i)  du -3 u - F(0, ie1:2{1,2,3,4}; xeQ:=(0,1), t30,
in the concentration functions Uy, Uy, u3, u 4 with
U = luy,uy,ug,u,),

2
Fl(U) = -kjuu, + k2u3,

2
17172 2 53 2
2
FS(U) = klulu2 - 1<5u2u3 - (k2+k3)u3 - 2k3u3,

FZ(U) = -kyugu, - 2kguy - kougu, 4 k3u3 + k8u4,

2
‘FA(U) = 2](3u3 - (k7+k8)u4.
The diffusitivities Myr e 1, and the coefficients kj’ j=1,...,8, are
positive constants, they are factors of proportionality and measure the

proportion of reactional collisions.
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The concentrations u, ie 1, satisfy the boundary cc¢nditions

ui(t,O) = ui(t,l) =0, t>0 for i=2,3,4,

{(1.5)
axuz(t,O) = axuz(t,l) =0, t>0,

and the initial data
(1.6) ui-(O,x) -¢i(x), xe$, iel,

where ¢.(0) = ¢.(1) = 0, i = 1,2,3, and ¢,(0) = $,(1) = 0.

Given are the initial concentrations ¢i(x) , iel, all of which are
assumed to be nonnegative and continuous on [0,1].

Our aim will be to establish the existence of global bounded solu-
tions to problem (1.1)-(1.6) and analyze their large time behaviour
by methods of functional analysis, specifically the theory of semigroups
of linear operators in Banach spaces. We shall prove that for problem
(1.1)-(1.6) there exists a unique nonuegative solution which goes to 0,
uniformly in every closed interval contained in £, for each iel.
Moreover, we shall show that there exist a positive T large enough,
positive constants Ki> 0,i=1,3,4, and &, CO’ Cq with C0<C_1 such

that for any t>T, we have
||ui|]“sK1exp(-0tt) for i=1,3,4,

Colt<llu, Il < Cy/t.

It is worth noting that the problem (1.1)-(1.6) can be analyzed
neither in the framework of the theory of monotonic or quasimonotonic

gsystems nor by the techniques of comparison (1], [4], [8]1, [12].

2. Notations and preliminary results

In order to study the problem (1.1)-(1.6), we introduce the Ba-
nach space X := C([0,1] ,RA) {of the functions u = (ul,uz,u3,u4)T
(T for transpose) which are continuous in [0,1]), endowed with the

norm
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4
lull = Z‘ supluj(x)l for xe[0,1].
1

Let A be defined as the linear operator D axx-diag(yl ’ﬂ2"a3"u4) N

with domain

D(A) := {UE X|D 8xer X and ui(t,o) - ui(t,l) =0, i=1,3,4,
axuz(t,O) = axuz(t,l) - O}
and let F denote the nonlinear operator

F(U) = (F;(0),F,(0),F(U),F, (U0 e X for Uex,
so (1.1)-(1.6) can be written in the abstract form
(2.1) d/at(u(t)) = AU(t) + F(u(T)),

(2.2) U0) =geX,,

where X+ denotes the set of nonnegative functions from X.
By Theorem 1.5 of [10] we can show that a unique locezl classi-
cal solution of problem (2.1)-(2.2) exisis; by this we mean that

1,0

ve (c21(ax(0,T),R) ncl @ x(0,T) ,R))%

and satisfies system (1.1)-(1.6). This can be proved using general
results concerning the semigroup theory because each operator ‘uiaxx
generaras an analytic semigroup on C(&2).

Moreover, we have the following altarnative:

(Alt.)
or T<oo and tl_i.m””U"-w.

An important fact is that U(t,x) remains nonnegative, if ¢i(x)>O,
iel.

Lemma 2.1. Let U be a local solution to (1.1)-(1.6). If
¢.(x)=>0, iel, then u,>0, iel, on [o,T)xQ.
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Proof. Observe first that u 4 satisfies the inequality

3 u, +(k +k)u =2ku220

4 " 4% 3%3

as ¢420, by the maximum principle u, 20.
Now we restrict ourselves to te[O,TO] for a fixed T0<T. By the
local result, we can choose a constaut C = C(TO) such that p(t,x) =

=C + ku (t,x) 20, then we can write

at(exp( -Ct)ul) -ylaxx(exp( -Ct)ul) +p(t,x) (exp( -Ct)ul) -k3exp( -Ct)ug 0

so, again by the maximum principle ulzo.
For the positivity of u, and u u, we multiply (1.2) by u2(t)- =
= (|u2(t)|- uz(t))/2 and (1.3) by u3(t)- and integrating over §2

to obtain

J «“2;/'3 Joup -k lez‘m‘s}[zz‘ks}[zsuz"

+ k3§[u3u2 + ka}[uAu2
and

};r uéu:_3 = fg J axxu3u5 + }!‘ uluzué - k5 }[ uzusué -
- {ky 4 2“4"[ 3%3 - 2“3}[ 33

where we have suppressed the dependence on t.

By the local existence, we clearly have

e C(0,T); L%() and w,e CLLO,T); Hcl)(Q)).

U3 3

Thus?/. ---—d/dtJ(u and ’[a U383 b['|au
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The first formula above follows from the definition of ué (multiply out
-2 -

(u3) ) and the second formula from well-known facts about axu3 (5],

section 7.4). Once again we restrict ourselves to Ty- By the local

existence, there exists a constant C = C(TO) such that

d/dt!(uz(tmz v g 20 ()07 4 (w07
it follows that
Ju0? s e fun? .+ 63?

By assumption, ¢,>0 and ¢3>O, so ¢é = 0 and ¢:; = 0 for a.e. xeQ
and u220, u320 for a.e. xe. Since T0>0 is arbitrary, the re-
sult is true for all te[0,T).

3. Global existence and precompactness of trajectories

First, let us establish the following preparatory lemma.

Lemma 3.1. Denoting by || l|1 the L1($2) norm, we have
(3.1) ]]ui(t)Hls C, iel,
t
(3.2) {lluj(t)“l d6<C, j = 3,4.

Proof. Integrating (1.1) and (1.3) over Q =2x(0,t) and

adding up, we find

J’(ul + u3) + k3 .Q,; u:23 + (k5+ 2k4) {uss -k5 é: Uy +b/' (¢1+¢3)SC,

hence, in particular, (3.1) for i = 1,3 and (3.2) for j = 3. Moreover,

we have

(3.3) J Z<c.
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On the other hand, integrating (1.1) over Qt’ we have

2
?[ul + kl f u1u2\<‘e)f¢1 + k3 f uSSC,
< &
hence, in particular

(3.4) J. uluZSC.
Q

Now, integrating (1.3) over Qt’ we get

Ju+(k+k)fu$f¢+k'juu,
3 2 4 3 3 1 172
o 08 d
hence, by (3.4)

(3.5) J u<c.
Q,

Finally, adding up (1.2) and (1.4) and integrating over Q,, we find

2
| L,;!.(u2+u4) +k7,£tu4s;!.(¢2+¢>4)+k3{u3+2k3(Q/;u3.

Using (3.3) and (3.5), we deduce
}[(u2+u4) + k7 f uASC,
Q

80, in particular (3.1} for i = 2, 4 and (3.2) for j = 4.
Theorem 3.2. Let U be a local solution of {1.1)-(1.6). Then

we have
(3.6) u e CoRY; C(AY), iel,

where CB (R+; C(@)) is the space of continuous bounded functions from
RY to C@).

Proof. We are going to show only how to obtain u,e CB (R*;C(Q),
because the same analysis works to obtain u € CB (R+;C(§_2).) , i=1,3,4.

With w = u, and ¢ =u,, the equation (1.2) can be written in the

2
following form
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3.7 dw - (‘uaxx - blw = M(t,x),

where M(t,x) = bu,(t,x) + F, (U(t,x)), and w(O X) = ¢2(x) Without
loss of generality it may be assumed that ¢, € C (Q) for otherwise
the initial value problem starting at t =& > O may be considered. There

is a constant C >0 such that
Imll,<c, t=o.

By [11, p.88], for some b, under homogeneous boundary conditions
3 . -bl generates an analytic semigroup in LP(D) for p>1, and with
the associated operator A, there is a 6>0 such that ReG (A)>§
(where 6 (A) denotes the spectrum of A).

The integral solution of (3.7) is

t
(3.8) wlt) = exp(-At)g, ~ [ exp(-Alt-5))M(s)ds.
0

From [7. p.26], for 6> 0, we have
(3.9) 1A% exp(-At))]< C(6)t™% expl-6t).

Taking some G ¢ (0,1) and applying A° to (3.8), we obtain

4 wt) |, <1145 exp(-AD)IlI, Il +J‘ |4 exp(-Alt-s))]l 0 ds<
0

<C6)t™% expl-6t)|, |, + max ||Mls)]_ J‘ (t-5)"% exp(-6(t-s))ds,
Os<sst

by (3.9). 1t follows from the bounds on ¢2 and M that there is a con-

stant C such that

(3.10) N witllw<c, (t>1).

From the definition of the fractional space (LP)G [7, p.29], and
a standard imbedding theorem [7, p.39], we have
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?

(3.11) HAZ wit)]] = || wlt)]]
(LPY

(3.1:2‘) ||w(t)”c\,$k“\v(t)“(Lp)G, 0<y <2a-1/p,

where k is independent of w. Taking = 1/2 and p ~ 1, V=0 we
obtain the result on combining (3.10), (3.11) and (3.12). By the al-
ternative (Alt.), not only the solution exists for all t>0 but also is

bounded.

4., Large time behaviour
Lemma 4.1. T ¢e Cl(R+), ¢ 20 is such that

oo

f¢(t) dt<oe and d/dt{g)<C<eo, t20,
0

then lim ¢(t) = O.
t——oo

Proof. Let € >0, then there is M = M{£)>0 such that

f¢(t)dts €. Let t and tezM with t>t_. Integrating by parts, we
M
get

t t
f (s-t) d/ds($)ds = (¢ -t.) B (o) J: $(s) ds,

t
e e

hence
t

t
(%) (t-t) ) =¢[ B(s) ds + [ (s-1) d/ds(g) ds<

ks
e

e
¢ C 2
ée[qs(s) ds + (t-1)%,
e
where C>0 is a con7tant such that d/ds ¢ <C., From (*) and choosing
161 2

te such that t-te = we obtain
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(%% e yE fHods + 5 Z mU e D)
M

1
hence, £ >0 given, there is TM =M ¥ such that (*%) holds as

1 1
oonast=1t + —=2>2M+ = .
° e " Ve G

Theorem 4.1, There holds limHui(t)Ilm =0, iel.

t=oo

Proof. Integrating (1.3) and (1.4) over 2 we get

2
d/d’t}[.u:,’slclg-)ulu2 and d/dt;[uAS 2k3t9[lu3.

As U is bounded, we can write

d/dtfussC and d/dtJuASC.

2

On the other hand, from Lemma 3.1,

ﬁ)f'u‘?’& Ll(R+) and ;2[.1146 Ll(R+),

so, using Lemma 4.2, we obtain

(4.1) im Jlu(Oll; =0, = 3,4

t-=00

Now multiplying (1.2) by Uy, integrating the result over 2, we get

d/dt(f u§> + 2, f (axuz)ZSZJ (k3u3 +k8u4)u2:
(9] 2

d/dt(}[. u§>s C.

On the other hand, integrating (1.2) over Qx(0,t) we can state that
ug(t)e Ll(R+). So, by Lemma 4.2, we find

hence

(4.2) tim [| w0, = O.

t-=~o0
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Finally, multiplying (1.1) by u, and integrating the result overQ,
we have '

i 2 2 2 4 2
(4.3) d/dt(bfu1> + 2‘111,[ (axul) SZkSJ»usulsCGJ.u:} +£"f uy.

2

Using Poincaré’s inequality, choosing ¢, and integrating over (0,t),
we obtain. by (3.3)

Hence
Sl erlrh.
(2}
Now, from (4.3), we have d/dt fufs C. So, by Lemma 4.2:we get
2

(4.4) lim llul(t)ll2 = 0.

t-=oc0
Finally, as the trajectories (_J {ui(t)} , i€ lare precompact in c@),
so (4.1), (4.2) and (4.4) 158 to

lim [lu ()], = 0, iel.
t=0

Theorem 4.2. Let U be a solution of (1.1}-(1.6). Then there
exist strict positive constants T, o, Ki’ iel, CO‘, Ci with CO< Ci
" such that for any t >T we lhave ”ui(t)ll“sl(i exp(-at), i = 1,3,4 and
Colt<llu () lwsCy /.
Proof. Let

Ai :-piaxx, i=1,2,

A3 :-,4133xx - (k3+2k4)-ld -:,usaxx - 7\3[d,

Ay = pga, - (kytkg).ld mzpa, - 2.1,
where Id := identity. Tt is simple to show for any t>O0 the following

estimates
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llexpt Al expl- (/1) %),
|| exp(t AZ)”SL
Hexp(t Ai)HSexp(-kit), for i=3,4.
So, if we set § = Min{(:r/l)z, 13, 7\4} >0 we will have
(4.5) ||exp(t Ai)IISexp(-st), i=1,3,4, for any t20.

On the other hand, by Theorem 4.1, we state that for any £ >0

there exists T>0, such that for any t >T, we have

(4.6) o (Ollg<e, iel.

Using (4.6), the positivity of semigroups exp(t Ai) , iel, and the in-

tegral formulation of .the solution, we have for any t >0

t
u, ()< expl(t-TA,) v, (T) +£k3J_; exp((t-6)A, Ju, (6)ds,

t
u3(t)sexp((t-T)A3) us(T) + eli. exp((t-G)A.s)ul(G)dO,
T
Now, setting y(t) s=|| ul(t)"‘,o +1 us(t)”ooand using (4.5), we have

expl6t)yp(t) < y(T) expl8T) + e:(k1 + ks),}' exp(66)y(6)d6.
T

By Gronwall’s lemma, we have

v y(T) exp(-(t-T)(S-¢(k, +k,))).
Hence, for any t>T
4.7 o, ()]l <K, expl-at), i=1,3,
where we set

o= 6/2, K; = K3 = exp((6 - (k; + kg)ITIYT), €=k, +ks)/2.
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On the other hand, using (4.5), (4.6) and (4.7) yields

t
Iy (1] g expl6Ce-T) Ylu, (T o + zksliTf exp(-8(t-6/2))d

Hence, for any t>T,
(4.8) ||u4(t)ll°°s1(4 exp(-at).

2
Finally, for any t »T, there holds atuz - ,uzaxxuz ;-2k6u2,

so, u, is a sup-solution of

(a/at)vit) = -2kgv()?, v(T) = Min u,(T x).
X

A simple integration, yields u2(t,x) >v(t)>CO/t.
On the other hand, multiplying (1.2) by uxzn, and integrating over €,

one can find a constant >0 such that

<-7,

where we set ¢(t) =j u™(t,x)dx. Integrating this inequality over (t,T),
0

one can find a positive constant C; such that |]u2(t)l|°°$ Cl/t for any
t =T>0. Hence, we have found constants T>0, Cla C020 such that
Co/tslluz(t)llwscllt for any t=T.

Remarks: .

1) If instead of FZ(U), we have Fz‘(U) - auy,
a> 0, then we would have ||u2(t)||°‘,s1(4 exp(-at) for any t >T and for

for example, with

certain positive constants K 4 o,

2) Tt will be interesting to have the same result for a domain $2
in R2 or in R3H

3) Tt will be interesting to have an estimate of the form

oAl <cClu), i = 1,2,3,4, where ., i€l, are the
EOT 0,4 2@) i
solutions of the corresponding ordinary differential system.
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