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A SCHEME OF GENERATING CANONICAL FRAMES IN NORMAL
BUNDLES OF IMMERSED MANIFOLDS IN EUCLIDEAN SPACES

1. Introduction

In this paper we define canonical frames in the normal bundle
NM® of a differentiable manifold M" immersed in the Euclidean space
En+N. The geometric idea of this construction was explained in [a].
More generally we repeat this concept as follows. Around a curve
x(Nc En, nz 3, where E" denotes the n-dimensional Euclidean space

and
(1.1) x:1—=E*, 1=1[0,1]

is an immeérsion, we take a tubular neighborhood consisting of a one-
-parameter family of (n-1)-dimensional disks of radius £ >0, There
exists such an e°>0 that for every ¢, O <ésE the boundary Tn-l(e)

of the tubular neighborhood is a regular surface. The Gauss curvature

.

(1.2) K:Tn-l(c) —= R, where R denotes the real numbers,

of Tn_l(c) has the following property. Let us suppose that the first
curvature kl(s) of (1.1) is greater than zero for every s elo,1].

We consider the restriction of (1.2)

(1.3) K/S™ (s, ¢),
where
(1.4) s 2(s,6)c T L(¢)
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2 M. Rochowski

denotes the spherical "fiber" with radius ¢ and center x(s). Then
there exist exactly two antipodal points yl(s) » ¥o{s) of the sphere
(1.4) such that the function (1.3) attains its maximal value at yl(s)
and its minimal value at yz(s) and the direction in E- defined by the
pair (yl(s) ,yz(s)) is that defined by the principal normal E’z(s) of
{1.1). In the following such a direction is called canonical.

We replace x{I) by a surface x(M")c En+N, the tubular neigh-
borhood by the normal bundle NM™ = NM"{(x) of x(M") and the Gauss
curvature K by an elementary, symmetric function (called in the fol-
lowing also a scalar function) of the characteristic polynomial of the
second quadratic form of x(M"). The stationary values of such a
function restricted to the unit vectors of a fiber N M (x), Pe M°,
of NM™(x) define directions in En+N which are call;ed canonical.

Let

(1.5) e2:1—~52, 1=[0,1], &,(0) = e, (1),

denotes an immersion such that the direction of the principal normal 'é'z
of ey is identical with that of e, Then the second curvature of e, is
zero and therefore ez(l) - Sl, where Slc 52 is the 1-dimensional
unit sphere.

As an application of the method explained in Section 7 we define
canonical immersions of manifolds in spheres as a generalization of
(1.5) and prove that the image of a closed and connected manifold M"

dim M™ = n, n»2, in the (n+N-1)-dimensional, unit sphere Sm'N'1

by means of a canonical immersion is a unit sphere s"c Sn+N'1 and
M" is diffeomorphic with s™.

An outline of the content. In Section 2 we describe the scheme of
generating canonical frames in an arbitrary vector bundle. In Section 3
basic notations are introduced. In Section 4 scalar functions in the
normal bundle are defined and the construction of canonical frames

is carried out. In Section 5 necessary conditions which define canoni-
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Generating canonical frames 3

cal vectors are rewritten as exterior form equations. In Section 6
we define sufficient conditions to get the uniqueness of the construc-
tion. Tn Section 7 we consider canonical cross sections of immersions
of manifolds into spheres.

Cartan’s method of moving frames and special related problems
are considered by Ph. Griffiths [1] and G.R. Jenssen [2].

2. A scheme of generating canonical frames in vector bundles

Let

B=(B,7, M, V)
denotes a vector bundle with total space B, base space M, the proje-
ction 7 and a standard fiber V. B and M are differentiable manifolds

and V is a finite dimensional vector space. We denote
dim M = n, dim V = N, dim B = n+N.

A metric g on the bundle B is a function which assigns to every
P€ M a positive definite scalar product Sp in the fiber Vp over pe M,
such that for every open set UC M and every differentiable, local
cross sections sl,szzU — B, the function g(sl,sz):U —= R defined
by gls;,s,)(p) = gp(sl(p),sz(p)) is differentiable. Differentiability
means differentiability of class C®. We suppose throughout the paper

that considered manifolds and functions are differentiable. By

(2.1) J”l = (Nl, Ty M, o(N)),

where O(N) denotes the orthogonal group acting on EN from the right,
we denote the principal bundle of orthonormal frames such that 3 is
associated with Jf‘l Let L:B —= R denote a differentiable function,
called a scalar function on 8. With the aid of L we define locall
cross sections in J’i, called canonical frames (with respect to L) as
follows. Let UCM denotes an open set such that there exists a vector
bundle chart H:wr 1(U) —=UxV. This implies that B restricted to U
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admits N hnearly independent cross sections (p,e (P)), pel,
er(p) eV = JT (p) These cross sections we denote in the following

simply by €. We denote
(2.2) S]:'l - {eeVp $ gp(e,e) = 1}.

The function L restricted to the sphere (2.2) admits a maximal value
at a point E'n+1(p) € 51:-1 called the first canonical vector. Thus,
E'm_l(p) is a stationary point of the restriction L/ SI;-.I. 1f §'n+1(p) is
a non degenerate stationary point, i.e., if the Hessian of the function
L/S]I;]-1 is different from zero at e (p), then en l(p) is isolated
in the sphere SN 1

We have the following

Proposition 1. T 'é'n+1(p) € sI:‘lcv is a non degenerate

SN'1 such that this function

stationary point of the restriction L/
attaing its maximal (or minimal) value at Em_l(p) , then there exists
a neighborhood Qc M of pe M such that en l(q), qe Q, is a non de-

-1 .
generate stationary pomt of L/ Sq at which this function attains its

maximal (or minimal) value, and en+1(q), qe Q, is a differentiable
cross section in the bundle B restricted to QC M.

Proof. Let H'lexV ~—= B denotes a coordinate mapping, where
U is an open set. We choose U such that (U,h) is a chart of M such
that h:U—=X" is a diffeomorphism, where K™ denote the n-dimensio-

nal, umt and open disk. in E" referred to the ‘coordinates (u . ,un).

By H °U —= B we denote the mapping defined by

(2.3) Hil(q,e) - H'l(q,e), qe U, ec V-1,

By{(V,a),(W,b)} we denote an atlas on SN-1 such that UuW = SN':l

N-1 N- 1

and ale) = (vl,...,vN_l)eK , ble) = (wl,... )eK re

local coordinates of ee SN'l. The function L:B—-B written in local

coordinates has the form
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Generating canonical frames 5

(2.4) fluzv) = L(Hl'l(h'l(u>,a'1(vm in the charts (U,H), (V,a)

and similarly

(2.5) fluzw) = L(Hil(h'l(u),b-l(w))) in the charts (U,h), (W,b),

where u = (ul,...,un), Vo= (vl,...,vN 1), w = (wl,...,\vN 1).

1t (uogvo) - (ucl,,... ,u° cla’ . N 1) are coordinates of a non dege-
nerate stationary point e (p) of the function L/ SN 1 , then

af o a3 f )
(2.6) v (u®v®) = 0, det(avmav/5 (u sv ) #£0, l<x,B<N-1,

By the impligit function theorem there exists a neighborhood QCU of
p e U, where hip) = (ucl), . ,uﬁ) , and uniquely defined differentiable

functions va(ul,...,un) such that va(ucl,,...,u ) = :, l€<a <N-1, and
(2.7) of (u,y...,u v, (u),...,v (w)) = 0O,

ov 1 n’'1 N-1

2%
(2.8) det 338 (ul,...,un;vl(u),...,vN_l(u))) £ O,

where u = (ul, ces ,un) € h(Q)c X®. The second differential of (2.4)
with respect to the variables v, 1<a < N-1, is negative (or positi-
ve) definite at (ui,...,uo,vl, . N 1) Hence from (2.8) we get
that this differential is also negative (or positive) definite at every
point (ul, ceea s vl(u) e oo ,VN_l(u)) for u = (ul, e ,un) ¢ h(Q)c k™.
This means that

N-1

(2.9) Tt = BTG W a v e s

n+l
where h(q) = u, qe Q, v{u) = (vl(u),. N 1(u)), is a differentiable
cross section of the bundle B restricted to QCUc M and the function
L/SN-l
q

case (2.5) the proof is the same.

attains its maximal (or minimal) value at e (q). In the
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As an immediate consequence of Proposition 1 we get the
Corollary 1. 1If for every qe U, U = h-l(Kn), the Hessian

of L/ sN-1 s different from zero at a stationary point 'é'n+1(q) such

that L/ S;\]'l attains its maximal (or minimal) value at E'm_l(q) , then

there exists a uniquely defined cross section of the bundle B re-

stricted to UC M and represented by the formula (2.9) for qe U.
1f

~ ~ -1,.n
(2.10) en+1(p),...,en+9_1(p), 2<¢<N, pe U =h (X)),
are canonical mutually orthogonal vectors, then 'é'n+?(p) € SI:-I is

defined as a mon degenerate stationary point of the function L/SI:-Q,

where SI;-?C SI;_l is contained in the linear subspace of V_ which

is orthogonal to the vectors (2.10) such that L/ S]:_? attains its ma-
ximal value at € = (p). The last canonical vector &
n+o n+N
determined by the foregoing canonical vectors and the orientation
of Vp.
In the following we shall identify the function L restricted to
Jr.l(U), Uc M, and LH-l, hence we set

(p) is uniquely

(2.11) L(e(p)) = Lip,e).

The vector ee SN-1 at the right of (2.11),is therefore a "projection"
of elple SI:-I on V1 defined by elp) — (p,e) —=—e. In the follow-
ing we shall identify the "projection” 3n+le SN-1 with the cross sec-
tion (2.9) for qe U. Hence we set N

(2.12) 'é'n+1(q) =% for\ qeU.

From Corollary 1 with the use of the\‘id\énti.fication (2.12) we get

Proposition 2. 1If for every peU, U = h-l(Kn), the Hessian
of L/S];_Q, where SI:-? is the (N-¢)-dimensional, unit sphere con-
tained in the subspace of Vp orthogonal to the vectors (2,10},

i<p <N, is different from zero at a stationary point 8n+9 such that
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Generating canonical frames 7

L/SI;'g’ attains its maximal value at 'é‘n+9’ then the function which

sends pe U to 'é'n+?, 1<Q <N, is a cross section over U in 3 and

(2.13) o(p)'é'n+1...8 €N,

is a uniquely defined orthonormal frame of Vp attached to the origin .
o(p) of Vp. The function which sends pe U to (2.13) is called a cano-
nical cross section over U in Jfl (see (2.1)) and o:M —=B is the
zero section in B.

Finally we have

Proposition 3. If the function L/Vp is linear for every pe U,
then exactly one canonical vector 'é'n+1 can be defined by means of L.

Proof. Since the nullspace of L/Vp is an (N-1)-dimensional

subspace WpC Vp’ which, as follows from the definition of En+1’ is

«N-2 N-2

orthogonal to 'é'n it follows that the function L/Sp , Sp o Wp,

+1
is identically zero.
Generally, if L is identically constant on a subspace of Vp ortho-
gonal to the already defined vectors (2.10), then the definition of
'é'n+ ?with the aid of L is not possible. In such a case besides L we
need further scalar functions L93B9 —=R, where B? denotes the total
space of the subbundle 39 of the restriction B/U, whose fiber over
pe U is the subspace of Vp orthogonal to the vectors (2.10). Tn appli-
cations the scalar function L is a homogeneous polynomial of N varia-
bles and of degree less than or equal to dim M = n. Since the esti-
mation of stationary points of a polynomial can be described as an
algebraic procedure ,. it follows that the process of defining canonical
cross sections (2.13) is rather an algebraic and not differential geo-
metric procedure. The function L depend on the second derivatives
of an immersion of M in another manifold and the polynomial L? depend
on derivatives of this immersion of order greater than two.
We define

(2.14) Ir(p) - L(p,&), peUcM.
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8 M. Rochowski

3. Preliminaries
Let
(3.1) xtM'—= E

. . . n . .
denotes an immersion of a differentiable manifold M~ of dimension n

n+N

in the Euclidean space En+N. We use the following notations. TM" de-
note the tangent bundle of Mn T M" denote the tangent space to M

at pe M®, NM®(x) denote the normal bundle of M" determined by (3. 1).
The fiber N M™(x) over p € M" is the N-dimensional subspace of g™

of such vectors ee E" n+N that

(3.2) e.dx(p) = 0.
In the following we frequently set

(3.3) lleff = 1.

By J(x) we denote the principal tangent bundle of orthonormal frames
x(p)e e e T(x), where e eX, (T M"), 1<i<n, denote vectors

tangent to the surface x(M™ ) at the pomt x(p). We denote

(3.4) 7)) = (Tx), 77, M, 0ln)),

By in(x) we denote the principal normal bundle of orthonormal frames
(3.5) x(p)em_l. . .em_NeNl(xf) e_e NpMn(x) , nil<r<n+N.

We denote

(3.6) Hx) = (N (), o, M, O(N)).

By fl(x) =T(x) @ .ﬁ(x) we denote the Whitney sum of bundles, i.e.
(3.7) F ) = (F ), r, MY, 0xxO(N)).
The elements of the total space Fl(x) are orthonormal frames

(3.8) x(p)el...e e

Cnel”*  CheN eFl(x).

The orthogonal groups 0(n), O(N) and O(n+N) act from the left on
the respective orthonormal frames. Every frame (3.8) defines an ele-
ment of the Euclidean group E(n+N) which acts on g2 from the
right, i.e.
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(3.9) x—=xA + a, AeO(n+N), aeT(n+N), ern+N,

where T(n+N) denotes the translation group, isomorphic with En+N.

The group operations in E(n+N) have the form
(3.10) (A,a)-(B,b) = (AB,aB+b), (A,a)'1 = (AT,-aAT),

where (A,a),(B,b) e E(n+N) and AT denotes the matrix transposed

to A. The equations of structure of E(n+N) have the form
(3.11) dow' = WAR, dQ'=Q'A 2,

where w'= daAT = (wA) Q= dA-AT

l€Acn+N’ = (wAB)lsA,B<n+N’
and on the right sides of the equations (3.11) we have matrix multi-

plication. In the following we use the convention
l=<i,j,k,lsn, ntlsr,s,t,ugn+N, 1<9,6<N,

and repeated indices denote summation. The total space Fl(x) of (3.7)

can be identified with the set

(3.12) { (A,a)e E(n+N)/ei=(&il’ e ’ai,n+N)e x*(TpMn) , a=x(p), peMn},
where A = (aAB)ISA B<n+N€O(n+N) , a =x(p)e En+N and x, denotes
the differential of (3.1). The vectors e_ = (a_,,...,a )} are

: T rl r,n+N

orthogonal to x(M™) at x(p). By means of the identification (3.12)

we define the inclusion map
(3.13) F,(x) € E(nsN).
We define linear forms

}, 1<A,B<n+N,

»* 13 ’
(3.14) co-tco-(wA), R=1 'Q",(“’AB

on Fl(x), where (* denotes the pull back of the components w', @' of
the moving frame of the Euclidean group E(n+N), which corresponds to

the inclusion map (3.13). On Fl(x) we have

(3.15) t"(da)-er - dx(p)'er -w, = 0.
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Hence

(3.16) dx = we,.
Furthermore, we have

(3.17) dei - 08 tw e
and the Weingarten equations have the form
(3.18) de = e + N

The equations of structure of the bundle fl (x) have the form

(3.19) dmi = A0 L,

(3.20) ey, -coij/\ “’jk ro A,

(3.21) dwir 'wijijr +wisAwsr,

(3.22) dw  =w AW, +W_ AW, .
rs ] s rt ts

The formulas (3.20) are called the Gauss equations and (3.21) the
Codazzi-Mainardi equations. From {(3.11), (3.14) and (3.15) we get

(3.23) W AW, =0

and from Cartan’s Lemma it follows

(3.24) Wiy = Ar'ij(‘"j’ Arij = Arji'
We define the curvature forms by
(3.25) B = @ AW = -ArijArklmjAml - Ri],kle/\ml,

where Rijkl are the components of the Riemann curvature tensor. From

(3.16) it follows that the induced metric on M" defined by (3.1) has

the form
n
(3.26) ds? - gwf
™
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and the volume element of Mn has the form

(3.27) dV_ = @A. A .

From (3.16), (3.18) and (3.24) we get

(3.28) d2x-e = -dxre =W . = -A Q.
T T iri rij 1

From (3.28) we have that Arij defined on F,(x) are coefficients of
the second quadratic form of (3.1) in the direction defined by e_. The

coefficients of the characteristic polynomial
(3.29) detlh6.. - A )
ij rij

are scalar functions defined on NMn(x). With the use of the identifi-
cations (2.11) and (2.12) we denote by L, (p,e ) the coefficient by
A% in (3.29).

We have
Proposition 4. For every pe M" there exist at most n{n+1)
canonical vectors which can be defined by means of Lk/ Sg_l , 2<k<n,
Proof. We denote
(3.30) fij - (An+1,ij"" ’An+N,ij

We prove that fij is a vector of NpMn(x) in the base (3.5). Let

(3.31) e =a e, (ars)e'O(N),

T TS S
denotes a change of bases in NpMn(x). We have

(3.32) W, =dere =a o =a

X de ‘e .
rs is i's

s
From (3.24) and (3.32) we get

(3.33) A .. =a A @

Tij ) rs sij

Since w]. are linearly independent we get

(3.34) A . = a

A ...
Tij rs sij
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From (3.31) .and (3.34) it follows that A i undergo a change as a

vector of N M™(x). Since A rij Ar]1’ we have f] - f ;+ Therefore

the vectors f] with coordinates (3.30) define a subsPaCe N Mn(s)C
CN M™(x) and

(3.35) dim NIl)Mn(x)< “(—“Z‘”Q .

The subspace Nll)Mn(x) remains invariant by change of bases in TPM".

Indeed, we have ‘

(3.36) Ay = Pt
where
(3.37) e = ai].Ej, (aij) € 0(n),

is a change of bases in TpMn From (3.30) and (3.36) we get f
= a, ka lfkl’ i.e. f depend linearly on f

For pe M" flxed L1 is a linear funcnon and therefore from Pro-
position 3 it follows that by means of L1 at most one canonical vector

can be defined.

4. Canonical frames in NM™(x)
The coefficient by A"k i (3.29) has the form

k
(4.1) Lk(p’er) = {-1) 11:- det(A rpq)p,qe{ 1""’ik}’

< <1.k

where 1< ilsn, l<1l<k, l<k<n. In particular we get

n
(4.2) L (pe.) = - 1;1‘ A
(4.3) L ( e ) = det(A_ )
) P e g rpq p,qe{ }
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(4.4) L (pre.) = Lipe,) = -1)det(A ).

The function (4.4) is the Killing-Lipschitz curvature. The functions
(4.2), and (4.3) are considered more detailed below in a) and b) res-

pectively. The general case is considered in ¢)}. Let

(4.5) x(p)€n+1...€n+NeN1(x), pel,

. n .,
denotes .a cross section from an open set Uc M in A (x) (see

(3.6)).
a) From (3.34) and (4.2) we get

n
(4.6) _Ll(p’en+1 = "%nel,s ; A

We apply the method of Lagrange to determine stationary points of the
function {4.6) restricted to Sg-l . We have

n+N
(4.7) 41,8 © 1.
s=n+1
We get
n —
(4.8) 121‘ Asii - 2I1,n+1&n+1,s -0,
where Il , is a constant for pe U fixed. From (4.6), (4.7) and

?
the formula

n+N n+N _ 2 - n+N _2
(4.9) : A : (a rsAsu = arsartAsijAtij = Z Arij

r=n+l r=n+l ren+l
we get

2 n+N n 2 n+N n 2
(4.10) 411 ,a+l : <Z Asii = Z: Z- Asii ‘
s=n+1l \ i=1 s=n+l \i=1
. . . . n

The function 11,n+1 - Il,n+1(p)’ pe U, is an invariant of NM (x).

This is the maximal {or minimal) value of Ll(p,€n+1) restricted to
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N-1 ~ .
] (see (2.14)). We have 11,n+1(p) = Ll(p,em_l). In the following

an invariant Lkr(p) - Lk(p,'é'r) of NM™(x) is ‘called simply an invariant

of (3.1) or of the surface x(M™). Denoting by Kn+1 ij the coefficients
?

of the second quadratic form (3.28) evaluated in the direction of gn+1

we get
n
(4.11) 211,n+1 " 121 An+1,ii'

1, n+1(p) £ O for every pe UC M", then from (3.31) and (4.8) we

get
1 & =
(4.12) gn+1 T siias'
1,n+l i=1
From (4.12) it follows that & is a differentiable cross section from

n+l
U to NMn(x). This is the mean curvature vector and 11 n+l defined by
’

(4.11) is the mean curvature of {(3.1) in the direction of 'én+1' f we
choose the cross section (4.5) such that & =e and & ,

n+l n+1 s
n+2 <s<n+N, remains arbitrary, then from (4.10) and (4.11) we get

n
(4.13) P Ksii = 0, mn+2gsgn+N.

jiml
Proposition 5. W1, n+1(p) £ O for every pe M", then there
exists a cross section gm_l:Mn——NMn(x) and for every open set
Uc M"™ which admit a cross séction (4.5) 21, .1 has the form (4.11)
1
and € the form (4.12).
n+l
Proof. Tt suffices to prove that the definition (4.12) of 'é'n+1
. A A
does not depend on the cross section (4.5). Let x(p)en+1...eh+Ne
€ Nl(x) denotes another cross section defined on an open set V such
that pe UNV. There exists a matrix (ars)e O(N) such that
— A
. A .. =a A
T TS $ rii rs sii
for pe UNV, We have

m>
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- A A A A A A

Arii®r = 2rsfait®re®t ™ Sorfii®t = it
b) The function L, defined by (4.3) satisfies L2(p’en+1) =
= Lz(p,-em_l) and therefore by means of L, we define canonical direc-
tions only. Let us suppose inductively that by means of L2 we have de-

fined canonical vectors (2.10) and invariants 1 1<6<s¢-1, of

2,n+6’°
x(M™) at pe UC M". The vectors (2.10) are defined up to orientation.

We define the canonical vector 'é'n+9 as follows. In (3.34) we change

the range of indices such that n+p<r,s<n+N and substitute

(4.14)

.. = &a A .., ntogs<gn+N,
n+9Q,ij n+p,s sij

in (4 3). The seeked unit vector $n+9 is orthogonal to the vectors

(2.10) and therefore can be written in the form

(4.15) L an+9,ses’ n+p<s<n+N,

where Es together with "e'n » 1<6<9-1, define a base (4.5) of

+6

N M™(x). The coordinates (a yes.,d
P n+9,n+p n+p,n+N

e N-¢ ; s
point en+9 of L2/ Sp satisfy the condition

) of a stationary

n+N 2
(4.16) E an+9,r =1

r=n+p
and the system of equations

. A A _+A A _-2A A - -
(4.17) an+g:,s 1Z<]‘ (Aru s]]+ r]]Asu 2ArijA3ij) 212,n+g)an+9,r 0,
where 19 <N, n+p<r,s<n+N. If we choose in (4.5) En+6 as canoni-
cal vectors €n+6’ 1sG=<¢, and Es, n+p+l < s <n+N, remains arbitrary,
then € has coordinates a =1, a = 0, where ntl<r <
n+ n+9,n+p n+g,r

<n+N, r § n+p, and the system of equations (4.17) takes the form

(4.18) S (R, A - &2

n+9,ii’ n+9,jj n+9,ij) I2 n+p’
i<j ’ b4 ?’ ’
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(4.19) S K. +K A -2% K.
n+,ii" Tjj n+9,jj rii n+9,ij rij

i<j
where 1<p<N-1, nip+tl<r<n+N. Because of our inductive method the
identities (4.19) are valid also for the range of indices 1< G<yp,
n+6+l<r<n+N, and therefore they are valid also for the range of in-

dices
(4.20) ' l€G<p, n+ptlsr<mN,

Hence the coefficients of the quadratic form ‘Krij’ n+9+1$rsn+N, can-
not be arbitrary numbers, since they satisfy p equations of the form
(4.19), where in (4.19) the index @ is replaced by G and the range
of indices is defined by (4.20). The same remark concerning condi-
tions imposed on Krij’ n+p+l<r<n+N, by the foregoing steps of the
construction is valid also in the general case c) considergd below.
Direct calculations by means of the formula (4.9) yield to the result

that besides 1, , n+tl <r<n+N, also
2r

n+N 5
(4.21 (A__A .. - A"

is an invariant of x(M™). For n = 2 (4.21) is the Gauss curvature
of x(Mz)C E3

riables a » i+ <r <n+N, which satisfy (4.16), it follows that
n+e,r

. Since L2/ SII:]-? , peU, is a quadratic form of the va-

I, neg’ l<s@=<N, defined by (4.18) are eigenvalues of this quadratic
form.
k
c) Tn general case (4.1) we have Lk(p,-en+1) = {(-1) Lk(p,em_l).
Hence for k even we determine directions only. We substitute (4.14)

into (4.1). We get

(4.22) L, (p,e_ (DK detla, K . .8 K, 0,
1 <. <h $:8; $1H9 n+Q Sy Sk
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where 159 <N, 1<il.6n, n+9551sn+N, 1< 1<k, qe{il,...,ik}. The

symbol a denotes the 1-th row of the determinant at the

A
n+9,s; s;i;q
right of (4. 22) The function L /S "% is defined by the formula (4.22),

where the variables a , n+9<s<n+N, in (4.22) satisfy the con-
n+p,s

dition (4.16). The coordinates (a veeesd
n+9,n+Q n+¢ ,n+N

point 'é'n+9 of Lk/SN-Q satisfies besides (4.16) the system of equations

) of a stationary

(4.23) (-1) ZE ,det(A iR LA ) =

1=1 1 <. n+9,11q r1lq n+9,1kq

= 2Lk,n+9an+9,r

where 1<p <N, n+t9<r<n+N, and An+g> i q’ m#él, 1<sm<gk, is an
’
abbreviation for a A ) Ntpss < n+N, in (4.23). 1f we choose

n+Q,s s i
%m Sm'md

{4.5) such that €n+6 are canonical vectors 'é'm_o., 1<6<gp, then in such

a base € has coordinates a_ =1, a = 0, ntl<r<n+N,
n+ T+Q,n+9 n+Q,r

r £ n+p, and the system of equations {4.23) takes the form
s

k 2
(4.24) (-1)7 k 11' et(An+9,pq)p qe{ 1- ik} " 2l neg’

< <1,k
k "~
(4.25) )_ D det(A_ . ,...,A. ,...,A . ) =0,

=1 i< .<qy e ™ AL

where 1<Q <N, n+p+l<r<n+N. For k = n the equations (4.24) and
(4.25) have the form

(4.26) (-1)"ndet(A_ ) - 21 -0,
n+p,ik n,n+p

n

—_ ~

(4.27) - det(An+9,1k""’Arik""’An+9,nk)

i=
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18 M. Rochowski

5. Canonical frames defined by systems of exterior equations

From (3.24) and (3.27) we get the identity

13 )18
(5.1) > WA A AW AW A AR = b A_dV .

i=1 i=]

From (3.24) we get

~ ~

(5.2) @, = de, 8

i,n+l i “n+l T n+1,ijwj’

2

~ . ( . . 2 _
where € ., in (5.2) is defined by (4.12). Denoting by Il,n+1 the ma
ximal value of the function (4.6) restricted to the sphere (4.7) we get

from (4.11) and Ll(p,-en+1) = -Ll(p,em_l) the inequality

n
(5.3) Z‘ An+1 11

i=1
From (4.10), (4.11) and (5.3) we get

n_ n+N n
(5.4) T4 7 An+1,ii = ( :' <}:‘ Asii>

i= san+l \i=l

\)NI’—'

From (5.1), (5.2) and (5.4) we get

(5.5) B Z‘-“"1 A AWy 1/“*’1 n+1APiy1 Ao A0, =
i= . )
2 2

<E<Z®1A W, A0, N, 1A...A(Jn)

s=n+l \ i=1

The equations (4.13) can be written in the equivalent form

(5.6) ;w AL @, MO AW A A = 0, n+2<s<n+N,
where
(5.7) @ = de;o8 = A
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In the case b) from (3.24) and (3.27) we get the identity

. A, ) w A LA A =
(5.8) IZq,w AW A AW, o wj-l wjr“"j+1 Ao hw

Z (A - a2 yav.
rij’ n

rii r]]

The equations (4.19) can be written in the equivalent form

(5.9) g;_(wll\ AW, AG AW, A - Aw 1Aco] n+9 '+1A"'A“)n +

+ WA, ACJ AQ, AL

1 1% nag LA AW AW Aw, A...Awn) =

j-1" "5 i+l
where 1< <N, n+9+1srsn+N, and
(5.10) wi,n+9 = dei'en.c-p'

The invariant (4.21) is defined by means of the invariant form

n+N
(5.11) ) D 0pA A AW AW, A AW AG A
r=n+l i<j

Aw, AL AW .
j+1 n

In the general case c) we get from (3.24) and (3.27) the identity

(5.12) E . WA LA AW AR A LA, -1A“’ikr’\

1<...<1k 1 1 1 k

AW, _A...A® -2 det(A_ ) , . lav .
i, +1 n - TPQ P,q€liys. . aiy [ B

k i1<. . .<1k

The equations (4.25) can be written in the equivalent form

k

(5.13) YD WA LAW, AL AW, A .. AW, A
e R Rt AU A it

G AR JAB, AW, g AL Aw, = O,
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20 M. Rochowski

where 1<p <N, n+9+1$_ r<n+N. Tn particular (4.27) can be written

in the form

n
(5.14) E‘ul,n+9A"'AwirA"'Aon,n+9 =0

6. Local canonical cross sections in NMn(x)

In Section 4 we have defined canonical frames
(6.1) x(p)en+1...en+Ne Nl(x)

at a point pe M™ by means of the functions (4.1). From Proposition 1

and Corollary 1 it follows that if the Hessian

(6.2) 1<p<N, 2<k<n,

Q
det(h'kru)n+9+ 1l<r ,ugn+N’
of Lk/ SI;'? is different from zero at a stationary point 'é'n+ o’ then
there exists a neighborhood UC Mn, p e U, diffeomorphic with the unit
disk Kn, such that for every q € U the Hessian (6.2) is different from

zero and

(6.3) g 1 U—NM"(x)
n+p

is a differentiable cross section. Let

(6.4) x(p)e

n+1"'en+9en+9+1"'€ eNl(x), peU.

n+N

We suppose that 'é'n- l<G<g, are cross sections defined by means

+6’
) n -
of the functions L]., l<j<n, on UCM and &, n+p+l<r<n+N, are

arbitrary cross sections of NM"(x) defined on Uc M". From (4.1)
and (6.4) it follows that the function Lk/ S];'? can be written in the

form
k
(6. L. (p, Y = (-1 det(A . .1
5) kP en+§> ) Tf:q]‘( et( n+9,pq)p,qe{11,. .. ’lk}
where n+N
(6.6) e = a e + a e
n+p N+Q,N4Q N+ fonrorl n+Q,r T
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and (a .. ,8 ) satisfies (4.16). The second derivative
n+o,n+¢’ n+o,n+N

of (6.5) with respect to a

a nQ+l<r,u<n+N, at
n+9,r’ “n+g,u’ ° T "

a = 0, where
n+Q,r
- n+N _
(6.7) A'n+ ® &,+0,n+ An+ L 8ht rAr
9,Pq QnHQ THO,PA T e hHQ,T TR
and _1_
n+N 2 2
68 -1 - a y
( ) °‘n+9,n+9 %i n+Q,r
has the form )
. k+l
6.9 ¥ = (-1)%s k) det(X ) )+
hbu ru i1<"'<ik n+9,pq p,qefi 1 ,'Lk
-k (detlA . ,...,A. ,...,A . ,...,A )
+ det(A Y U U G
e +?’ lq ’ ullq’ ’ rlmq’ ’ n+9’]‘kq )’
where 2<k<n, l<l<mgk, 1<@ <N, n+p+lsr,ugn+N, and
qé€ {il,. . ’ik} denote the number of a column in the determinants of
(6.9).

From (6.9) we get

(6.10 W - .26 (det(X
) 2ru Tu ; € n+9,pq)p,qe{ } *
]
A A +A _A. -2A_A_).
Tii ujj Tjj wuii rij uij
If in (6.1) e neo’ er are eigenvectors en ?, e » n+p+l<r<n+N, of the

quadratic form L2/ Sp N-¢ (not necessarily uniquely defined), then from
(4.19) it follows

(6.11) AriiAujj"'IatrjjAuii'ZArijAuij - Arii ujj rjjxuu 2Ar1jxu1j
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22 M. Rochowski

and (6.10) get by (6.11) a diagonal matrix

- Q
(6.12) h2rr - -2(12”“‘9 - IZr)’ n+o+lsr< nsN,
(6.13) ?21:' =0 for r féu, n++l<r,usns+N,
u
where 1, are defined by (4.18).
We have

Proposition 6. Let

(6.14) ) x(p)8n+1...en+?...'é'n+NeNl(x),

where 'e"r, n+l<r<n+N, in (6.14) are eigenvectors of L2/SN-1.

If the eigenvalue 12’n+9(p) is different from Izr(p) for every : ,

T # n+p, n+l<r<n+N, then there exists a neighborhood UC M, such
that 12’n+9(q) k Izr(q) for every g€ U and a 1-dimensional, trivial
vector bundle with fiber 5n+9(q) , g€ U, such that 5n+9(q) is deter-
mined by a uniquely defined eigenvector 'é'n_w.
Proof. From (6.12) it follows that the definition

G

(6.15) 2,n+Q,n+p = 'h2,n+6,n+6’

where 1< p<N, p+1<6<N, is correct. From (6.15) we get

4
(6.16) LI 2(12n+9 -1

21') !
where n+l<r<n+g-1, and similarly as (6.13) we get

(6.17) h921_u =0 for r $u, ntl<r,ugn+N, r,u kn+o.

By assumption we have
(6.18) h92rr # 0, r én+p, ntlgrgntN,

at pe M*. From (6.12), (6.16), (6.17) and (6.18) it follows that

the Hessian

(6.19) det(n? ) 4 0, r,u 4 n+o, ntl<r,ugn+N,
2ru 9
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at pe M". Hence there exists a neighborhood UC Mn, p e U, such that
(6.19) is satisfied for every qe U and therefore from Proposition 1

and Corollary 1 it follows that there exists a cross section

~ n
(6.20) em_P:U——NM (x)

which for every q e U defines the canonical direction 6n+9(q).

The extension of (6.12), (6.13) by (6.16), (6.17) is necessary,
since we do not assume that gn+6’ 1<6<g¢, in (6.14) is a non degene-
rate stationary point of L2/ SI;'G and therefore that it is uniquely de-

fined as the vector & in (6.4) is.
n+6

7. Immersion of manifolds in spheres

Let
(7.1) & M ——pg™N
n+l
denotes an immersion such that
(7.2) g, (MHe ™
where s™N-1c g™N yenotes the unit sphere.
We have
Proposition 7. It E'n+1 denotes the first canonical vector
defined by means of Lk/ SI;'l , then
~ n
(7.3) L (p,& )2 ()
for every pe M".
Proof. Let us take
(7.4) e—m_l(p)el. e € e ...e € F1(€n+1) ,
where F,(x) denotes the total space of (3.7). From (3.15) it follows
1
dem_l-er - wn+1,r = 0 and therefore
(7.5) den+1 - wn+1,iei'
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From (3.24) and (7.5) it follows

(7.6) X}

in+l An+1,ij"°n+1,j

and therefore

(7.7

A ..om -6, ..
n+l,ij ij

From (7.4) it follows € 1€ SN-1CN M'(&_.,). Hence setting (7.7)

+1 P P n+l
. - n . ~ . .
in (4.1) we get Lk(p,en+1) - (k). Since Lk(p,em_l) is the maximal

N-1
value of Lk(p,en+1), e € Sp , we have

n+l
~ — n
(7.8) Lk(p,en+1)>Lk(p,en+1) = (k)'
We have
Proposition 8. Let & . denotes the canonical vector of (7.1)
defined by means of L /SN 1 . There exists a cross section
(7.9) em_l:M ——NM" (en 1)
and for every pe M" the vector € ,1 is transversal to s™* N1 por
every e 265N len M (e ) such that
. 0 e =
(7.10) ®n+2" “n+1
the function (4.3) takes the form
1 2
(7.11) L2(p'en+2) =77 n+2,ij"
i,j=1

Proof. Fron (7.3) we have

(7.12) L (p, n+1) n.
From (4.2), (4.11) and (7.12) we get

n
(7.13) ,n+1 le n+l, ii>
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for every pe M". Hence, from Proposition 5 we get (7.9). From (7.4)

we have
n+N
(7.14) €nel © an+1,n+1en+1 + an+1,rer'
r=n+2
From (4.12) and (7.14) we get
Ly
(7.15) a __._< Iy )
n+l,n+l 211 n+1 \io1 n+l,ii
From (4.2) and (7.13) it follows that (7.15) can be written in the
form
L, (p,g )
(7.16) a D
n+1,n+1 L ( ~ )
1'Preh1

From (7.8) and (7.16) we get 0<an+1,n+lél’ hence

(7.17) 0<en+1'§'n+1$1

for every pe m". Denoting by x{p), pe M", the angle between En+1

and & ., (7.17) can be written in the form
(7.18) O<cosalp)<l or equivalently Og« (p)<g .
From (7.18) it follows that 'é‘m_l is transversal to Sn+N-1 at every

point € ,(p)e Sm'N'l, peM®,

For r = n+2 we get from (3.34)

(7.19)

An+2,ij - an+2,sAs;ij'
From (4.2}, (4.13) and (7.19) we get

n n+N n_
(7.20) I'l(p’en+2) - Z‘ An+2,ii s : %ne2,s Z‘ Agi = 0,
i=1 s=n+2 iml

where e ., in (7.20) satisfies (7.10). From (7.20) it follows that
the function Lz(p,en+2) defined by (4.3) take the form (7.11).
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By 'Ek n+p’ lsk<n, 1<p<N, we denote the p-th canonical vec-
?

tor defined by means of L., i.e. Lk(p,ek'm_‘,) is the maximal value
of L, /sN-?
kK" p -

An immersion (7.1) such that (7.2) is satisfied is called canoni-

cal, if there exists a k, l<k<n, such that for every pe Y

(7.21) ®a+sl T Sk,ne1r T En+1 " “k,n+l
and
(7.22) LZj(p’g2j,n+2) = 0 for every j, 1<2jgn,

Finally we prove the following
Theorem. TIf (7.1) is a canonical immersion of a closed and
connected manifold Mn, n3» 2, then

— n n__ .n+N-1
(7.23) em_l(M ) = ScS ,

where S™ denotes the unit sphere and M" is diffeomorphic with s™.
Proof. From (7.7) and (7.21) it follows

- ~

Anel,ij = e, -

(7.24) -6

ij’
where Kn+1 ij are coefficients of the second quadratic form evaluated
’
in the direction of 'é'k nel- From (7.24) it follows that the equations
14

(4.25) for ¢ = 1 take the form

k
(7.25) X2 , detl-8, oAy o8 ) = 0,
1

’
=1 i< < 14 K

where n+2g<rg<n+N, 1< k<n, lsimSn, lsm<gk, qe {il,. .. ’ik}’ and

Xﬂj are coefficients of the second quadratic form evaluated in the di-

rection of €. . The vector & is an element of a base in N M"(g_ .)
T T P n+l

of the form

(7.26) &4l (p)ak,n+1€n+2' : '€n+N € N1(€n+1) :
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We have

(7.2 det(-6, ,...,A . ,... = .

7.27) e i Arllq 1k ) = (- 1) nlll

Hence

.28 d (6 ,...,K. yeues=G, =
(7.28) é et ri leq)
YA+ +AL ) =0,

1‘1111 r].klk

where n+2<r<n+N. From (7.25) and (7.28) we get

(7.29) E (Arilil oo, + rlkl_k) = 0, n+2<r<n+N,

1'.1< - .<ik

The equations (7.29) are exactly the equations (4.13). Hence we have

proved that for every k, l<ks<n, if & satisfies (7.21), then the

,n+l
equations (4.13) are satisfied.

Let e]. n+2

tor. We choose a base

€ NpMn(€n+1), 1<j<n, denotes a second canonical vec-

(7.30) T (p)E & yeN (& ).

k,n+1ej ,n+2en+3' :

The equations (4.25) now take the form

(7.31) Z’,} .j det(Am_z PYIERTY WP WPy ) =0,
lali<...<i, 14 1 1
1 j J

where n+3<r<n+N and A ..
n+2,1j

tic form evaluated in the direction of eJ ne2’ Let
’

are coefficients of the second quadra-

(7.32) Y

n+1(p)e1' . e T(em_l) R

where T(x) is the total space of (3.4), denotes a base in TPMn such
define principal axes of the matrix (A ). Then (A )

n+2,ij n+2,ij
is a diagonal matrix and (7.31) takes the form

(7.33) 1_21' 1:' det(An+2 it 1 .. ’Arilq" .. ’An+2’ijij) = 0,

that @&,
i

l
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We have
(7.34) det(A yevesA . ,euA ) =
n+2, 11 1 rllq n+2,1].1j

~

~

n+2,1111 rlltl n+2,1j1j

From (7.33) and (7.34) it follows that (7.31) takes the form

(7.35) Z 2 KRy ""'An+2’iji,- -0,

1=1 11 '] 171 11

where n+3<r<n+N. We have

1 e Y Y
-?!— Z::‘ An+21 Tii, n+2,ii
11,...,1j=1 11 11
Hence, we get
) ~ — ~
;: Au+2ii ""'Arii"".An 2,4, -
Tig il 1 el

1 ~
= fj-li : n+2,imi, * An+2,i.i].'

1-1 iy, .,1 =1 j

Therefore the equations (7.33) can be written in the form

n n
(7.36) Z, : n+2,i "'An+2,i.i_ = 0,
1-1 12’..-’]_-1 22 J3

Therefore the equations (7.33) can be written in the form

n n
736 L Au 2 Ko R o O
1= 12,...,1j-1 272 )i
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where nt3<r<ntN. From (4.13) it follows that (7.36) are identi-

ties. This means that for every choice of

n+N 2

(7.37) e = a € =1,

a
n+2 n+2,s s’ n+2,s

=n+2

where &_ are the vectors of (7.24), the function L].(p,em_z) has the

same maximal value. Therefore

(7.38) L].(p,en+2) = B]_ = const

for every j, 1<j<n. From L2m+1(p,-en+2) = -L2m+1(p,en+2) and
(7.38) we get

(7.39) B, = 0 for every m, 1<2m+l<n.

From (7.22) and (7.38) we get

(7.40) B, =0 for every m, 1<2m=<n.

2m

From (4.1), (7.38), (7.39) and (7.40) we get

(7.41) E det(A ) . . ] =0,
il<"'<ij n+2,pq p,qe{ll,..-,lk}
where An+2 ij are coefficients of the second quadratic form evaluated
’

in the direction of the vector (7.37). Let

(7.42) )

n+1(p)e1. e eT(E ;)
denotes a base in TpMn such that e define principal axes of (An ).

+2,1j
Then (7.41) has the form

(7.43) : An+2,i1i1’ T ’An+2,ijij =0

11<. . .<i:l

for every j, 1<j<n. From (7.43) it follows that the eigenvalues

.. = 0, 1€isn. Hence in an arbitrary base of the form (7.42)
n+2,ii

of TPMn we get An+2,ij = 0, 1<i,j<n. This proves (7.23).
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Since M" is by (7.23) locally diffeomorphic with S~ and compact,
it follows that M™ is a finite covering of S™. Such a connected cover-

ing is for n> 2 diffeomorphic with s™.
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