DEMONSTRATIO MATHEMATICA

Vol. Xx11l No2 1990

TD. Narang®

METRIC PROJECTIONS IN LINEAR METRIC SPACES

Various properties of the metric projection are known in normed
linear spaces (see e.g. [7]). G. Pantelidis [5] discussed some of
these properties in linear metric spaces. In this paper we also dis-
cuss some necessary and sufficient conditions for the metric projec-
tions to be continuous and Lipschitzian in linear metric spaces.

Let G be a subspace of a linear metric space (E,d) and x¢ E.

An element 8,€ G is said to be a best approximation to x in G if

d(x,go) = d(x,G).
The set of all such g_e G is denoted by. LG(x) i.e.
LG(x) = {goe G:d(x,go) = d(x,G)}.

G is said to proximinal if L (x) is non-empty for each x¢ E and it
is said to be ‘Chebyshev if LG(x) consists of exactly one element for
each x€ E. The mapping Moo which takes each element x of E to the

set LG (x) is called the metric projection of E onto G. For Chebyshev

sets G, JrG is single-valued.
The canonical mapping W : E —=E/G defined by WG(x) =x+G
is clearly related to best approximation, since
LG(x) = {goe G: d(x,go) = dist(WG(x),O)}.

*)The author is thankful to U.G.C. , India for financial support.
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We shall denote by Pc-;l(o) the set

(o) -{xeE s 0eL o).

This set is called kernel of the mapping s
The first two theorems give necessary and sufficient conditions
for the continuity of the metric projections in linear metric spaces.
In normed linear spaces, the first theorem was proved by Holmes [2]
and the second by Cheney and Wulbert [1] and Holmes [2].
Theorem 1. For a Chebyshev subspace G of a linear metric
space (E,d), the metric projection e is continuous if and only if
the restriction W = WG] 1 of the canonical mapping WG:E-——E/ G
P (o)

to the set P-l(‘o) is homeomorphism of Pél(o) onto E/G.

Proof.G As G is a Chebyshev subspace, W is one-to-one (see
[4], Theorem 2.3). Further, W is always continuous (see [6]) and
a mapping onto E/G, since for any x + G& E/G, we have x-JrG(x)e
€ Pél(o) and WG[x-JrG(x)] = x + G. Thus the condition that

W=W be a homeomorphism onto E/G is equivalent to the

G,Pél(o)

-1
continuity of W. °,
Assume that W-1 is continuous. We shall show that e is contit

nuous. Let x , x€ E and x —=x i.e. d(xn,x)————O as n —e oo, Then

as above, xn-JrG(xn) = W'l(xn+G) and x-IrG(x) - W'l(x+G), and so
d[JrG(xn),JrG(x)]sdl:JrG(xn)-JrG(x), xn-x] + d(xn,x) =

= dEW'l(x+G), W-l(xn+G):| + d(xn,x)——O as n—e co

and so JrG is continuous.
Now assume that JT'G is continuous. We shall show that W-1 is

continuous. Let xn+G, x+G € E/G, ‘l'im(xn+G) =x+ G and £€>0 be

given. Since m, is continuous at the point W-l(x+G) € Pél(o) , there

exist a 6> 0 such that
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dfz,W 1 (x+G)] <6=>d[x.(2),0] = a[n (2), 7 (W (xs6)] < £
Consider the open ball ‘
V = {z eE: d[z,W'l(x+G)_]<min(6, -% )}.

Since the canonical mapping W, is open (see [6]), the set WG(v)
is open and obviously, x+GeWG(V). Hence xn+GEWG(V) for all

n>N = N(g) and so there exist elements z €V such that
z +G = WG(zn) - x +G, n>N,
i.e. X -2 € G and hence by the quasi-additivity of s (see [51), we
have
JrG(xn) - ﬂG(xn-znun) - xn-znurG(zn).
Consequently, since z eV (n>N), we obtain
-1 -1 -1
a[wtx +6), W 66 = afx - x ), WTleee)] <
-1 _
< d[xn-JrG(xn) ,zn] + d[zn,W (x+G)J—

- a[n (z),0] + afz_, W xs6)] <

<-%+—;—, n>N

and thus W' is continuous.

Remark. The above proof is similar to one given in [7] (Theo-
rem 4.2) for normed linear spaces.

Theorem 2. For a Chebyshev .subspace G of a.linear metric
space (E,d), the following statements are equivalent:

(i) The mettic projection M. is continuous.

(ii) 7, is continuous at each point of Pél(o) .

(iii) The direct sum decomposition E = G @ Pél(o) is topologi-
cal (i.e. lim x_ = x if and only if lim JrG(xn) = n5{x) and

Lim{x -7 G )] = -7, (x)).
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(iv) The functional fG(x) - d(JTG(x).o), x € E is continuous.

Proof. We shall show that (i)<e=(ii}, (i) <= (iii)} and
(1)e=(iv). (i) =>(ii) is obvious.

(ii) = (i) Suppose (i) does not hold i.e. x —=x but !rG(xn) —_—
—=n(x}, x_, x € E. Then x_- 7 (%) —=x- 7 (%) ePE;]'(o) but
JrG(xn-JrG(x)) = JrG(xn)-JrG(x)—>O contradicting (ii).

(i)&=> (iii) is obvious and so is (i) => (iv). Now we show that
(iv) => (i).

Let x —-xe¢ P&l(o), then d[JrG(xn), JTG(X)] = d[JrG(xn),O]——
—-d[JrG(x),O_] = 0i.e. {iv) == (ii) but (ii) => (i). This completes
the proof of Theorem 2.

Remark, The proof of Theorem 2 is a minor modification
of the one given in {7 for normed linear spaces (Proposition 4.1),

The following theorem deals with the Lipschitzian metric projec-
tions in linear metric spaces. In normed linear spaces this theorem
was proved by Holmes [2].

Theorem 3. For a Chebyshev subspace G of a linear metric
space (E,d), the metric projection s is Lipschitzian if and only if

the restriction W = WGI 1 of the canonical mapping W :E —E/G
P (o)

is a Lipschitzian homeomorphism of Pél(o) onto E/G.
Proof. For any x+G € E/G, we have x-JTG(x)e Pél(o) and
W[x-JrG(x)] = x+G. Since
d[wG(x),wG(y)] = d(x+G,y+G) = d(x-y,G)€d{x-y,0) = d(x,y)

for all x,y e E, the condition amounts to W-1 being Lipschitzian.

Let W1 be Lipschitzian, consider

d[JTG(X) ,]T'G(y)] =d [JTG (X)-X+X,JTG (y)-y+y] =

=d [—W-l(x+G)+x, -W-l(y+G)+y]Sd [W'l(y+G) ,W'l(x+G)] + dix,y) &€
< d(y+G,x+G) +d(x,y) £ 2d(x,y)
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i.e. 7

e is Lipschitzian. Suppose now that e is Lipschitzian, Con-

sider

d[W-l(x+G), W-l(y+G)] - dl-_x-JrG(x), y-JTG(y)] -

- d[x-JTG(x+g) ,y-IT‘G(y-g)] for all ge¢G
- dl:x-JrG(x)fg,y-IrG(y-g)] for all geG
< dlx+g,y)+d [JTG(x) ,JTG(y-g)] for all geG

<dlx,y-g)+d(x,y-g) for all geG.

Therefore, d[W-l(x+G),W-1(y+G)]S 2d(x,y+G) = 2d(x+G,y+G) i.e.
wl s Lipschitzian.

The following theorem deals with the continuity of metric projec-
tions in quotient spaces of linear metric spaces. This result in normed
linear spaces was proved by Cheney and Wulbert [1].

Theorem 4. Let P be a Chebyshev subspace of a linear metric
space (E,d) with continuous T and let Q be a subspace of E which
contains P. Then the following conditions are equivalent:

(i) Q is a Chebyshev subspace of E with continuous JTQ.

(ii) Q/P is a Chebyshev subspace of E/P with continuous JTQ /P
Proof. (i) ==>(ii). Since Q is proximinal in E, Q/P is pro-
ximinal in E/P (Theorem 2 [3]). Since P is proximinal in E and Q is
semi-Chebyshev in E, Q/P is semi-Chebyshev in E/P (Theorem 2 [3]).
Hence Q/P is a Chebyshev subspace in E/P. Now we show that To/p

is continuous.

Let fn+P—>f+P. Plut g - fn - Jer and g = f - Jer. Then
g *P—= g+P and geJ'r(_2 (o). Tt follows that dist (gn-g,P) —=0 i.e.
d [gn-g,ﬂp(gn-g)] —= 0 and so g -7m,(g -g) —= g. By the continuity
of (hypothesis), the quasi-additivity of ™ (see [5]) and idempo-

tency of (see [5]), it follows that

Tp
JrP(gn)-JrP(gn-g) —=7(g) =0 as g =f-Jer.
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Thus gn-JrP(gn-g) —=g. By the continuity of 7.,

Tt~ Tplgy8) T le) = 0.
Thus dist (JTQg ,P)—=0, dist (JTan-Jer,P)—>0, and JTan+P —
———Jer+P. By Theorem 2 [3], this implies that e /P(fn+P)——

——JrQ/P(f+P).

(ii) = (i) Since Q/P is Chebyshev in E/P and P is Chebyshev
in E, Q is Chebyshev in E (Theorem 2[3]) Now we show that .er is
continuous. Since E = Q @ PQ (o) (Theorem 2.3 [4]), it is suffi-

-1
cient to prove the continuity of o) at the points of PQ (o). Let
f—fe P-Ql( ). Then f +P —=f+P, and by the continuity of
Q/P(f +P) — Q/P(f+P). By Theorem 2 (3], » fn+P —-Jer+P =P.

Q
Hence f-f +m. f +P — P. Tt follows that
n Qn

dist(f-fn+Jern,P y—=0

d [f-fn+:ern, :rP(_f-fnuern)] —0

fn- Jern + JrP(f-fn+Jern) —f—=(a)

By the continuity of oy we have

JrP(fn-Jern) + JrP(f-anrQ-fn)—- JrPf =0,

Since JrP(fn-Jr f) a0, we have 7 (f-f +7 f ) —=0. It follows from

Qn ’ P n"Qn
(a) that fn-Jern——f, whence Jern-—’O - JTQ(f).
Remark. The converse of Theorem 4 is not true even in

normed linear spaces {see [1]).
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