

Marek Rochowski

A SCHEME OF GENERATING CANONICAL FRAMES IN NORMAL BUNDLES OF IMMERSED MANIFOLDS IN EUCLIDEAN SPACES

1. Introduction

In this paper we define canonical frames in the normal bundle NM^n of a differentiable manifold M^n immersed in the Euclidean space E^{n+N} . The geometric idea of this construction was explained in [3]. More generally we repeat this concept as follows. Around a curve $x(I) \subset E^n$, $n \geq 3$, where E^n denotes the n -dimensional Euclidean space and

$$(1.1) \quad x: I \rightarrow E^n, \quad I = [0,1]$$

is an immersion, we take a tubular neighborhood consisting of a one-parameter family of $(n-1)$ -dimensional disks of radius $\varepsilon > 0$. There exists such an $\varepsilon_0 > 0$ that for every ε , $0 < \varepsilon \leq \varepsilon_0$, the boundary $T^{n-1}(\varepsilon)$ of the tubular neighborhood is a regular surface. The Gauss curvature

$$(1.2) \quad K: T^{n-1}(\varepsilon) \rightarrow \mathbb{R}, \quad \text{where } \mathbb{R} \text{ denotes the real numbers,}$$

of $T^{n-1}(\varepsilon)$ has the following property. Let us suppose that the first curvature $k_1(s)$ of (1.1) is greater than zero for every $s \in [0,1]$. We consider the restriction of (1.2)

$$(1.3) \quad K/S^{n-2}(s, \varepsilon),$$

where

$$(1.4) \quad S^{n-2}(s, \varepsilon) \subset T^{n-1}(\varepsilon)$$

denotes the spherical "fiber" with radius ε and center $x(s)$. Then there exist exactly two antipodal points $y_1(s)$, $y_2(s)$ of the sphere (1.4) such that the function (1.3) attains its maximal value at $y_1(s)$ and its minimal value at $y_2(s)$ and the direction in E^n defined by the pair $(y_1(s), y_2(s))$ is that defined by the principal normal $\tilde{e}_2(s)$ of (1.1). In the following such a direction is called canonical.

We replace $x(l)$ by a surface $x(M^n) \subset E^{n+N}$, the tubular neighborhood by the normal bundle $NM^n = NM^n(x)$ of $x(M^n)$ and the Gauss curvature K by an elementary, symmetric function (called in the following also a scalar function) of the characteristic polynomial of the second quadratic form of $x(M^n)$. The stationary values of such a function restricted to the unit vectors of a fiber $N_p M^n(x)$, $p \in M^n$, of $NM^n(x)$ define directions in E^{n+N} which are called canonical.

Let

$$(1.5) \quad e_2: l \rightarrow S^2, \quad l = [0,1], \quad e_2(0) = e_1(1),$$

denotes an immersion such that the direction of the principal normal \tilde{e}_2 of e_2 is identical with that of e_2 . Then the second curvature of e_2 is zero and therefore $e_2(l) = S^1$, where $S^1 \subset S^2$ is the 1-dimensional unit sphere.

As an application of the method explained in Section 7 we define canonical immersions of manifolds in spheres as a generalization of (1.5) and prove that the image of a closed and connected manifold M^n , $\dim M^n = n$, $n \geq 2$, in the $(n+N-1)$ -dimensional, unit sphere S^{n+N-1} by means of a canonical immersion is a unit sphere $S^n \subset S^{n+N-1}$ and M^n is diffeomorphic with S^n .

An outline of the content. In Section 2 we describe the scheme of generating canonical frames in an arbitrary vector bundle. In Section 3 basic notations are introduced. In Section 4 scalar functions in the normal bundle are defined and the construction of canonical frames is carried out. In Section 5 necessary conditions which define canon-

cal vectors are rewritten as exterior form equations. In Section 6 we define sufficient conditions to get the uniqueness of the construction. In Section 7 we consider canonical cross sections of immersions of manifolds into spheres.

Cartan's method of moving frames and special related problems are considered by Ph. Griffiths [1] and G.R. Jenssen [2].

2. A scheme of generating canonical frames in vector bundles

Let

$$\mathcal{B} = (B, \pi, M, V)$$

denotes a vector bundle with total space B , base space M , the projection π and a standard fiber V . B and M are differentiable manifolds and V is a finite dimensional vector space. We denote

$$\dim M = n, \quad \dim V = N, \quad \dim B = n+N.$$

A metric g on the bundle \mathcal{B} is a function which assigns to every $p \in M$ a positive definite scalar product g_p in the fiber V_p over $p \in M$, such that for every open set $U \subset M$ and every differentiable, local cross sections $s_1, s_2: U \rightarrow B$, the function $g(s_1, s_2): U \rightarrow \mathbb{R}$ defined by $g(s_1, s_2)(p) = g_p(s_1(p), s_2(p))$ is differentiable. Differentiability means differentiability of class C^∞ . We suppose throughout the paper that considered manifolds and functions are differentiable. By

$$(2.1) \quad \mathcal{N}_1 = (N_1, \pi_2, M, O(N)),$$

where $O(N)$ denotes the orthogonal group acting on E^N from the right, we denote the principal bundle of orthonormal frames such that \mathcal{B} is associated with \mathcal{N}_1 . Let $L: B \rightarrow \mathbb{R}$ denote a differentiable function, called a scalar function on \mathcal{B} . With the aid of L we define local cross sections in \mathcal{N}_1 , called canonical frames (with respect to L) as follows. Let $U \subset M$ denotes an open set such that there exists a vector bundle chart $H: \pi^{-1}(U) \rightarrow U \times V$. This implies that \mathcal{B} restricted to U

admits N linearly independent cross sections $(p, \bar{e}_r(p))$, $p \in U$, $\bar{e}_r(p) \in V_p = \pi^{-1}(p)$. These cross sections we denote in the following simply by \bar{e}_r . We denote

$$(2.2) \quad S_p^{N-1} = \left\{ e \in V_p : g_p(e, e) = 1 \right\}.$$

The function L restricted to the sphere (2.2) admits a maximal value at a point $\tilde{e}_{n+1}(p) \in S_p^{N-1}$ called the first canonical vector. Thus, $\tilde{e}_{n+1}(p)$ is a stationary point of the restriction L/S_p^{N-1} . If $\tilde{e}_{n+1}(p)$ is a non degenerate stationary point, i.e., if the Hessian of the function L/S_p^{N-1} is different from zero at $\tilde{e}_{n+1}(p)$, then $\tilde{e}_{n+1}(p)$ is isolated in the sphere S_p^{N-1} .

We have the following

Proposition 1. If $\tilde{e}_{n+1}(p) \in S_p^{N-1} \subset V_p$ is a non degenerate stationary point of the restriction L/S_p^{N-1} such that this function attains its maximal (or minimal) value at $\tilde{e}_{n+1}(p)$, then there exists a neighborhood $Q \subset M$ of $p \in M$ such that $\tilde{e}_{n+1}(q)$, $q \in Q$, is a non degenerate stationary point of L/S_q^{N-1} at which this function attains its maximal (or minimal) value, and $\tilde{e}_{n+1}(q)$, $q \in Q$, is a differentiable cross section in the bundle \mathcal{B} restricted to $Q \subset M$.

Proof. Let $H^{-1}: U \times V \rightarrow \mathcal{B}$ denotes a coordinate mapping, where U is an open set. We choose U such that (U, h) is a chart of M such that $h: U \rightarrow K^n$ is a diffeomorphism, where K^n denote the n -dimensional, unit and open disk in E^n referred to the coordinates (u_1, \dots, u_n) . By $H_1^{-1}: U \rightarrow \mathcal{B}$ we denote the mapping defined by

$$(2.3) \quad H_1^{-1}(q, e) = H^{-1}(q, e), \quad q \in U, \quad e \in S^{N-1}.$$

By $\{(V, a), (W, b)\}$ we denote an atlas on S^{N-1} such that $U \cup W = S^{N-1}$ and $a(e) = (v_1, \dots, v_{N-1}) \in K^{N-1}$, $b(e) = (w_1, \dots, w_{N-1}) \in K^{N-1}$ are local coordinates of $e \in S^{N-1}$. The function $L: \mathcal{B} \rightarrow \mathcal{B}$ written in local coordinates has the form

$$(2.4) \quad f(u;v) = L(H_1^{-1}(h^{-1}(u), a^{-1}(v))) \text{ in the charts } (U, h), (V, a)$$

and similarly

$$(2.5) \quad f(u;w) = L(H_1^{-1}(h^{-1}(u), b^{-1}(w))) \text{ in the charts } (U, h), (W, b),$$

where $u = (u_1, \dots, u_n)$, $v = (v_1, \dots, v_{N-1})$, $w = (w_1, \dots, w_{N-1})$.

If $(u^0; v^0) = (u_1^0, \dots, u_n^0; v_1^0, \dots, v_{N-1}^0)$ are coordinates of a non degenerate stationary point $\tilde{e}_{n+1}(p)$ of the function L/S_p^{N-1} , then

$$(2.6) \quad \frac{\partial f}{\partial v_\alpha}(u^0; v^0) = 0, \quad \det \left(\frac{\partial^2 f}{\partial v_\alpha \partial v_\beta}(u^0; v^0) \right) \neq 0, \quad 1 \leq \alpha, \beta \leq N-1.$$

By the implicit function theorem there exists a neighborhood $Q \subset U$ of $p \in U$, where $h(p) = (u_1^0, \dots, u_n^0)$, and uniquely defined differentiable functions $v_\alpha(u_1, \dots, u_n)$ such that $v_\alpha(u_1^0, \dots, u_n^0) = v_\alpha^0$, $1 \leq \alpha \leq N-1$, and

$$(2.7) \quad \frac{\partial f}{\partial v}(u_1, \dots, u_n; v_1(u), \dots, v_{N-1}(u)) = 0,$$

$$(2.8) \quad \det \left(\frac{\partial^2 f}{\partial v_\alpha \partial v_\beta}(u_1, \dots, u_n; v_1(u), \dots, v_{N-1}(u)) \right) \neq 0,$$

where $u = (u_1, \dots, u_n) \in h(Q) \subset K^n$. The second differential of (2.4) with respect to the variables v_α , $1 \leq \alpha \leq N-1$, is negative (or positive) definite at $(u_1^0, \dots, u_n^0; v_1^0, \dots, v_{N-1}^0)$. Hence from (2.8) we get that this differential is also negative (or positive) definite at every point $(u_1, \dots, u_n; v_1(u), \dots, v_{N-1}(u))$ for $u = (u_1, \dots, u_n) \in h(Q) \subset K^n$. This means that

$$(2.9) \quad \tilde{e}_{n+1}(q) = H_1^{-1}(j^{-1}(u), a^{-1}(v(u))) \in S_q^{N-1},$$

where $h(q) = u$, $q \in Q$, $v(u) = (v_1(u), \dots, v_{N-1}(u))$, is a differentiable cross section of the bundle \mathcal{B} restricted to $Q \subset U \subset M$ and the function L/S_q^{N-1} attains its maximal (or minimal) value at $\tilde{e}_{n+1}(q)$. In the case (2.5) the proof is the same.

As an immediate consequence of Proposition 1 we get the

Corollary 1. If for every $q \in U$, $U = h^{-1}(K^n)$, the Hessian of L/S_q^{N-1} is different from zero at a stationary point $\tilde{e}_{n+1}(q)$ such that L/S_q^{N-1} attains its maximal (or minimal) value at $\tilde{e}_{n+1}(q)$, then there exists a uniquely defined cross section of the bundle \mathcal{B} restricted to $U \subset M$ and represented by the formula (2.9) for $q \in U$.

If

$$(2.10) \quad \tilde{e}_{n+1}(p), \dots, \tilde{e}_{n+\varphi-1}(p), \quad 2 \leq \varphi < N, \quad p \in U = h^{-1}(K^n),$$

are canonical mutually orthogonal vectors, then $\tilde{e}_{n+\varphi}(p) \in S_p^{N-1}$ is defined as a non degenerate stationary point of the function $L/S_p^{N-\varphi}$, where $S_p^{N-\varphi} \subset S_p^{N-1}$ is contained in the linear subspace of V_p which is orthogonal to the vectors (2.10) such that $L/S_p^{N-\varphi}$ attains its maximal value at $\tilde{e}_{n+\varphi}(p)$. The last canonical vector $\tilde{e}_{n+N}(p)$ is uniquely determined by the foregoing canonical vectors and the orientation of V_p .

In the following we shall identify the function L restricted to $\pi^{-1}(U)$, $U \subset M$, and LH^{-1} , hence we set

$$(2.11) \quad L(e(p)) = L(p, e).$$

The vector $e \in S^{N-1}$ at the right of (2.11) is therefore a "projection" of $e(p) \in S_p^{N-1}$ on S^{N-1} defined by $e(p) \rightarrow (p, e) \rightarrow e$. In the following we shall identify the "projection" $\tilde{e}_{n+1} \in S^{N-1}$ with the cross section (2.9) for $q \in U$. Hence we set

$$(2.12) \quad \tilde{e}_{n+1}(q) = \tilde{e}_{n+1} \quad \text{for } q \in U.$$

From Corollary 1 with the use of the identification (2.12) we get

Proposition 2. If for every $p \in U$, $U = h^{-1}(K^n)$, the Hessian of $L/S_p^{N-\varphi}$, where $S_p^{N-\varphi}$ is the $(N-\varphi)$ -dimensional, unit sphere contained in the subspace of V_p orthogonal to the vectors (2.10), $1 \leq \varphi < N$, is different from zero at a stationary point $\tilde{e}_{n+\varphi}$ such that

L/S_p^{N-q} attains its maximal value at \tilde{e}_{n+q} , then the function which sends $p \in U$ to \tilde{e}_{n+q} , $1 \leq q < N$, is a cross section over U in \mathcal{B} and

$$(2.13) \quad o(p)\tilde{e}_{n+1} \dots \tilde{e}_{n+N} \in N_1$$

is a uniquely defined orthonormal frame of V_p attached to the origin $o(p)$ of V_p . The function which sends $p \in U$ to (2.13) is called a canonical cross section over U in N_1 (see (2.1)) and $o: M \rightarrow \mathcal{B}$ is the zero section in \mathcal{B} .

Finally we have

Proposition 3. If the function L/V_p is linear for every $p \in U$, then exactly one canonical vector \tilde{e}_{n+1} can be defined by means of L .

Proof. Since the nullspace of L/V_p is an $(N-1)$ -dimensional subspace $W_p \subset V_p$, which, as follows from the definition of \tilde{e}_{n+1} , is orthogonal to \tilde{e}_{n+1} it follows that the function L/S_p^{N-2} , $S_p^{N-2} \subset W_p$, is identically zero.

Generally, if L is identically constant on a subspace of V_p orthogonal to the already defined vectors (2.10), then the definition of \tilde{e}_{n+q} with the aid of L is not possible. In such a case besides L we need further scalar functions $L_\varphi: B_\varphi \rightarrow \mathbb{R}$, where B_φ denotes the total space of the subbundle \mathcal{B}_φ of the restriction \mathcal{B}/U , whose fiber over $p \in U$ is the subspace of V_p orthogonal to the vectors (2.10). In applications the scalar function L is a homogeneous polynomial of N variables and of degree less than or equal to $\dim M = n$. Since the estimation of stationary points of a polynomial can be described as an algebraic procedure, it follows that the process of defining canonical cross sections (2.13) is rather an algebraic and not differential geometric procedure. The function L depend on the second derivatives of an immersion of M in another manifold and the polynomial L_φ depend on derivatives of this immersion of order greater than two.

We define

$$(2.14) \quad L_r(p) = L(p, \tilde{e}_r), \quad p \in U \subset M.$$

3. Preliminaries

Let

$$(3.1) \quad x: M^n \longrightarrow E^{n+N}$$

denotes an immersion of a differentiable manifold M^n of dimension n in the Euclidean space E^{n+N} . We use the following notations. TM^n denote the tangent bundle of M^n , $T_p M^n$ denote the tangent space to M^n at $p \in M^n$, $N_p M^n(x)$ denote the normal bundle of M^n determined by (3.1). The fiber $N_p M^n(x)$ over $p \in M^n$ is the N -dimensional subspace of E^{n+N} of such vectors $e \in E^{n+N}$ that

$$(3.2) \quad e \cdot dx(p) = 0.$$

In the following we frequently set

$$(3.3) \quad \|e\| = 1.$$

By $\mathcal{T}(x)$ we denote the principal tangent bundle of orthonormal frames $x(p)e_1 \dots e_n \in T(x)$, where $e_i \in x^*(T_p M^n)$, $1 \leq i \leq n$, denote vectors tangent to the surface $x(M^n)$ at the point $x(p)$. We denote

$$(3.4) \quad \mathcal{T}(x) = (T(x), \pi_1, M^n, O(n)),$$

By $\mathcal{N}_1(x)$ we denote the principal normal bundle of orthonormal frames

$$(3.5) \quad x(p)e_{n+1} \dots e_{n+N} \in N_1(x) \quad e_r \in N_p M^n(x), \quad n+1 \leq r \leq n+N.$$

We denote

$$(3.6) \quad \mathcal{N}_1(x) = (N_1(x), \pi_2, M^n, O(N)).$$

By $\mathcal{F}_1(x) = \mathcal{T}(x) \oplus \mathcal{N}_1(x)$ we denote the Whitney sum of bundles, i.e.

$$(3.7) \quad \mathcal{F}_1(x) = (F_1(x), \pi, M^n, O(x) \times O(N)).$$

The elements of the total space $F_1(x)$ are orthonormal frames

$$(3.8) \quad x(p)e_1 \dots e_n e_{n+1} \dots e_{n+N} \in F_1(x).$$

The orthogonal groups $O(n)$, $O(N)$ and $O(n+N)$ act from the left on the respective orthonormal frames. Every frame (3.8) defines an element of the Euclidean group $E(n+N)$ which acts on E^{n+N} from the right, i.e.

$$(3.9) \quad x \rightarrow xA + a, \quad A \in O(n+N), \quad a \in T(n+N), \quad x \in E^{n+N},$$

where $T(n+N)$ denotes the translation group, isomorphic with E^{n+N} .

The group operations in $E(n+N)$ have the form

$$(3.10) \quad (A, a) \cdot (B, b) = (AB, aB+b), \quad (A, a)^{-1} = (A^T, -aA^T),$$

where $(A, a), (B, b) \in E(n+N)$ and A^T denotes the matrix transposed to A . The equations of structure of $E(n+N)$ have the form

$$(3.11) \quad d\omega' = \omega' \wedge \Omega', \quad d\Omega' = \Omega' \wedge \Omega',$$

where $\omega' = daA^T = (\omega'_A)_{1 \leq A \leq n+N}$, $\Omega' = dA \cdot A^T = (\omega'_{AB})_{1 \leq A, B \leq n+N}$, and on the right sides of the equations (3.11) we have matrix multiplication. In the following we use the convention

$$1 \leq i, j, k, l \leq n, \quad n+1 \leq r, s, t, u \leq n+N, \quad 1 \leq \rho, \sigma \leq N,$$

and repeated indices denote summation. The total space $F_1(x)$ of (3.7) can be identified with the set

$$(3.12) \quad \left\{ (A, a) \in E(n+N) / e_i = (a_{i1}, \dots, a_{i, n+N}) \in x_*(T_p M^n), \quad a = x(p), \quad p \in M^n \right\},$$

where $A = (a_{AB})_{1 \leq A, B \leq n+N} \in O(n+N)$, $a = x(p) \in E^{n+N}$ and x_* denotes the differential of (3.1). The vectors $e_r = (a_{r1}, \dots, a_{r, n+N})$ are orthogonal to $x(M^n)$ at $x(p)$. By means of the identification (3.12) we define the inclusion map

$$(3.13) \quad F_1(x) \subset E(n+N).$$

We define linear forms

$$(3.14) \quad \omega = \iota^* \omega' = (\omega_A), \quad \Omega = \iota^* \Omega' = (\omega_{AB}), \quad 1 \leq A, B \leq n+N,$$

on $F_1(x)$, where ι^* denotes the pull back of the components ω' , Ω' of the moving frame of the Euclidean group $E(n+N)$, which corresponds to the inclusion map (3.13). On $F_1(x)$ we have

$$(3.15) \quad \iota^*(da) \cdot e_r = dx(p) \cdot e_r = \omega_r = 0.$$

Hence

$$(3.16) \quad dx = \omega_i e_i.$$

Furthermore, we have

$$(3.17) \quad de_i = \omega_{ik} e_k + \omega_{ir} e_r$$

and the Weingarten equations have the form

$$(3.18) \quad de_r = \omega_{ri} e_i + \omega_{rs} e_s.$$

The equations of structure of the bundle $\mathcal{F}_1(x)$ have the form

$$(3.19) \quad d\omega_i = \omega_k \wedge \omega_{ki},$$

$$(3.20) \quad d\omega_{ik} = \omega_{ij} \wedge \omega_{jk} + \omega_{ir} \wedge \omega_{rk},$$

$$(3.21) \quad d\omega_{ir} = \omega_{ij} \wedge \omega_{jr} + \omega_{is} \wedge \omega_{sr},$$

$$(3.22) \quad d\omega_{rs} = \omega_{rj} \wedge \omega_{js} + \omega_{rt} \wedge \omega_{ts}.$$

The formulas (3.20) are called the Gauss equations and (3.21) the Codazzi-Mainardi equations. From (3.11), (3.14) and (3.15) we get

$$(3.23) \quad \omega_{ri} \wedge \omega_i = 0$$

and from Cartan's Lemma it follows

$$(3.24) \quad \omega_{ir} = A_{rij} \omega_j, \quad A_{rij} = A_{rji}.$$

We define the curvature forms by

$$(3.25) \quad \Theta_{ik} = \omega_{ir} \wedge \omega_{rk} = -A_{rij} A_{rkl} \omega_j \wedge \omega_l = R_{ijkl} \omega_j \wedge \omega_l,$$

where R_{ijkl} are the components of the Riemann curvature tensor. From (3.16) it follows that the induced metric on M^n defined by (3.1) has the form

$$(3.26) \quad ds^2 = \sum_{i=1}^n \omega_i^2$$

and the volume element of M^n has the form

$$(3.27) \quad dV_n = \omega_1 \wedge \dots \wedge \omega_n.$$

From (3.16), (3.18) and (3.24) we get

$$(3.28) \quad d^2x \cdot e_r = -dx \cdot e_r = \omega_i \omega_{ri} = -A_{rij} \omega_i \omega_j.$$

From (3.28) we have that A_{rij} defined on $F_1(x)$ are coefficients of the second quadratic form of (3.1) in the direction defined by e_r . The coefficients of the characteristic polynomial

$$(3.29) \quad \det(\lambda \delta_{ij} - A_{rij})$$

are scalar functions defined on $NM^n(x)$. With the use of the identifications (2.11) and (2.12) we denote by $L_k(p, e_r)$ the coefficient by λ^{n-k} in (3.29).

We have

Proposition 4. For every $p \in M^n$ there exist at most $\frac{n(n+1)}{2}$ canonical vectors which can be defined by means of L_k/S_p^{N-1} , $2 \leq k \leq n$.

Proof. We denote

$$(3.30) \quad f_{ij} = (A_{n+1,ij}, \dots, A_{n+N,ij}).$$

We prove that f_{ij} is a vector of $N_p M^n(x)$ in the base (3.5). Let

$$(3.31) \quad e_r = a_{rs} \bar{e}_s, \quad (a_{rs}) \in O(N),$$

denotes a change of bases in $N_p M^n(x)$. We have

$$(3.32) \quad \omega_{ir} = d e_i \cdot e_r = a_{rs} \bar{\omega}_{is} = a_{rs} d e_i \cdot \bar{e}_s.$$

From (3.24) and (3.32) we get

$$(3.33) \quad A_{rij} \omega_j = a_{rs} \bar{A}_{sij} \omega_j.$$

Since ω_j are linearly independent we get

$$(3.34) \quad A_{rij} = a_{rs} \bar{A}_{sij}.$$

From (3.31) and (3.34) it follows that A_{rij} undergo a change as a vector of $N_p^1 M^n(x)$. Since $A_{rij} = A_{rji}$, we have $f_{ij} = f_{ji}$. Therefore the vectors f_{ij} with coordinates (3.30) define a subspace $N_p^1 M^n(s) \subset N_p^1 M^n(x)$ and

$$(3.35) \quad \dim N_p^1 M^n(x) \leq \frac{n(n+1)}{2}.$$

The subspace $N_p^1 M^n(x)$ remains invariant by change of bases in $T_p^p M^n$. Indeed, we have

$$(3.36) \quad A_{rij} = a_{ik} a_{jl} \bar{A}_{rkl},$$

where

$$(3.37) \quad e_i = a_{ij} \bar{e}_j, \quad (a_{ij}) \in O(n),$$

is a change of bases in $T_p^p M^n$. From (3.30) and (3.36) we get $f_{ij} = a_{ik} a_{jl} \bar{f}_{kl}$, i.e. f_{ij} depend linearly on \bar{f}_{ij} .

For $p \in M^n$ fixed L_1 is a linear function and therefore from Proposition 3 it follows that by means of L_1 at most one canonical vector can be defined.

4. Canonical frames in $NM^n(x)$

The coefficient by λ^{n-k} in (3.29) has the form

$$(4.1) \quad L_k(p, e_r) = (-1)^k \sum_{\substack{i_1 < \dots < i_k \\ 1 \leq i_1 \leq n, 1 \leq l \leq k, 1 \leq k \leq n}} \det(A_{rpq})_{p,q \in \{i_1, \dots, i_k\}},$$

where $1 \leq i_1 \leq n$, $1 \leq l \leq k$, $1 \leq k \leq n$. In particular we get

$$(4.2) \quad L_1(p, e_r) = - \sum_{i=1}^n A_{rri},$$

$$(4.3) \quad L_2(p, e_r) = \sum_{i < j} \det(A_{rpq})_{p,q \in \{i, j\}},$$

$$(4.4) \quad L_n(p, e_r) = L(p, e_r) = -1)^n \det(A_{rij}).$$

The function (4.4) is the Killing-Lipschitz curvature. The functions (4.2), and (4.3) are considered more detailed below in a) and b) respectively. The general case is considered in c). Let

$$(4.5) \quad x(p) \bar{e}_{n+1} \dots \bar{e}_{n+N} \in N_1(x), \quad p \in U,$$

denotes a cross section from an open set $U \subset M^n$ in $N_1(x)$ (see (3.6)).

a) From (3.34) and (4.2) we get

$$(4.6) \quad L_1(p, e_{n+1}) = -a_{n+1,s} \sum_{i=1}^n \bar{A}_{sii}.$$

We apply the method of Lagrange to determine stationary points of the function (4.6) restricted to S_p^{N-1} . We have

$$(4.7) \quad \sum_{s=n+1}^{n+N} a_{n+1,s}^2 = 1.$$

We get

$$(4.8) \quad \sum_{i=1}^n \bar{A}_{sii} - 2l_{1,n+1} a_{n+1,s} = 0,$$

where $l_{1,n+1}$ is a constant for $p \in U$ fixed. From (4.6), (4.7) and the formula

$$(4.9) \quad \sum_{r=n+1}^{n+N} A_{rij}^2 = \sum_{r=n+1}^{n+N} (a_{rs} \bar{A}_{sij})^2 = a_{rs} a_{rt} \bar{A}_{sij} \bar{A}_{tij} = \sum_{r=n+1}^{n+N} \bar{A}_{rij}^2$$

we get

$$(4.10) \quad 4l_{1,n+1}^2 = \sum_{s=n+1}^{n+N} \left(\sum_{i=1}^n A_{sii} \right)^2 = \sum_{s=n+1}^{n+N} \left(\sum_{i=1}^n A_{sii} \right)^2.$$

The function $l_{1,n+1} = l_{1,n+1}(p)$, $p \in U$, is an invariant of $NM^n(x)$.

This is the maximal (or minimal) value of $L_1(p, \tilde{e}_{n+1})$ restricted to

S_p^{N-1} (see (2.14)). We have $l_{1,n+1}(p) = L_1(p, \tilde{e}_{n+1})$. In the following an invariant $l_{kr}(p) = L_k(p, \tilde{e}_r)$ of $NM^n(x)$ is called simply an invariant of (3.1) or of the surface $x(M^n)$. Denoting by $\tilde{A}_{n+1,ij}$ the coefficients of the second quadratic form (3.28) evaluated in the direction of \tilde{e}_{n+1} we get

$$(4.11) \quad 2l_{1,n+1} = - \sum_{i=1}^n \tilde{A}_{n+1,ii}.$$

If $l_{1,n+1}(p) \neq 0$ for every $p \in U \subset M^n$, then from (3.31) and (4.8) we get

$$(4.12) \quad \tilde{e}_{n+1} = - \frac{1}{2l_{1,n+1}} \sum_{i=1}^n \tilde{A}_{sii} \bar{e}_s.$$

From (4.12) it follows that \tilde{e}_{n+1} is a differentiable cross section from U to $NM^n(x)$. This is the mean curvature vector and $l_{1,n+1}$ defined by (4.11) is the mean curvature of (3.1) in the direction of \tilde{e}_{n+1} . If we choose the cross section (4.5) such that $\bar{e}_{n+1} = \tilde{e}_{n+1}$ and \bar{e}_s , $n+2 \leq s \leq n+N$, remains arbitrary, then from (4.10) and (4.11) we get

$$(4.13) \quad \sum_{i=1}^n \tilde{A}_{sii} = 0, \quad n+2 \leq s \leq n+N.$$

Proposition 5. If $l_{1,n+1}(p) \neq 0$ for every $p \in M^n$, then there exists a cross section $\tilde{e}_{n+1}: M^n \rightarrow NM^n(x)$ and for every open set $U \subset M^n$ which admit a cross section (4.5) $2l_{1,n+1}$ has the form (4.11) and \tilde{e}_{n+1} the form (4.12).

Proof. It suffices to prove that the definition (4.12) of \tilde{e}_{n+1} does not depend on the cross section (4.5). Let $x(p)\hat{e}_{n+1} \dots \hat{e}_{n+N} \in N_1(x)$ denotes another cross section defined on an open set V such that $p \in U \cap V$. There exists a matrix $(a_{rs}) \in O(N)$ such that

$$\bar{e}_r = a_{rs} \hat{e}_s, \quad \tilde{A}_{rji} = a_{rs} \hat{A}_{sji}$$

for $p \in U \cap V$. We have

$$\bar{A}_{r ii} \bar{e}_r = a_{rs} \hat{A}_{sii} a_{rt} \hat{e}_t = \sigma_{st} \hat{A}_{sii} \hat{e}_t = \hat{A}_{tii} \hat{e}_t.$$

b) The function L_2 defined by (4.3) satisfies $L_2(p, e_{n+1}) = -L_2(p, -e_{n+1})$ and therefore by means of L_2 we define canonical directions only. Let us suppose inductively that by means of L_2 we have defined canonical vectors (2.10) and invariants $l_{2,n+6}$, $1 \leq \sigma \leq \rho-1$, of $x(M^n)$ at $p \in U \subset M^n$. The vectors (2.10) are defined up to orientation. We define the canonical vector $\tilde{e}_{n+\rho}$ as follows. In (3.34) we change the range of indices such that $n+\rho \leq r, s \leq n+N$ and substitute

$$(4.14) \quad A_{n+\rho,ij} = a_{n+\rho,s} \bar{A}_{sij}, \quad n+\rho \leq s \leq n+N,$$

in (4.3). The sought unit vector $\tilde{e}_{n+\rho}$ is orthogonal to the vectors (2.10) and therefore can be written in the form

$$(4.15) \quad \tilde{e}_{n+\rho} = a_{n+\rho,s} \bar{e}_s, \quad n+\rho \leq s \leq n+N,$$

where \bar{e}_s together with $\tilde{e}_{n+\sigma}$, $1 \leq \sigma \leq \rho-1$, define a base (4.5) of $N M^n(x)$. The coordinates $(a_{n+\rho,n+\rho}, \dots, a_{n+\rho,n+N})$ of a stationary point $\tilde{e}_{n+\rho}$ of $L_2/S_p^{N-\rho}$ satisfy the condition

$$(4.16) \quad \sum_{r=n+\rho}^{n+N} a_{n+\rho,r}^2 = 1$$

and the system of equations

$$(4.17) \quad a_{n+\rho,s} \sum_{i,j} (\bar{A}_{r ii} \bar{A}_{s jj} + \bar{A}_{r jj} \bar{A}_{s ii} - 2 \bar{A}_{r ij} \bar{A}_{s ij}) - 2 l_{2,n+\rho} a_{n+\rho,r} = 0,$$

where $1 \leq \rho < N$, $n+\rho \leq r, s \leq n+N$. If we choose in (4.5) $\bar{e}_{n+\sigma}$ as canonical vectors $\tilde{e}_{n+\sigma}$, $1 \leq \sigma \leq \rho$, and \bar{e}_s , $n+\rho+1 \leq s \leq n+N$, remains arbitrary, then $\tilde{e}_{n+\rho}$ has coordinates $a_{n+\rho,n+\rho} = 1$, $a_{n+\rho,r} = 0$, where $n+1 \leq r \leq n+N$, $r \neq n+\rho$, and the system of equations (4.17) takes the form

$$(4.18) \quad \sum_{i,j} (\tilde{A}_{n+\rho,ii} \tilde{A}_{n+\rho,jj} - \tilde{A}_{n+\rho,ij}^2) = l_{2,n+\rho},$$

$$(4.19) \quad \sum_{i < j} (\tilde{A}_{n+\varrho, ii} \bar{A}_{rjj} + \tilde{A}_{n+\varrho, jj} \bar{A}_{r ii} - 2\tilde{A}_{n+\varrho, ij} \bar{A}_{r ij}) = 0,$$

where $1 \leq \varrho \leq N-1$, $n+\varrho+1 \leq r \leq n+N$. Because of our inductive method the identities (4.19) are valid also for the range of indices $1 \leq \sigma \leq \varrho$, $n+\sigma+1 \leq r \leq n+N$, and therefore they are valid also for the range of indices

$$(4.20) \quad 1 \leq \sigma \leq \varrho, \quad n+\sigma+1 \leq r \leq n+N.$$

Hence the coefficients of the quadratic form $\bar{A}_{r ij}$, $n+\varrho+1 \leq r \leq n+N$, cannot be arbitrary numbers, since they satisfy ϱ equations of the form (4.19), where in (4.19) the index ϱ is replaced by σ and the range of indices is defined by (4.20). The same remark concerning conditions imposed on $\bar{A}_{r ij}$, $n+\varrho+1 \leq r \leq n+N$, by the foregoing steps of the construction is valid also in the general case c) considered below.

Direct calculations by means of the formula (4.9) yield to the result that besides l_{2r} , $n+1 \leq r \leq n+N$, also

$$(4.21) \quad \sum_{r=n+1}^{n+N} \sum_{i < j} (A_{r ii} A_{r jj} - A_{r ij}^2)$$

is an invariant of $x(M^n)$. For $n = 2$ (4.21) is the Gauss curvature of $x(M^2) \subset E^3$. Since $L_2 / S_p^{N-\varrho}$, $p \in U$, is a quadratic form of the variables $a_{n+\varrho, r}$, $n+\varrho \leq r \leq n+N$, which satisfy (4.16), it follows that $l_{2, n+\varrho}$, $1 \leq \varrho \leq N$, defined by (4.18) are eigenvalues of this quadratic form.

c) In general case (4.1) we have $L_k(p, -e_{n+1}) = (-1)^k L_k(p, e_{n+1})$. Hence for k even we determine directions only. We substitute (4.14) into (4.1). We get

$$(4.22) \quad L_k(p, e_{n+\varrho}) = (-1)^k \sum_{i_1 < \dots < i_k} \det(a_{n+\varrho, s_1} \bar{A}_{s_1 i_1 q}, \dots, a_{n+\varrho, s_k} \bar{A}_{s_k i_k q}),$$

where $1 \leq \rho < N$, $1 \leq i_1 \leq n$, $n+\rho \leq s_1 \leq n+N$, $1 \leq l \leq k$, $q \in \{i_1, \dots, i_k\}$. The symbol $a_{n+\rho, s_1} \bar{A}_{s_1 i_1 q}$ denotes the l -th row of the determinant at the right of (4.22). The function $L_k / S_p^{N-\rho}$ is defined by the formula (4.22), where the variables $a_{n+\rho, s}$, $n+\rho \leq s \leq n+N$, in (4.22) satisfy the condition (4.16). The coordinates $(a_{n+\rho, n+\rho}, \dots, a_{n+\rho, n+N})$ of a stationary point $\tilde{e}_{n+\rho}$ of $L_k / S_p^{N-\rho}$ satisfies besides (4.16) the system of equations

$$(4.23) \quad (-1)^k \sum_{l=1}^k \sum_{\substack{i_1 < \dots < i_k \\ i_1 < \dots < i_k}} \det(A_{n+\rho, i_1 q}, \dots, \bar{A}_{r i_1 q}, \dots, A_{n+\rho, i_k q}) = \\ = 2L_{k, n+\rho} a_{n+\rho, r},$$

where $1 \leq \rho < N$, $n+\rho \leq r \leq n+N$, and $A_{n+\rho, i_m q}$, $m \neq 1$, $1 \leq m \leq k$, is an abbreviation for $a_{n+\rho, s_m} \bar{A}_{s_m i_m q}$, $n+\rho \leq s_m \leq n+N$, in (4.23). If we choose (4.5) such that \tilde{e}_{n+G} are canonical vectors \tilde{e}_{n+G} , $1 \leq G \leq \rho$, then in such a base $\tilde{e}_{n+\rho}$ has coordinates $a_{n+\rho, n+\rho} = 1$, $a_{n+\rho, r} = 0$, $n+1 \leq r \leq n+N$, $r \neq n+\rho$, and the system of equations (4.23) takes the form

$$(4.24) \quad (-1)^k \sum_{i_1 < \dots < i_k} \det(\tilde{A}_{n+\rho, pq})_{p, q \in \{i_1, \dots, i_k\}} = 2L_{k, n+\rho},$$

$$(4.25) \quad \sum_{l=1}^k \sum_{\substack{i_1 < \dots < i_k \\ i_1 < \dots < i_k}} \det(\tilde{A}_{n+\rho, i_1 q}, \dots, \bar{A}_{r i_1 q}, \dots, \tilde{A}_{n+\rho, i_k q}) = 0,$$

where $1 \leq \rho < N$, $n+\rho+1 \leq r \leq n+N$. For $k = n$ the equations (4.24) and (4.25) have the form

$$(4.26) \quad (-1)^n n \det(\tilde{A}_{n+\rho, ik}) - 2L_{n, n+\rho} = 0,$$

$$(4.27) \quad \sum_{i=1}^n \det(\tilde{A}_{n+\rho, 1k}, \dots, \bar{A}_{rik}, \dots, \tilde{A}_{n+\rho, nk}) = 0.$$

5. Canonical frames defined by systems of exterior equations

From (3.24) and (3.27) we get the identity

$$(5.1) \quad \sum_{i=1}^n \omega_1 \wedge \dots \wedge \omega_{i-1} \wedge \omega_{ir} \wedge \omega_{i+1} \wedge \dots \wedge \omega_n = \sum_{i=1}^n A_{rii} dV_n.$$

From (3.24) we get

$$(5.2) \quad \tilde{\omega}_{i,n+1} = d\mathbf{e}_i \cdot \tilde{\mathbf{e}}_{n+1} = \tilde{A}_{n+1,ij} \omega_j,$$

where $\tilde{\mathbf{e}}_{n+1}$ in (5.2) is defined by (4.12). Denoting by $l_{1,n+1}$ the maximal value of the function (4.6) restricted to the sphere (4.7) we get from (4.11) and $L_1(p, -\mathbf{e}_{n+1}) = -L_1(p, \mathbf{e}_{n+1})$ the inequality

$$(5.3) \quad - \sum_{i=1}^n \tilde{A}_{n+1,ii} \geq 0.$$

From (4.10), (4.11) and (5.3) we get

$$(5.4) \quad - \sum_{i=1}^n \tilde{A}_{n+1,ii} = \left(\sum_{s=n+1}^{n+N} \left(\sum_{i=1}^n A_{sii} \right)^2 \right)^{\frac{1}{2}}.$$

From (5.1), (5.2) and (5.4) we get

$$(5.5) \quad - \sum_{i=1}^n \omega_1 \wedge \dots \wedge \omega_{i-1} \wedge \tilde{\omega}_{i,n+1} \wedge \omega_{i+1} \wedge \dots \wedge \omega_n = \\ = \left(\sum_{s=n+1}^{n+N} \left(\sum_{i=1}^n \omega_1 \wedge \dots \wedge \omega_{i-1} \wedge \bar{\omega}_{is} \wedge \omega_{i+1} \wedge \dots \wedge \omega_n \right)^2 \right)^{\frac{1}{2}}.$$

The equations (4.13) can be written in the equivalent form

$$(5.6) \quad \sum_{i=1}^n \omega_1 \wedge \dots \wedge \omega_{i-1} \wedge \bar{\omega}_{is} \wedge \omega_{i+1} \wedge \dots \wedge \omega_n = 0, \quad n+2 \leq s \leq n+N,$$

where

$$(5.7) \quad \bar{\omega}_{is} = d\mathbf{e}_i \cdot \bar{\mathbf{e}}_s = \bar{A}_{sij} \omega_j.$$

In the case b) from (3.24) and (3.27) we get the identity

$$(5.8) \quad \sum_{i < j} \omega_1 \wedge \dots \wedge \omega_{i-1} \wedge \omega_{ir} \wedge \omega_{i+1} \wedge \dots \wedge \omega_{j-1} \wedge \omega_{jr} \wedge \omega_{j+1} \wedge \dots \wedge \omega_n = \\ = \sum_{i < j} (A_{r ii} A_{r jj} - A_{r ij}^2) dV_n.$$

The equations (4.19) can be written in the equivalent form

$$(5.9) \quad \sum_{i < j} (\omega_1 \wedge \dots \wedge \omega_{i-1} \wedge \bar{\omega}_{ir} \wedge \omega_{i+1} \wedge \dots \wedge \omega_{j-1} \wedge \bar{\omega}_{j,n+\rho} \wedge \omega_{j+1} \wedge \dots \wedge \omega_n + \\ + \omega_1 \wedge \dots \wedge \omega_{i-1} \wedge \bar{\omega}_{i,n+\rho} \wedge \omega_{i+1} \wedge \dots \wedge \omega_{j-1} \wedge \bar{\omega}_{jr} \wedge \omega_{j+1} \wedge \dots \wedge \omega_n) = 0,$$

where $1 \leq \rho < N$, $n+\rho+1 \leq r \leq n+N$, and

$$(5.10) \quad \bar{\omega}_{i,n+\rho} = d\epsilon_i \cdot \tilde{e}_{n+\rho}.$$

The invariant (4.21) is defined by means of the invariant form

$$(5.11) \quad \sum_{r=n+1}^{n+N} \sum_{i < j} \omega_1 \wedge \dots \wedge \omega_{i-1} \wedge \omega_{ir} \wedge \omega_{i+1} \wedge \dots \wedge \omega_{j-1} \wedge \omega_{jr} \wedge \\ \wedge \omega_{j+1} \wedge \dots \wedge \omega_n.$$

In the general case c) we get from (3.24) and (3.27) the identity

$$(5.12) \quad \sum_{i_1 < \dots < i_k} \omega_1 \wedge \dots \wedge \omega_{i_1-1} \wedge \omega_{i_1 r} \wedge \omega_{i_1+1} \wedge \dots \wedge \omega_{i_k-1} \wedge \omega_{i_k r} \wedge \\ \wedge \omega_{i_k+1} \wedge \dots \wedge \omega_n = \sum_{i_1 < \dots < i_k} \det(A_{rpq})_{p,q \in \{i_1, \dots, i_k\}} dV_n.$$

The equations (4.25) can be written in the equivalent form

$$(5.13) \quad \sum_{l=1}^k \sum_{i_1 < \dots < i_k} \omega_1 \wedge \dots \wedge \omega_{i_1-1} \wedge \bar{\omega}_{i_1,n+\rho} \wedge \omega_{i_1+1} \wedge \dots \wedge \omega_{i_l-1} \wedge \\ \wedge \bar{\omega}_{i_l r} \wedge \omega_{i_l+1} \wedge \dots \wedge \omega_{i_k-1} \wedge \bar{\omega}_{i_k,n+\rho} \wedge \omega_{i_k+1} \wedge \dots \wedge \omega_n = 0,$$

where $1 \leq \varrho < N$, $n+\varrho+1 \leq r \leq n+N$. In particular (4.27) can be written in the form

$$(5.14) \quad \sum_{i=1}^n \tilde{\omega}_{1,n+\varrho} \wedge \dots \wedge \bar{\omega}_{ir} \wedge \dots \wedge \tilde{\omega}_{n,n+\varrho} = 0.$$

6. Local canonical cross sections in $NM^n(x)$

In Section 4 we have defined canonical frames

$$(6.1) \quad x(p) \tilde{e}_{n+1} \dots \tilde{e}_{n+N} \in N_1(x)$$

at a point $p \in M^n$ by means of the functions (4.1). From Proposition 1 and Corollary 1 it follows that if the Hessian

$$(6.2) \quad \det(h_{kru}^{\varrho})_{n+\varrho+1 \leq r, u \leq n+N}, \quad 1 \leq \varrho < N, \quad 2 \leq k \leq n,$$

of $L_k/S_p^{N-\varrho}$ is different from zero at a stationary point $\tilde{e}_{n+\varrho}$, then there exists a neighborhood $U \subset M^n$, $p \in U$, diffeomorphic with the unit disk K^n , such that for every $q \in U$ the Hessian (6.2) is different from zero and

$$(6.3) \quad \tilde{e}_{n+\varrho} : U \longrightarrow NM^n(x)$$

is a differentiable cross section. Let

$$(6.4) \quad x(p) \tilde{e}_{n+1} \dots \tilde{e}_{n+\varrho} \bar{e}_{n+\varrho+1} \dots \bar{e}_{n+N} \in N_1(x), \quad p \in U.$$

We suppose that $\tilde{e}_{n+\varrho}$, $1 \leq \varrho < N$, are cross sections defined by means of the functions L_j , $1 \leq j \leq n$, on $U \subset M^n$ and \bar{e}_r , $n+\varrho+1 \leq r \leq n+N$, are arbitrary cross sections of $NM^n(x)$ defined on $U \subset M^n$. From (4.1) and (6.4) it follows that the function $L_k/S_p^{N-\varrho}$ can be written in the form

$$(6.5) \quad L_k(p, e_{n+\varrho}) = (-1)^k \sum_{i_1 < \dots < i_k} \det(A_{n+\varrho, pq})_{p, q \in \{i_1, \dots, i_k\}},$$

where

$$(6.6) \quad e_{n+\varrho} = a_{n+\varrho, n+\varrho} \tilde{e}_{n+\varrho} + \sum_{r=n+\varrho+1}^{n+N} a_{n+\varrho, r} \bar{e}_r$$

and $(a_{n+q, n+q}, \dots, a_{n+q, n+N})$ satisfies (4.16). The second derivative of (6.5) with respect to $a_{n+q, r}, a_{n+q, u}$, $n+q+1 \leq r, u \leq n+N$, at $a_{n+q, r} = 0$, where

$$(6.7) \quad A_{n+q, pq} = a_{n+q, n+q} \tilde{A}_{n+q, pq} + \sum_{r=n+q+1}^{n+N} a_{n+q, r} \bar{A}_{rpq}$$

and

$$(6.8) \quad a_{n+q, n+q} = \left(1 - \sum_{r=n+q+1}^{n+N} a_{n+q, r}^2 \right)^{\frac{1}{2}},$$

has the form

$$(6.9) \quad h_{kru}^q = (-1)^{k+1} \delta_{ru}^k \sum_{i_1 < \dots < i_k} \det(\tilde{A}_{n+q, pq})_{p, q \in \{i_1, \dots, i_k\}} + \\ + (-1)^k \sum_{i_1 < \dots < i_k} \sum_{1 \leq m} (\det(\tilde{A}_{n+q, i_1 q}, \dots, \bar{A}_{r_{i_1} q}, \dots, \bar{A}_{u_{i_m} q}, \dots, \tilde{A}_{n+q, i_k q}) \\ + \det(\tilde{A}_{n+q, i_1 q}, \dots, \bar{A}_{u_{i_1} q}, \dots, \bar{A}_{r_{i_m} q}, \dots, \tilde{A}_{n+q, i_k q})),$$

where $2 \leq k \leq n$, $1 \leq l \leq m \leq k$, $1 \leq q \leq N$, $n+q+1 \leq r, u \leq n+N$, and $q \in \{i_1, \dots, i_k\}$ denote the number of a column in the determinants of (6.9).

From (6.9) we get

$$(6.10) \quad h_{2ru}^q = -2\delta_{ru} \sum_{i < j} (\det(\tilde{A}_{n+q, pq})_{p, q \in \{i, j\}} + \\ + \bar{A}_{r_{ii}} \bar{A}_{u_{jj}} + \bar{A}_{r_{jj}} \bar{A}_{u_{ii}} - 2\bar{A}_{r_{ij}} \bar{A}_{u_{ij}}).$$

If in (6.1) \tilde{e}_{n+q} , \bar{e}_r are eigenvectors \tilde{e}_{n+q} , \bar{e}_r , $n+q+1 \leq r \leq n+N$, of the quadratic form L_2/S_p^{N-q} (not necessarily uniquely defined), then from (4.19) it follows

$$(6.11) \quad \bar{A}_{r_{ii}} \bar{A}_{u_{jj}} + \bar{A}_{r_{jj}} \bar{A}_{u_{ii}} - 2\bar{A}_{r_{ij}} \bar{A}_{u_{ij}} = \tilde{A}_{r_{ii}} \tilde{A}_{u_{jj}} + \tilde{A}_{r_{jj}} \tilde{A}_{u_{ii}} - 2\tilde{A}_{r_{ij}} \tilde{A}_{u_{ij}} = 0$$

and (6.10) get by (6.11) a diagonal matrix

$$(6.12) \quad h_{2rr}^{\varphi} = -2(l_{2,n+\varphi} - l_{2r}), \quad n+\varphi+1 \leq r \leq n+N,$$

$$(6.13) \quad h_{2ru}^{\varphi} = 0 \quad \text{for } r \neq u, \quad n+\varphi+1 \leq r, u \leq n+N,$$

where l_{2r} are defined by (4.18).

We have

Proposition 6. Let

$$(6.14) \quad x(p)\tilde{e}_{n+1} \dots \tilde{e}_{n+\varphi} \dots \tilde{e}_{n+N} \in N_1(x),$$

where \tilde{e}_r , $n+1 \leq r \leq n+N$, in (6.14) are eigenvectors of L_2/S_p^{N-1} .

If the eigenvalue $l_{2,n+\varphi}(p)$ is different from $l_{2r}(p)$ for every r , $r \neq n+\varphi$, $n+1 \leq r \leq n+N$, then there exists a neighborhood $U \subset M^n$, such that $l_{2,n+\varphi}(q) \neq l_{2r}(q)$ for every $q \in U$ and a 1-dimensional, trivial vector bundle with fiber $\varepsilon_{n+\varphi}(q)$, $q \in U$, such that $\varepsilon_{n+\varphi}(q)$ is determined by a uniquely defined eigenvector $\tilde{e}_{n+\varphi}$.

Proof. From (6.12) it follows that the definition

$$(6.15) \quad h_{2,n+\varphi,n+\varphi}^{\sigma} = -h_{2,n+\sigma,n+\sigma}^{\varphi},$$

where $1 \leq \varphi < N$, $\varphi+1 \leq \sigma < N$, is correct. From (6.15) we get

$$(6.16) \quad h_{2rr}^{\varphi} = 2(l_{2n+\varphi} - l_{2r}),$$

where $n+1 \leq r \leq n+\varphi-1$, and similarly as (6.13) we get

$$(6.17) \quad h_{2ru}^{\varphi} = 0 \quad \text{for } r \neq u, \quad n+1 \leq r, u \leq n+N, \quad r, u \neq n+\varphi.$$

By assumption we have

$$(6.18) \quad h_{2rr}^{\varphi} \neq 0, \quad r \neq n+\varphi, \quad n+1 \leq r \leq n+N,$$

at $p \in M^n$. From (6.12), (6.16), (6.17) and (6.18) it follows that the Hessian

$$(6.19) \quad \det(h_{2ru}^{\varphi}) \neq 0, \quad r, u \neq n+\varphi, \quad n+1 \leq r, u \leq n+N,$$

at $p \in M^n$. Hence there exists a neighborhood $U \subset M^n$, $p \in U$, such that (6.19) is satisfied for every $q \in U$ and therefore from Proposition 1 and Corollary 1 it follows that there exists a cross section

$$(6.20) \quad \tilde{e}_{n+\sigma}: U \longrightarrow NM^n(x)$$

which for every $q \in U$ defines the canonical direction $\varepsilon_{n+\sigma}(q)$.

The extension of (6.12), (6.13) by (6.16), (6.17) is necessary, since we do not assume that $\tilde{e}_{n+\sigma}$, $1 \leq \sigma \leq \rho$, in (6.14) is a non degenerate stationary point of L_2/S_p^{N-G} and therefore that it is uniquely defined as the vector $\tilde{e}_{n+\sigma}$ in (6.4) is.

7. Immersion of manifolds in spheres

Let

$$(7.1) \quad \bar{e}_{n+1}: M^n \longrightarrow E^{n+N}$$

denotes an immersion such that

$$(7.2) \quad \bar{e}_{n+1}(M^n) \subset S^{n+N-1},$$

where $S^{n+N-1} \subset E^{n+N}$ denotes the unit sphere.

We have

Proposition 7. If \tilde{e}_{n+1} denotes the first canonical vector defined by means of L_k/S_p^{N-1} , then

$$(7.3) \quad L_k(p, \tilde{e}_{n+1}) \geq \binom{n}{k}$$

for every $p \in M^n$.

Proof. Let us take

$$(7.4) \quad \bar{e}_{n+1}(p)e_1 \dots e_n \bar{e}_{n+1} e_{n+2} \dots e_{n+N} \in F_1(\bar{e}_{n+1}),$$

where $F_1(x)$ denotes the total space of (3.7). From (3.15) it follows $d\bar{e}_{n+1} \cdot e_r = \omega_{n+1,r} = 0$ and therefore

$$(7.5) \quad d\bar{e}_{n+1} = \bar{\omega}_{n+1,i} e_i.$$

From (3.24) and (7.5) it follows

$$(7.6) \quad \bar{\omega}_{i,n+1} = \bar{A}_{n+1,ij} \bar{\omega}_{n+1,j}$$

and therefore

$$(7.7) \quad \bar{A}_{n+1,ij} = -\delta_{ij}.$$

From (7.4) it follows $\bar{e}_{n+1} \in S_p^{N-1} \subset N_p M^n(\bar{e}_{n+1})$. Hence setting (7.7) in (4.1) we get $L_k(p, \bar{e}_{n+1}) = \binom{n}{k}$. Since $L_k(p, \tilde{e}_{n+1})$ is the maximal value of $L_k(p, e_{n+1})$, $e_{n+1} \in S_p^{N-1}$, we have

$$(7.8) \quad L_k(p, \tilde{e}_{n+1}) \geq L_k(p, \bar{e}_{n+1}) = \binom{n}{k}.$$

We have

Proposition 8. Let \tilde{e}_{n+1} denotes the canonical vector of (7.1) defined by means of L_1/S_p^{N-1} . There exists a cross section

$$(7.9) \quad \tilde{e}_{n+1} : M^n \longrightarrow NM^n(\bar{e}_{n+1}).$$

and for every $p \in M^n$ the vector \tilde{e}_{n+1} is transversal to S^{n+N-1} . For every $e_{n+2} \in S_p^{N-1} \subset N_p M^n(\bar{e}_{n+1})$ such that

$$(7.10) \quad e_{n+2} \cdot \tilde{e}_{n+1} = 0$$

the function (4.3) takes the form

$$(7.11) \quad L_2(p, e_{n+2}) = -\frac{1}{2} \sum_{i,j=1}^n A_{n+2,ij}^2.$$

Proof. From (7.3) we have

$$(7.12) \quad L_1(p, \tilde{e}_{n+1}) \geq n.$$

From (4.2), (4.11) and (7.12) we get

$$(7.13) \quad 2L_1(p, \tilde{e}_{n+1}) = - \sum_{i=1}^n \tilde{A}_{n+1,ii} \geq n$$

for every $p \in M^n$. Hence, from Proposition 5 we get (7.9). From (7.4) we have

$$(7.14) \quad \tilde{e}_{n+1} = a_{n+1, n+1} \bar{e}_{n+1} + \sum_{r=n+2}^{n+N} a_{n+1, r} e_r.$$

From (4.12) and (7.14) we get

$$(7.15) \quad a_{n+1, n+1} = - \frac{1}{2l_{1, n+1}} \left(\sum_{i=1}^n \bar{A}_{n+1, ii} \right).$$

From (4.2) and (7.13) it follows that (7.15) can be written in the form

$$(7.16) \quad a_{n+1, n+1} = \frac{L_1(p, \bar{e}_{n+1})}{L_1(p, \tilde{e}_{n+1})}.$$

From (7.8) and (7.16) we get $0 < a_{n+1, n+1} \leq 1$, hence

$$(7.17) \quad 0 < \tilde{e}_{n+1} \cdot \bar{e}_{n+1} \leq 1$$

for every $p \in M^n$. Denoting by $\alpha(p)$, $p \in M^n$, the angle between \tilde{e}_{n+1} and \bar{e}_{n+1} , (7.17) can be written in the form

$$(7.18) \quad 0 < \cos \alpha(p) \leq 1 \quad \text{or equivalently} \quad 0 \leq \alpha(p) < \frac{\pi}{2}.$$

From (7.18) it follows that \tilde{e}_{n+1} is transversal to S^{n+N-1} at every point $\bar{e}_{n+1}(p) \in S^{n+N-1}$, $p \in M^n$.

For $r = n+2$ we get from (3.34)

$$(7.19) \quad A_{n+2, ij} = a_{n+2, s} \bar{A}_{sij}.$$

From (4.2), (4.13) and (7.19) we get

$$(7.20) \quad L_1(p, e_{n+2}) = - \sum_{i=1}^n A_{n+2, ii} = - \sum_{s=n+2}^{n+N} a_{n+2, s} \sum_{i=1}^n \bar{A}_{sii} = 0,$$

where e_{n+2} in (7.20) satisfies (7.10). From (7.20) it follows that the function $L_2(p, e_{n+2})$ defined by (4.3) take the form (7.11).

By $\tilde{e}_{k,n+\varphi}$, $1 \leq k \leq n$, $1 \leq \varphi < N$, we denote the φ -th canonical vector defined by means of L_k , i.e. $L_k(p, \tilde{e}_{k,n+\varphi})$ is the maximal value of $L_k / S_p^{N-\varphi}$.

An immersion (7.1) such that (7.2) is satisfied is called canonical, if there exists a k , $1 \leq k \leq n$, such that for every $p \in M^n$

$$(7.21) \quad \bar{e}_{n+1} = \tilde{e}_{k,n+1} \quad \text{or} \quad \bar{e}_{n+1} = -\tilde{e}_{k,n+1}$$

and

$$(7.22) \quad L_{2j}(p, \tilde{e}_{2j,n+2}) = 0 \quad \text{for every } j, 1 \leq 2j \leq n.$$

Finally we prove the following

Theorem. If (7.1) is a canonical immersion of a closed and connected manifold M^n , $n \geq 2$, then

$$(7.23) \quad \bar{e}_{n+1}(M^n) = S^n \subset S^{n+N-1},$$

where S^n denotes the unit sphere and M^n is diffeomorphic with S^n .

Proof. From (7.7) and (7.21) it follows

$$(7.24) \quad \bar{A}_{n+1,ij} = \pm \tilde{A}_{n+1,ij} = -\delta_{ij},$$

where $\tilde{A}_{n+1,ij}$ are coefficients of the second quadratic form evaluated in the direction of $\tilde{e}_{k,n+1}$. From (7.24) it follows that the equations (4.25) for $\varphi = 1$ take the form

$$(7.25) \quad \sum_{l=1}^k \sum_{i_1 < \dots < i_k} \det(-\delta_{i_1 q}, \dots, \bar{A}_{r i_1 q}, \dots, -\delta_{i_k q}) = 0,$$

where $n+2 \leq r \leq n+N$, $1 \leq k \leq n$, $1 \leq i_m \leq n$, $1 \leq m \leq k$, $q \in \{i_1, \dots, i_k\}$, and $\bar{A}_{r i j}$ are coefficients of the second quadratic form evaluated in the direction of \bar{e}_r . The vector \bar{e}_r is an element of a base in $N_p M^n(\bar{e}_{n+1})$ of the form

$$(7.26) \quad \bar{e}_{n+1}(p) \tilde{e}_{k,n+1} \bar{e}_{n+2} \dots \bar{e}_{n+N} \in N_1(\bar{e}_{n+1}).$$

We have

$$(7.27) \quad \det(-\delta_{i_1 q}, \dots, \bar{A}_{r i_1 q}, \dots, -\delta_{i_k q}) = (-1)^{k-1} A_{r i_1 i_1}.$$

Hence

$$(7.28) \quad \sum_{l=1}^k \det(-\delta_{i_1 q}, \dots, \bar{A}_{r i_l q}, \dots, -\delta_{i_k q}) = \\ = (-1)^{k-1} (\bar{A}_{r i_1 i_1} + \dots + \bar{A}_{r i_k i_k}) = 0,$$

where $n+2 \leq r \leq n+N$. From (7.25) and (7.28) we get

$$(7.29) \quad \sum_{i_1 < \dots < i_k} (\bar{A}_{r i_1 i_1} + \dots + \bar{A}_{r i_k i_k}) = 0, \quad n+2 \leq r \leq n+N.$$

The equations (7.29) are exactly the equations (4.13). Hence we have proved that for every k , $1 \leq k \leq n$, if $\tilde{e}_{k, n+1}$ satisfies (7.21), then the equations (4.13) are satisfied.

Let $\tilde{e}_{j, n+2} \in N_p M^n(\bar{e}_{n+1})$, $1 \leq j \leq n$, denotes a second canonical vector. We choose a base

$$(7.30) \quad \bar{e}_{n+1} (p) \tilde{e}_{k, n+1} \tilde{e}_{j, n+2} \bar{e}_{n+3} \dots \bar{e}_{n+N} \in N_1(\bar{e}_{n+1}).$$

The equations (4.25) now take the form

$$(7.31) \quad \sum_{l=1}^j \sum_{i_1 < \dots < i_j} \det(\tilde{A}_{n+2, i_1 q}, \dots, \bar{A}_{r i_l q}, \dots, \tilde{A}_{n+2, i_j q}) = 0,$$

where $n+3 \leq r \leq n+N$ and $\tilde{A}_{n+2, ij}$ are coefficients of the second quadratic form evaluated in the direction of $\tilde{e}_{j, n+2}$. Let

$$(7.32) \quad \bar{e}_{n+1} (p) \bar{e}_1 \dots \bar{e}_n \in T(\bar{e}_{n+1}),$$

where $T(x)$ is the total space of (3.4), denotes a base in $T_p M^n$ such that \bar{e}_i define principal axes of the matrix $(\tilde{A}_{n+2, ij})$. Then $(\tilde{A}_{n+2, ij})$ is a diagonal matrix and (7.31) takes the form

$$(7.33) \quad \sum_{l=1}^i \sum_{i_1 < \dots < i_j} \det(\tilde{A}_{n+2, i_1 i_1}, \dots, \bar{A}_{r i_l q}, \dots, \tilde{A}_{n+2, i_j i_j}) = 0.$$

We have

$$(7.34) \quad \det(\tilde{A}_{n+2, i_1 i_1}, \dots, \bar{A}_{r i_1 i_1}, \dots, \tilde{A}_{n+2, i_j i_j}) = \\ = \tilde{A}_{n+2, i_1 i_1} \dots \bar{A}_{r i_1 i_1} \dots \tilde{A}_{n+2, i_j i_j}.$$

From (7.33) and (7.34) it follows that (7.31) takes the form

$$(7.35) \quad \sum_{l=1}^j \sum_{i_1 < \dots < i_j} \tilde{A}_{n+2, i_1 i_1} \dots \bar{A}_{r i_l i_l} \dots \tilde{A}_{n+2, i_j i_j} = 0,$$

where $n+3 \leq r \leq n+N$. We have

$$\sum_{i_1 < \dots < i_j} \tilde{A}_{n+2, i_1 i_1} \dots \bar{A}_{r i_l i_l} \dots \tilde{A}_{n+2, i_j i_j} = \\ = \frac{1}{j!} \sum_{i_1, \dots, i_j=1}^n \tilde{A}_{n+2, i_1 i_1} \dots \bar{A}_{r i_l i_l} \dots \tilde{A}_{n+2, i_j i_j}.$$

Hence, we get

$$\sum_{l=1}^j \sum_{i_1 < \dots < i_j} \tilde{A}_{n+2, i_1 i_1} \dots \bar{A}_{r i_l i_l} \dots \tilde{A}_{n+2, i_j i_j} = \\ = \frac{1}{(j-1)!} \sum_{i=1}^n \bar{A}_{r i i} \sum_{i_2, \dots, i_j=1}^n \tilde{A}_{n+2, i_2 i_2} \dots \tilde{A}_{n+2, i_j i_j}.$$

Therefore the equations (7.33) can be written in the form

$$(7.36) \quad \sum_{i=1}^n \bar{A}_{r i i} \sum_{i_2, \dots, i_j=1}^n \tilde{A}_{n+2, i_2 i_2} \dots \tilde{A}_{n+2, i_j i_j} = 0,$$

Therefore the equations (7.33) can be written in the form

$$(7.36) \quad \sum_{i=1}^n \bar{A}_{r i i} \sum_{i_2, \dots, i_j=1}^n \tilde{A}_{n+2, i_2 i_2} \dots \tilde{A}_{n+2, i_j i_j} = 0,$$

where $n+3 \leq r \leq n+N$. From (4.13) it follows that (7.36) are identities. This means that for every choice of

$$(7.37) \quad e_{n+2} = a_{n+2,s} \bar{e}_s, \quad \sum_{s=n+2}^{n+N} a_{n+2,s}^2 = 1,$$

where \bar{e}_s are the vectors of (7.24), the function $L_j(p, e_{n+2})$ has the same maximal value. Therefore

$$(7.38) \quad L_j(p, e_{n+2}) = B_j = \text{const}$$

for every j , $1 \leq j \leq n$. From $L_{2m+1}(p, -e_{n+2}) = -L_{2m+1}(p, e_{n+2})$ and (7.38) we get

$$(7.39) \quad B_{2m+1} = 0 \quad \text{for every } m, 1 \leq 2m+1 \leq n.$$

From (7.22) and (7.38) we get

$$(7.40) \quad B_{2m} = 0 \quad \text{for every } m, 1 \leq 2m \leq n.$$

From (4.1), (7.38), (7.39) and (7.40) we get

$$(7.41) \quad \sum_{i_1 < \dots < i_j} \det(A_{n+2,ij})_{p,q \in \{i_1, \dots, i_k\}} = 0,$$

where $A_{n+2,ij}$ are coefficients of the second quadratic form evaluated in the direction of the vector (7.37). Let

$$(7.42) \quad \bar{e}_{n+1}(p)e_1 \dots e_n \in T(\bar{e}_{n+1})$$

denotes a base in $T_p M^n$ such that e_i define principal axes of $(A_{n+2,ij})$. Then (7.41) has the form

$$(7.43) \quad \sum_{i_1 < \dots < i_j} A_{n+2,i_1 i_1}, \dots, A_{n+2,i_j i_j} = 0$$

for every j , $1 \leq j \leq n$. From (7.43) it follows that the eigenvalues $A_{n+2,ii} = 0$, $1 \leq i \leq n$. Hence in an arbitrary base of the form (7.42) of $T_p M^n$ we get $A_{n+2,ij} = 0$, $1 \leq i, j \leq n$. This proves (7.23).

Since M^n is by (7.23) locally diffeomorphic with S^n and compact, it follows that M^n is a finite covering of S^n . Such a connected covering is for $n \geq 2$ diffeomorphic with S^n .

REFERENCES

- [1] Ph. Griffiths: On Cartan's method of Lie groups and moving frames as applied to uniqueness and existence questions in differential geometry, Duke Math. J. 41 (1974), 775-814.
- [2] G.R. Janssen: Higher order contact of submanifolds of homogeneous spaces, Lecture Notes in Mathematics 610 (1977).
- [3] M. Rochowski: The Frenet frame of an immersion, J. Diff. Geom., 10, (1975), 181-200.

Author's address: Fleiner Strasse 76^c, 7000 Stuttgart 40, BRD/RFN
Received September 9, 1988.