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1. Introduction 

In this paper we define canonical frames in the normal bundle 

NMn of a differentiable manifold Mn immersed in the Euclidean space 
n+N r n E . The geometric idea of this construction was explained in |_3J. 

More generally we repeat this concept as follows. Around a curve 

* ( l ) c E n , n > 3, where E n denotes the n-dimensional Euclidean space 

and 

(1 .1) x : I — E n , I = [ 0 , 1 ] 

is an immersion, we take a tubular neighborhood consisting of a one-

-parameter family of (n-1)-dimensional disks of radius £ > 0 . There 

exists such an £q > 0 that for every £ , 0 < , the boundary Tn~^ (£) 

of the tubular neighborhood is a regular surface. The Gauss curvature 

(1 .2) K : T n * (£ ) —»• R , where R denotes the real numbers, 

of T n 1 (C) has the following property. Let us suppose that the f irst 

curvature k^(s ) of (1 .1) is greater than zero for every s 6 E0, l ] . 

We consider the restriction of (1 .2) 

(1 .3) K / S n " 2 ( s , t ) , 

where 

(1 .4 ) S n - 2 ( s , i ) c l , l - 1 ( £ ) 
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2 M. Rochowski 

denotes the spherical " f iber" with radius t and center x ( s ) . Then 

there exist exactly two antipodal points y^ ( s ) , the sphere 

(1.4-) such that the function (1.3) attains its maximal value at y^ (s ) 

and its minimal value at and the direction in En defined by the 

pair (y^ (s ) , y2 (s ) ) is that defined by the principal normal e ^ s ) of 

( l . l ) . In the following such a direction is called canonical. 

We replace x ( l ) by a surface x ( M n ) c E n + ^ , the tubular neigh-

borhood by the normal bundle NMn « NM r ' (x ) of x ( M n ) and the Gauss 

curvature K by an elementary, symmetric function (called in the fol-

lowing also a scalar function) of the characteristic polynomial of the 

second quadratic form of x ( M n ) . The stationary values of such a 

function restricted to the unit vectors of a fiber N k A x ) , p e M11, 

of NM n ( x ) define directions in E n + ^ which are called canonical. 

Let 

(1.5) e 2 : I — S 2 , I - [ 0 ,1 ] , e 2 ( 0 ) - e j C l ) , 

denotes an immersion such that the direction of the principal normal e^ 

of e9 is identical with that of e 9 . Then the second curvature of e 0 is 
1 1 2 

zero and therefore ^ ^ ™ ̂  » w ^ e r e S c S is the 1-dimensional 

unit sphere. 

As an application of the method explained in Section 7 we define 

canonical immersions of manifolds in spheres as a generalization of 

(1.5) and prove that the image of a closed and connected manifold M n , 

dim Mn = n, n ^ 2 , in the (n+N-1)-dimensional, unit sphere 

by means of a canonical immersion is a unit sphere S n c ^ and 

Mn is diffeomorphic with S n . 

An outline of the content. In Section 2 we describe the scheme of 

generating canonical frames in an arbitrary vector bundle. In Section 3 

basic notations are introduced. Tn Section 4- scalar functions in the 

normal bundle are defined and the construction of canonical frames 

is carried out. In Section 5 necessary conditions which define canoni-
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Generating canonical frames 3 

cal vectors are rewritten as exterior form equations. In Section 6 

we define sufficient conditions to get the uniqueness of the construc-

tion. In Section 7 we consider canonical cross sections of immersions 

of manifolds into spheres. 

Cartan's method of moving frames and special related problems 

are considered by Ph. Griffiths Cl] and G . R . Jens sen [ 2 ] . 

2. A scheme of generating canonical frames in vector bundles 

Let 

JB = (B , jt , M, V) 

denotes a vector bundle with total space B , base space M, the proje-

ction IT and a standard fiber V. B and M are differentiate manifolds 

and V is a finite dimensional vector space. We denote 

dim M = n, dim V •« N, dim B = n+N. 

A metric g on the bundle JB is a function which assigns to every 

p€ M a positive definite scalar product g^ in the fiber V^ over p 6 M, 

such that for every open set U c M and every differentiable, local 

cross sections S^,S2JU— '»-B, the function g(s^,S2) :U—— R defined 

by g ( s 1 , s 2 ) ( p ) => gp(s^Cp) ^ ( p ) ) is differentiable. Differentiability 

means differentiability of class C°°. We suppose throughout the paper 

that considered manifolds and functions are differentiable. By 

( 2 . 1 ) J t ± - ( N j , Jr2> M, 0 ( N ) ) , 

N 
where OVN) denotes the orthogonal group acting on E from the right, 

we denote the principal bundle of orthonormal frames such that J is 

associated with . Let L : B — R denote a differentiable function, 

called a scalar function on J8 . With the aid of L we define locall 

cross sections in called canonical frames (with respect to L) as 

follows. Let U c M denotes an open set such that there exists a vector 

bundle chart H: JT 1 ( U ) — UxV. This implies that JB restricted to U 
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admits N linearly independent cross sections ( p , e r ( p ) ) , p e U, 

e^ (p) eV » JT ^ ip) . These cross sections we denote in the following 

simply by e^. We denote 

{2.2) S ^ ' 1 = | e e Vp : gpCe^) - l } . 

The function L restricted to the sphere (2 .2) admits a maximal value 

at a point e , (p) e S ^ c a l l e d the f irst canonical vector. Thus, 
n + 1 p N - l e n + ^(p ) is a stationary point of the restriction L / S ^ . If e^^^Cp) is 

a non degenerate stationary point, i . e . , if the Hessian of the function 
L / S N ^ is different from zero at e 1 (p) , then e ., (p) i s isolated 

P N _ ! n+1 F n+1 v 

in the sphere S^ 
We have the following 

P r o p o s i t i o n 1. If £ a n o n Regenerate 

stationary point of the restriction L / S 1 5 ' 1 such that this function 

attains its maximal (or minimal) value at ^ (p ) , then there exists 

a neighborhood Q c M of p€ M such that e 1 (q ) , qe. Q, is a non de-N X HrJ. 

generate stationary point of at which this function attains its 

maximal (or minimal) value, and e n + ^ ( q ) , q e Q , is a differentiable 

cross section in the bundle £ restricted to Q c M . 

P r o o f . Let H "StJxV—— B denotes a coordinate mapping, where 

U is an open set. We choose U such that (U,h) is a chart of M such 

that h : U — K n i s a diffeomorphism, where K n denote the n-dimensio-

nal, unit and open disk in E n referred to the coordinates (u- , . . . ,u ) . 
-1 i n 

By H^ : U — B we denote the mapping defined by 

(2 .3) H~^(q,e) «• H~^(q,e) , q e U , e c S * * " 1 . 

By | ( V , a ) , ( W , b ) | we denote an atlas on S ^ 1 such that UuW - S 1 ^" 1 

and a (e ) - ( v j , . . . , ^ j l f i K ^ " 1 , b (e) = ( w j , . . . , ™ ^ .^fcK 1 ^' * are 
N- l 

local coordinates of e e S . The function L:B—— B written in local 

coordinates has the form 
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Generating canonical frames 5 

(2.4) f(u;v) - L(H1~
1(h"1(u),a"'1(v))) in the charts (U,H), (V,a) 

and similarly 

(2.5) f(u;w) - L(Hj1(h~1(u),b~1(w))) in the charts (U,h), (W,b), 

where u - (u^,... ,un), v - (vj ,... >v N 1) , w = (w^ . .. ,w N 1). 

If (u ;v ) - (u" ... ,u ;v.,... ,v ) are coordinates of a non dege-

nerate stationary point of the function L/S^ ^ , then 

2 
(2.6) - 0, det (u°;v°)) f. 0, Ua,j8«N-l. 

By the implicit function theorem there exists a neighborhood Q c U of 

p e U , where h(p) » ... ,u°), and uniquely defined differentiable 

functions v^tiij,... such that va (u°,... ,u°) « v°, l^a^N-1, and 

(2-7) I 7 un;v1Cu),...,vN_1lu)) = 0, 

d e t a ^ S V v i U ) ' - - - ' v N - I U ) ) ) ' 

where u - (ulf...,u )e h(Q)c K
n. The second differential of (2.4-) 

with respect to the variables va, l^a^N-1, is negative (or positi-
ve) definite at (u?,...,u°;v° ..,v° ,). Hence from (2.8) we get 

I n 1 N -1 

that this differential is also negative (or positive) definite at every 

point (ulf...,un; Vj(u),... ,vN jiu)) for u - (ulf...,u )€ h(Q)cK
n. 

This means that 

(2.9) ®n+l
((l) " Hj1(i"1(u),a"1(v(u)))e S^"1 , 

where h(q) « u, qe Q, v(u) - (v^u),... ,vN j^u)), is a differentiable 

cross section of the bundle 3 restricted to Q c U c M and the function 
N-l ~ 

L/S attains its maximal (or minimal) value at e^^(q). In the 

case (2.5) the proof is the same. 
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6 M. Rochowski 

As an immediate consequence of Proposition 1 we get the 

C o r o l l a r y 1. If for every q t U, U = h ^ (K n ) , the Hessian 

of L/S^ ^ is different from zero at a stationary point e^^^ (q ) such 

that L/S N ^ attains its maximal Cor minimal) value at e . ( q ) , then q n+1 
there exists a uniquely defined cross section of the bundle IB re-

stricted to Uc M and represented by the formula (2.9) for q e U . 

If 

(2.10) ? n + 1 ( p ) 2 « 9 < N , pe U = h _ : l ( K n ) , 

are canonical mutually orthogonal vectors, then e (p) e S^ ^ is 
P / N - 9 defined as a non degenerate stationary point of the function L/S , 

N-p N - l P 
where S r c S is contained in the linear subspace of V which 

P P P 
is orthogonal to the vectors (2.10) such that L/S ^ attains its ma-

ximal value at e>n+ (p ) . The last canonical vector i s uniquely 

determined by the foregoing canonical vectors and the orientation 

of V . 
P 
In the following we shall identify the function L restricted to 

j t '^ (U) , U c M , and LH~\ hence we set 

(2.11) L ( e ( p ) ) = L ( p , e ) . 

The vector e e S^ " 1 at the right of (2.11). is therefore a "projection" 

of e ( p ) e S^ * on S N ^ defined by e ip ) ——(p,e)—— e. In the follow-
p N - l 

ing we shall identify the "projection" e S with the cross sec-
tion (2.9) for q € U. Hence we set " 

(2.12) e , ( q ) = e , for q e U . 
n+1 n+1 x 

\ \ 

From Corollary 1 with the use of the i4ent i f l c a t l o n (2.12) we get 

P r o p o s i t i o n 2. If for every p e U, I I - h (K ) , the Hessian 

of where S^"^ is the (N-9)-dimensional, unit sphere con-

tained in the subspace of V^ orthogonal to the vector? (2.10) , 

is different from zero at a stationary point e ^ ^ such that 
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Generating canonical frames 7 

N-0 L / S > attains its maximal value at e , then the function which p ^ n+9 

sends p e U to , is a cross section over U in 3 and 

(2 .13 ) o C P ) e n + 1 . . . ? n + N f e N l 

is a uniquely defined orthonormal frame of V^ attached to the origin . 

o(p) of V . The function which sends p e U to (2 .13 ) is called a cano-

nical cross section over U in ^ (see ( 2 . 1 ) ) and osM—"-B is the 

zero section in 2>. 

Finally we have 

P r o p o s i t i o n 3 . If the function L/V^ is linear for every pe U, 

then exactly one canonical vector e ^ ^ can be defined by means of L . 

P r o o f . Since the nullspace of L/V^ is an (N-l)-dimensional 

subspace W^C V^, which, as follows from the definition of is 
orthogonal to e - it follows that the function L / S ^ " ^ , S ^ " ^ c W , 

n+1 P P P 
is identically zero. 

Generally, if L is identically constant on a subspace of V^ ortho-

gonal to the already defined vectors ( 2 . 1 0 ) , then the definition of 
e with the aid of L is not possible. In such a case besides L we n+ y 
need further scalar functions —»-R, where B^ denotes the total 

space of the subbundle Sy of the restriction JB/U, whose fiber over 

p e U is the subspace of V orthogonal to the vectors ( 2 . 1 0 ) . In appli-

cations the scalar function L is a homogeneous polynomial of N varia-

bles and of degree less than or equal to dim M » n. Since the esti-

mation of stationary points of a polynomial can be described as an 

algebraic procedure, it follows that the process of defining canonical 

cross sections (2 .13) is rather an algebraic and not differential geo-

metric procedure. The function L depend on the second derivatives 

of an immersion <?f M in another manifold and the polynomial depend 

on derivatives of this immersion of orde^r greater than two. 

We define 

( 2 . U ) l r ( p ) - L ( p , S r ) , p e U c M . 
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8 M. Rochowski 

3. Preliminaries 

Let 

(3 .1) x : M n - ~ E n + N 

denotes an immersion of a differentiable manifold M n of dimension n 

in the Euclidean space E n + ^ . We use the following notations. TM n de-

note the tangent bundle of M , T denote the tangent space to M 

at p e i f , NM'HX) denote the normal bundle of Mn determined by ( 3 . 1 ) . 

The fiber N M ^ x ) over p e Mn i s the N-dimensional subspace of E n + ^ 

of such vectors e e E n + ^ that 

(3 .2 ) e .dx(p) = 0. 

In the following we frequently set 

(3 .3 ) ||e|| = 1. 
By T{x) we denote the principal tangent bundle of orthonormal frames 

x ( p ) e 1 . . . e £ T ( x ) , where e. e x.,(T M n ) , denote vectors i n i * p 
tangent to the surface x(M ) at the point x ( p ) . We denote 

(3 .4) rCx) = ( T ( x ) , JTV i f , 0 ( n ) ) , 

By we denote the principal normal bundle of orthonormal frames 

(3 .5) x ( p ) e 1 . . . e v e N . (x') e e N M ^ x ) , n + l s g r ^ n + N . * n+1 n+N 1 r p 

We denote 

(3 .6 ) ^ ( x ) - ( N ^ x ) , 3Tr i f , 0 ( N ) ) . 

By Jf^(x) = J"(x) © J J ( x ) we denote the Whitney sum of bundles, i . e . 

(3 .7 ) ^ ( x ) - ( F ^ x ) , ^ , i f , 0 ( x ) x 0 ( N ) ) . 

The elements of the total space F^(x) are orthonormal frames 

(3 .8) x ( p ) e , . . ,e e , . . . e „ t F . W , 
r 1 n n+1 n+N 1 

The orthogonal groups 0 (n) , 0(N) and 0(n+N) act from the left on 

the respective orthonormal frames. Every frame (3 .8 ) defines an ele-

ment of the Euclidean group E(n+N) which acts on E n + ^ from the 

right, i . e . - 278 -
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( 3 . 9 ) x — x A + a , AeOCn+N) , a e T ( n + N ) , x e E n + N , 

where T(n+N) denotes the translat ion group, isomorphic with 

The group operations in E(n+N) have the form 

( 3 . 1 0 ) ( A , a ) • ( B ,b) - ( A B , a B + b ) , ( A , a ) " 1 = ( A T , - a A T ) , 

T 
where ( A , a ) , ( B ,b) e E(n+N) and A denotes the matrix transposed 

to A. The equations of s tructure of E(n+N) have the form 

( 3 . 1 1 ) d G j ' = w ' A £ \ d £ ' « £ ' A Q ' , 

T / T where to' - daA = (co'A).. . , T , dA-A = (coAX1)- , _ A l<Acn+N AB l«A,B«n+N 
and on the right sides of the equations ( 3 . 1 1 ) we have matrix multi-

plication. In the following we use the convention 

l « i , j , k , l « n , n + l $ r , s , t , u ^ n + N , 1 $ 9 , N , 

and repeated indices denote summation. The total space F ^ ( x ) of ( 3 . 7 ) 

can be identified with the set 

( 3 . 1 2 ) | ( A , a ) £ E ( n + N ) / e i = ( a i l , . . . ,a . n + N ) e x ^ ( T p M n ) , a - x ( p ) , p e M n J , 

where A = B < n + N 6 , a = x ( p ) e E " + N and x ^ denotes 

the differential of ( 3 . 1 ) . The vectors e « (a , , ) a r e r r l r , n + N 
orthogonal to x ( M ) at x ( p ) . B y means of the identification ( 3 . 1 2 ) 

we define the inclusion map 

( 3 . 1 3 ) F j ( x ) c E ( n + N ) . 

We define l inear forms 

( 3 . U ) w - <*co' - (C0A), Q - (C0 A B ) , l « A , B « n + N , 

on F j ( x ) , where t * denotes the pull back of the components u>', Q ' of 

the moving frame of the Euclidean group E ( n + N ) , which corresponds to 

the inclusion map ( 3 . 1 3 ) . On F ^ ( x ) we have 

( 3 . 1 5 ) I * ( d a ) - e r - d x ( p ) - e r - GJ. - 0 . 
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Hence 

(3 .16) dx = cj .e. . 1 1 

Furthermore, we have 

(3 .17) de. - £J., e, + co. e l lk k tr r 
and the Weingarten equations have the form 

(3 .18) de - co .e. + co e . r n i r s s 

The equations of structure of the bundle ^ ( x ) have the form 

(3 .19) «to - u k A u k . , 

(3 .20) dco„ - c j . . A co.. + co. A c o , , lk l j ]k ir rk 
(3 .21) dco. -co..Aco. + co. Aco , ir i] jr is sr 
(3 .22) dco -to .Aco. t u .AW, . 

r s r j js rt ts 

The formulas (3 .20) are called the Gauss equations and (3 .21) the 

Codazzi-Mainardi equations. From ( 3 . 1 1 ) , (3 .14) and (3 .15) we get 
(3 .23) co .Aco. - 0 r i I 

and from Cartan's Lemma it follows 

(3 .24) w. - A ..co., A .. - A ... ir r i j j r i ) r j i 
We define the curvature forms by 

(3 .25) 9., - co. Aco , - -A . .A ,,u>.ACJ, - R. .co.Aco, , 
lk ir rH r i j rkl j 1 ijkl ] 1 

where R . , are the components of the Riemann curvature tensor. From 
(3 .16) it follows that the induced metric on M defined by (3 .1 ) has 
the form 

(3 .26) dsZ s-f 
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and the volume element of M n has the form 

( 3 . 2 7 ) dV - co.A . . .Aco . 

n X n 

From ( 3 . 1 6 ) , ( 3 . 1 8 ) and ( 3 . 2 4 ) we get 

2 ( 3 . 2 8 ) d x - e = - d x - e = co.co . » - A . .coxo.. r r i r i r i j l j 
From ( 3 . 2 8 ) we have that A . . defined on F , ( x ) a r e coeff ic ients of r i j 1 

the second quadratic form of ( 3 . 1 ) in the direct ion defined by e r . The 

coeff ic ients of the c h a r a c t e r i s t i c polynomial 

( 3 . 2 9 ) det(*<5.. - A . . ) 

i ] r i j 

a r e s c a l a r functions defined on NM ( x ) . With the use of the identifi-

cations ( 2 . 1 1 ) and ( 2 . 1 2 ) we denote by L ^ ( p , e r ) the coeff ic ient by 

A n " k in ( 3 . 2 9 ) . 

We have 

P r o p o s i t i o n 4 . F o r every p e M n there exist at most N - l 

canonical v e c t o r s which can be defined by means of L ^ / S ^ , 2 - ^ k ^ n . 

P r o o f . We denote 

( 3 . 3 0 ) f . . - (A . . . . . . . , A XT . . ) . i] n+1 , 13 n + N , i j 
We prove that f . . i s a vec tor of N M n ( x ) in the base ( 3 . 5 ) . Let 

V) P 

( 3 . 3 1 ) e = a e , ( a ) e O ( N ) , r r s s r s 

denotes a change of bases in N M ( x ) . We have 

( 3 . 3 2 ) co. = d e . - e - a co. - a d e . - e . l r 1 r r s i s r s 1 s 

From ( 3 . 2 4 ) and ( 3 . 3 2 ) we get 

( 3 . 3 3 ) A ..co. - a A . r i ] j r s s i ] j 

S i n c e co. a r e l inearly independent we get 

( 3 . 3 4 ) A . . - a A . . . r i ] r s s i ] 
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12 M. Rochowski 

From (3 .31 ) «aid ( 3 . 3 4 ) it follows that Ay „ undergo a change as a 

vector of N M n ( x ) . Since A .. - A we have f . . - f . . . Therefore P r i j r j i i] j i 
the vectors f with coordinates (3 .30) define a subspace N M ^ s ) C 

CN M n (x) and 
P 

(3 .35 ) dim N 1 M n ( x ) < ^ ^ - . 
P 2 

The subspace N M (x) remains invariant by change of bases in tPm1 1 . 

Indeed, we have 

(3 .36 ) A .. - a., a.,A , , , r i ] xk rkl 

where 

(3 .37) e. - a . .e . , ( a . . ) e 0 ( n ) , 

is a change of bases in T^M n . From (3 .30 ) and (3 .36 ) we get f „ -

a^^a^f^^, i . e . depend linearly on . 

For pe Mn fixed L^ is a linear function and therefore from Pro-

position 3 it follows that by means of L^ at most one canonical vector 

can be defined. 

A. Canonical frames in NM (x) 

The coefficient by > n ~ k in (3 .29 ) has the form 

U . l ) L, (p,e„) - < - l ) k ) '. det(A ) J . . 
k r y . . rpq p . q g j ^ , . . . , ^ ) 

where l ^ i ^ n , U U k , K k ^ n . In particular we get 

n 
U . 2 ) L 1 ( p , e r ) - - H A r U , 

i - 1 

U . 3 ) L 9 (p .e T . ) - $~ ]det (A ) J . .1, 
2 r Xtf rpq p ,qe|i , ] } 
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Generating canonical frames 13 

( 4 . 4 ) L n ( p , e r ) " L ( P ' e r ) = -DndetC.A ) . 

The function ( 4 . 4 ) is the Killing-Lipschitz curvature. The functions 

( 4 . 2 ) , and ( 4 . 3 ) are considered more detailed below in a) and b) r e s -

pectively. The general case is considered in c ) . Let 

(4 .5 ) x ( p ) e n + r . . e n + N f e N 1 ( x ) , p e U , 

denotes ia cross section from an open set U c M 1 in «/T^(x) (see 

( 3 . 6 ) ) . 

a) From (3 .34) and ( 4 . 2 ) we get 

n 
( 4 . 6 ) L , ( p , e n ) = - a , Y \ A . . . 1 r n+1 n + l , s su x=l 

We apply the method of Lagrange to determine stationary points of the 

function ( 4 . 6 ) restricted to S ^ ^ . We have 
P 

( 4 . 7 ) 

We get 

( 4 . 8 ) 

n+N 
a n + l , s = s-n+1 ' 

n 
E A .. - 21, . a . = 0 , . , su l , n + l n + l , s ì—1 

where is a constant for p e U fixed. From ( 4 . 6 ) , ( 4 . 7 ) and 

the formula 

n+N 9 n+N _ _ _ n+N _ „ 
( 4 . 9 ) > ' A . - T '. (a A . . ) - a a A . A . - } ' A ' J r i j ' J r s sii r s r t sii tii ' ,' rii r -n+1 ' r=n+l J 1 r -n+1 

we get 

i n+N / n \2 n+N / n \ 2 

s-n+1 \ i= l / s-n+1 \ i - l / 

The function » > P 6 U , is an invariant of NM n (x) . 
This is the maximal (or minimal) value of L , ( p , e - ) restricted to 1 r n+1 
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14 M. Rochowski 

S ^ " 1 ( see ( 2 . 1 4 ) ) . We have ^ n + 1 ( p ) - l n t h e following 

an invariant L^^(p) - L ^ i p , ? ^ ) of N m " ( x ) i s called simply an invariant 

of ( 3 . 1 ) or of the surface x ( M n ) . Denoting by A . . . the coefficients n + l , i ] 
of the second quadratic form ( 3 . 2 8 ) evaluated in the direction of ê , n+1 
we get 

(A. 11) 21, _ - - ] T A_ 1 ,n+l " n+1 , i i ' 

If I j ^ 0 for every p e U c M n , then from ( 3 . 3 1 ) and (4-.8) we 

get 

1 n 

( 4 . 1 2 ) e . - - OT Y . A . .e . n+1 21, , r~i s u s l , n + l i - I 

From ( 4 . 1 2 ) it follows that e , is a d i f f e r e n t i a t e c r o s s section from 
n n 

U to NM ( x ) . This is the mean curvature vector and I- , defined by 1 ,n+l J 

( 4 . 1 1 ) is the mean curvature of ( 3 . 1 ) in the direction of ? - . If we n+i 
choose the c r o s s section ( 4 . 5 ) such that e , » e , and e , n+1 n+1 s 
n + 2 « s « n + N , remains arbi t rary , then from ( 4 . 1 0 ) and ( 4 . 1 1 ) we get 

n 
Â .. sii ( 4 . 1 3 ) Y \ A .. = 0 , n + 2 ^ s < n + N . 

• 1 «n ' 
i - 1 

P r o p o s i t i o n 5. ^ ^ n+1^^ ^ ^ e v e r y P e M n , then there 

exists a c r o s s section e n + ^ : M n — ^ N M n ( x ) and for every open set 

U C M n which admit a c r o s s section ( 4 . 5 ) 21, , has the form ( 4 . 1 1 ) 1 ,n+l 
and e , the form (4-. 12) . n+1 

P r o o f . It suffices to prove that the definition ( 4 . 1 2 ) of 

does not depend on the c r o s s section ( 4 . 5 ) . Let • £ 

e N^(x) denotes another c r o s s section defined on an open set V such 

that p e U f l V . There exists a matrix ( a ) € 0(N) such that r s 

A T A e - a e , A .. - a A .. r r s s r i i r s s i i 
for pe UO V. We have 
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_ A A A A A A 
A ..e - a A . .a e - <S A . .e. = A ^ . e . . r n r r s su r t t st s n t tn t 

b) The function L„ defined by (4-.3) sat isf ies L „ ( p , e , ) -2 J 2 r n+1 
- L^Cp, and therefore by means of we define canonical direc-

tions only. Let us suppose inductively that by means of we have de-

fined canonical vectors ( 2 . 1 0 ) and invariants I„ l i f f ^ o - 1 , of 2 ,n+S " 
x (M ) at p e U c M . The vectors ( 2 . 1 0 ) a re defined up to orientation. 

We define the canonical vector e as follows. In ( 3 . 3 4 ) we change n+p ® 
the range of indices such that n+p- j r , s jg n+N and substitute 

(4.14-) A .. ^ a A n + p ^ s s f n + N , n+9,1] n + 9 , s si] ' 

in ( 4 3 ) . The seeked unit vector e is orthogonal to the vectors n+p 
( 2 . 1 0 ) and therefore can be written in the form 

( 4 . 1 5 ) e = a I , n + p ^ s ^ n + N , n+p n+p ,s s T 

where e together with e , define a base ( 4 . 5 ) of s n+0 > 
N M n ( x ) . The coordinates (a , . . . , a . , ) of a stationary 

P N _ p n+p,n+p n+p,n+N 
point of l ^ / S p satisfy the condition 

n+N „ 
( 4 . 1 6 ) 5 ' a - 1 

{ i n+p , r r-n+p ' 

and the system of equations 

( 4 . 1 7 ) a Y . (A ..A .,+A ..A . . -2A ..A . . ) - 210 a - 0 , n + p , s r n s j j r ] j s n r i ] si] 2,n+p n+p,r 

where 1^-0 < N , n + p ^ r , s ^ n + N . If we choose in ( 4 . 5 ) e ^ as canoni-' ' n+ o 
cal vectors l ^ f f ^ p , and e g , n + j + 1 s ^n+N, remains arb i t rary , 

then e has coordinates a - 1 , a = 0 , where n + l g r i ; 
n+p n+9,n+p n + 9 , r 

^ n+N, r ji n+p, and the system of equations ( 4 . 1 7 ) takes the form 

( 4 . 1 8 ) V (A ..A .. - A 2 . . . - l_ n + p , n n + 9 , ] j n+9,1]) 2 ,n+p 
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16 M. Rochowski 

(4.19) Y , (A ..A .. + A ..A .. - 2& ..A ..) - 0 , ^ n + f , n r j j n+9,]] r u n+p,ij n j 

where 1-^p ig N-1, n + p + l ^ r ^n+N. Because of our inductive method the 

identities (4.19) are valid also for the range of indices l ^ C ^ p , 

n+3+ljg r ^ n+N, and therefore they are valid also for the range of in-

dices 

(4.20) n+p+lsi r ^ n+N. 

Hence the coefficients of the quadratic form , n + p + l ^ r ^ n + N , can-

not be arbitrary numbers, since they satisfy p equations of the form 

(4 .19 ) , where in (4.19) the index p is replaced by 0" and the range 

of indices is defined by (4 .20) . The same remark concerning condi-

tions imposed on A^_, n+p+1 n+N, by the foregoing steps of the 

construction is valid also in the general case c) considered below. 

Direct calculations by means of the formula (4 .9) yield to the result 

that besides I„ , n + l ^ r ^ n + N , also 2r 
n+N „ 

(4.21) H - A - A ..) < i *—i r u ri] rii r=n+l i<] 

is an invariant of x ( M n ) . For n - 2 (4.21) is the Gauss curvature 

of x(M ) c E 3 . Since L 2 / S 9 , p e U , is a quadratic form of the va-

riables ^ , n + p ^ r ^ n + N , which satisfy (4 .16 ) , it follows that 

^2 n+p' 9 ^ ^ , defined by (4 .18) are eigenvalues of this quadratic 

form. 

c) In general case (4 .1) we have L ^ ( p , » ( -1 ) ^ ( p » ^ ^ ) . 

Hence for k even we determine directions only. We substitute (4.14) 

into ( 4 . 1 ) . We get 

(4.22) L , ( p , e ) - ( - l ) k / . det(a A . a A . ) , 
k i f . . n + ? ' s l W n + 9 , s k W 
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where l ^ p < N , l ^ i ^ n , n + p « s ^ n + N , l ^ l ^ k , qe j i j i ^ J . The 

symbol a A . denotes the 1 - th row of the determinant at the 
n + 9 , s 1 Sji^q 

right of {A. 22). The function L , i s defined by the formula ( 4 - 2 2 ) , k p 

where the variables ^, n + p ^ s ^ g n + N , in (4 .22) satisfy the con-

dition ( 4 . 1 6 ) . The coordinates (a , . . . , a . , ) of a stationary n+p,n+p n+p,n+N 

point of L ^ / S ^ satisfies besides ( 4 . 1 6 ) the system of equations 

, k (4 .23) ( - 1 ) K £ > det( A . A . A . ) -
1 - 1 i j < n + ? ' 1 l q ^ n + ? ' 1 k q 

V a 
n+p n + p , r ' 

where l ^ p < N , n + p ^ r ^ n + N , and A , m I 1 , l ^ m ^ k , is an 
' " n+O.i q _ T m^ 

abbreviation for a A , n + p ^ s «; n+N, in ( 4 . 2 3 ) . If we choose 
n+o,s s l q > m 1 m m m 

( 4 . 5 ) such that e . are canonical vectors e , 1 ^ 6 * ^ 0 , then in such n+CJ n+G " 
a base e has coordinates a « 1 . a = 0 , n + l ^ r ^ n + N , n+9 n+p,n+p n+p,r 
r n+p, and the system of equations (4.23) takes the form » 

(4.24) ( - l ) k k ) det( A ) / . . 1 - 2 1 . 
\ < n+?»pq P . q e j i j - • - i k | k,n+p 

X K 

k , 
(4 .25) > det(A . A . X . ) - 0 , 

u i n + 9 , l i q r i i q n + ? ' 1 k q 

where l ^ p < N , n+p+1-^r.g n+N. F o r k - n the equations (4.24) and 

( 4 . 2 5 ) have the form 

(4.26) ( - l ) n n det(A . J - 2 I - 0 , 
n+p, ik n,n+p 

n 
( 4 . 2 7 ) £ d e t l X A . , , . . . , A . ) - 0. n + ç , l k r i k n+9,nk 
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18 M. Rochowski 

5. Canonical frames defined by systems of exterior equations 

From (3.24-) and (3.27) we get the identity 

n n 
(5.1) F c ^ A . . . A « j A U ^ A U ^ A . . . A U n - £ A ^ . d V ^ 

i=l 1=1 

From (3.24-) we get 

(5.2) ¿3. , - de.-e 1 = A . .co., i,n+l i n+1 n+ l , i j ] 

where in (5.2) is defined by (4.12). Denoting by the ma-

ximal value of the function (4-. 6) restricted to the sphere (4.7) we get 

from (4.11) and LjCp.-e j ) = - L j t p . e j ) the inequality 

n 
(5.3) - A . ..>0. n+1,u 

From (4.10) , (4.11) .and (5.3) we get x 

n / n+N / n V 
i s . « - s w t a 

i - l \s-n+l \i=l > 

From (5 .1 ) , (5 .2) and (5.4) we get 

n 
(5.5) - g o , i A . . . A « i _ 1 A e 3 l f n + 1 A W 1 + 1 A . . v A « n 

n+N / n \ A 2 
) ( CÔ  A . . . A GO . jA CÔ A U, . 1 A . . . A CJ 

.1 

i+1 " w n } 2 
\ s-n+l \ i - l 

The equations (4.13) can be written in the equivalent form 

n 
(5.6) co, a . . .A co. -A co. A CO. , A . . . Aco = 0 , n+2-^s^n+N, *r-{ 1 i - l is i+I n i=l 

where 

(5.7) co. = de.*e = A ..q.. is i s SI] ] 
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In the case b) from (3.24-) and (3.27) we get the identity 

(5.8) /_. CO, A. . . ACO. ,A£0. AW. ,A ...ACO , A CO A W , A. . . A CO r~7 1 i - l ir i+l j - 1 jr j+1 n 

- ¿ . (A ..A .. - A 2 ,)dV . T~"T r n rii rii n 
i < ] J 

The equations (4-. 19) can be written in the equivalent form 

(5.9) g (colA- • •Aw1_1Ac5irAM.+1A • • • A W j . i A W j ^ A u ^ A • . -Ac^ + 

+ CO. A . . .ACO. ,Ac5. Aid. ,A...ACO. ,AU. AcO. -A...ACO ) = 0, 1 i - l i,n+p i+l j - 1 jr j+1 n 

where 1 ^ ( p , n+p+l^r^n+N, and 

(5 . 10) ¿0. = de.-e i,n+p i n+p 

The invariant (4 .2 1 ) is defined by means of the invariant form 

n+N 
( 5 . 1 1 ) > '. J~\ CO, A . . . ACO. , A CO. ACO. - A . . . ACO. A CO. A ' ' i 1 i - l ir i+l i - l ir r-n+1 t<] ' ' 

AC0. , A . . . Aco . 3+1 n 

In the general case c) we get from (3.24) and (3.27) the identity 

(5 . 12 ) 2 _ ,U i A ...ACO. , A CO. ACO. ,A . . . A O , ,Acj. A 
^ — ^ 1 V 1 l i r l i + 1 V 1 V 

A CO. . A . . . A co - 7 det(A ) J . . IdV . 
V 1 n i ^ . . . ^ m p . q e j i i \ \ n 

The equations (4.25) can be written in the equivalent form 
k 

(5 . 1 3 ) y . y .CO, A . . .ACQ. -ACO. A W. -A. . .ACO. -A 
fo ! . < . • • < 1 V 1 l l ' n + ? l l + 1 V 1 

1 k 

ACO. A CO. , A . . . A C 0 . -A CO. AW. -A.. .AGO - 0 , 
X1 l l + 1 V 1 V n + ? V 1 
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20 M. Rochowski 

where 1^9 < N , n+9+ l^r^n+N. In particular (4.27) can be written 

in the form 

n 
( 5 . H ) <3, A . . . A CO. A . . . A ¿3 = 0 . l ,n+ 9 ir n,n+9 

6. Local canonical cross sections in NM (x ) 

In Section 4 we have defined canonical frames 

(6.1) x ( p ) e n + 1 . . . e n + N 6 N 1 ( x ) 

at a point p€ Mn by means of the functions (4 .1 ) . From Proposition 1 

and Corollary 1 it follows that if the Hessian 

(6.2) ^ O n + 9 + U w + N ' 2 4 6 k « n ' 

N-P ~ of L^/S T is different from zero at a stationary point e , then 
^ n there exists a neighborhood TJCM , p e U , diffeomorphic with the unit 

disk K n , such that for every q € U the Hessian (6.2) is different from 

zero and 

(6.3) e : U —»-NMn (x ) n+p 

is a differentiate cross section. Let 

(6.4) x (p )e , . . . e I - . . . e „ 6 N , ( x ) , p e U. 
v n+1 n+p n+9+l n+N 1 v 

We suppose that en+0> l^G < 9 , are cross sections defined by means 

of the functions L^, 1 -^ j^n , on U c Mn and e r , n+p+l< r « n + N , are 
arbitrary cross sections of NM (x ) defined on U C M . From (4.1) 

and (6.4) it follows that the function L. /S^ ^ can be written in the k p 
form 

(6.5) L, (p,e ) = ( - l ) k y '. detCA ) k n+p j — —- n+p,pq p,qe 
l l ' ' ' he 

where n+N 
(6.6) e - a e + J n+o n+o.n+o n+o t-n+p n+p,n+p n+9 dn+9,rer 
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Generating canonical frames 21 

and (a . . . . . . a . . ) satisfies ( 4 . 1 6 ) . The second derivative n+p,n+9 n+9,n+N 
of ( 6 . 5 ) with respect to a , a , n + o + l ^ r , u ^ n + N , at r n + 9 , r n+p,u T 

a " 0 , where 
n + 9 , r 

n+N 
(6 .7) A - a A + 5 ' a A n+9,pq n+9,n+9 n+9,pq r-n+9+i n+9,r rpq 

and 1 
/ n+N „ \ 2 

( 6 . 8 ) a - 1 - > . a 2 

has the form 

(6.9) h L - ( - l ) k + 1 ( S k > det(A ) f. . 1 + 

+ ( - l ) k ^ ' Y - " (det(A . A . , . . . , A . „ . ) 
n + ? ' l l < l ^ U l m q 

+ d e t ( A , . . . , A . , . . . , A . ) ) , 
n + f . i j q ' ui jq ' r i m q ' n + 9 , ^ 

where 2 i k ^ n , l s g l c m ^ k , l j g p < N , n + 9 + l ^ r , u ^ n + N , and 

q € j i j , . . . denote the number of a column in the determinants of 

(6 .9) . 

From ( 6 . 9 ) we get 

( 6 . 1 0 ) h* - - 2 6 V (det(A ) /. .1 + 
f c j n+9,pq p . q e j i , ] } 

+ A . .A .. + A ..A .. - 2 A . .A , . ) . r n U J J r j j uii n j uij 

If in ( 6 . 1 ) e r are eigenvectors e n + , e r > n + p + l ^ r < n + N , of the 

NrO ^ quadratic form L J S r y (not necessari ly uniquely defined), then from p 

( 4 . 1 9 ) it follows 

( 6 . 1 1 ) A . .A .,+A . .A . . - 2 A . .A ., - A t t A J J + A . . - 2 A . X - 0 
r n uj] r j j uii r i j uij r i i ujj r j j uii r i j ui j 
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22 M. Rochowski 

and (6.10) get by (6.11) a diagonal matrix 

(6.12) - - 2 ( I 2 > n + p - l ^ ) , n + ? + l ^ r ^ n + N , 

(6.13) h ^ - 0 for r jt u, n+p+Kr.usin+N, 

where are defined by (4-. 18). 
We have 
P r o p o s i t i o n 6. Let 

(6. U ) * W n + r • ' W * '̂ n+N 6 N 1 U ) ' 

where e^, n+l^r^n+N, in (6.14-) are eigenvectors of l^/S^ 
If the eigenvalue ^ n + (p) is different from ^ ^ p ) for every r , 
r / n+p, n+l^r^n+N, then there exists a neighborhood UCM , such 
that f l2 r (q) for every q e U and a 1-dimensional, trivial 
vector bundle with fiber c (q) > q G U, such that £, (q) is deter-n+9 ^ n+p 
mined by a uniquely defined eigenvector e n +p-

P r o o f . From (6.12) it follows that the definition 

(6.15) h® - -hi 2,n+p,n+p 2,n+ff,n+0 

where p<N, p + 1 ^ 0 < N , is correct. From (6.15) we get 

C 6 - l 6 ) h 2rr - 2 U 2 n + P " V ' 

where n+1^ rag 1, and similarly as (6.13) we get 

(6.17) h' - 0 for r f u, n + l < r ,u-£ n+N, r , u £ n + o . 2ru 1 

By assumption we have 

(6.18) h 9 ^ ji 0 , r ¿n+9, n+lsir^n+N, 

at pe Mn . From (6 ,12) , (6 .16 ) , (6.17) and (6.18) it follows that 
the Hessian 

(6.19) det(l£ 
) 0, r ,u n+o, n+l^r ,u^n+N, Zru * 
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at p e M n . Hence there exists a neighborhood U c M n , p e U, such that 

(6.19) is satisfied for every q e U and therefore from Proposition 1 

and Corollary 1 it follows that there exists a cross section 

(6.20) e :U — N M n ( x ) 
n+9 

which for every q e U defines the canonical direction . 

The extension of (6 .12 ) , (6.13) by (6 .16 ) , (6.17) is necessary, 

since we do not assume that l ^ f f ^ p , in (6.14) is a non degene-

rate stationary point of L_/S^~® and therefore that it i s uniquely de-z p fined as the vector e _ in (6.4-) i s . n+ff 

7. Immersion of manifolds in spheres 

Let 

11 1 \ . w n T?n +N 

(7 .1) e n+l 

denotes an immersion such that 
(7 .2) e n + 1 ( M n ) c S n + N - \ 

where ^C denotes the unit sphere. 

We have 

P r o p o s i t i o n 7. If e , denotes the f irst canonical vector 
v N-l defined by means of L k / S , then 

(7 .3) L k ( p , e n + 1 ) ^ ( J ) 

for every p e Mn . 

P r o o f . Let us take 

(7.4-) e . ( p ) e 1 . . . e e , e „ . . . e , , £ F , ( e , ) , n+1 r 1 n n+1 n+2 n+N 1 n+1 

where F j ( x ) denotes the total space of ( 3 .7 ) . From (3.15) it follows 
de , • e - co , - 0 and therefore n+1 r n + l , r 

(7 .5) de , - u , .e.. n+1 n+ l , i i 
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From ( 3 . 2 4 ) and ( 7 . 5 ) it follows 

( 7 . 6 ) w. , = A , ..¿3 , . i ,n+ l n + l , i ] n+1,] 

and therefore 

( 7 . 7 ) X ... - -6... n+1 i ] 

From ( 7 . 4 ) it follows ë , € S ^ ' ^ c N ^ ( ë , ) . Hence setting ( 7 . 7 ) n+1 p p n+1 ° 
in ( 4 . 1 ) we get - (£)• S ince i s maximal 

value of L , ( p , e - ) , e . e S ^ 1 , we have k r ' n+1 n+1 p 

( 7 . 8 ) V P ' V l ^ V P ' V l 1 " 

We have 

P r o p o s i t i o n 8. Let e , denotes the canonical vector of ( 7 . 1 ) 
N 1 n+1 

defined by means of L . / S . There exists a c r o s s section 
1 P 

( 7 . 9 ) e . : M n — N / ( e . ) . n+1 n+1 

and for every p e M the vector i s t ransversal to S . F o r 

every e _ € S ^ ^C N M n ( e , ) such that J n+2 p p n+1 

( 7 . 1 0 ) e _ -e , - 0 
n+2 n+1 

the function ( 4 . 3 ) takes the form 

( 7 . 1 1 ) L 2 Î P . e n + 2 ) = - J E L A^ 
n 

e n+2 ; " " 2 /-r-t A n + 2 , i f 

P r o o f . Fron ( 7 . 3 ) we have 

( 7 . 1 2 ) L j i p , ^ ) ^ . 

From ( 4 . 2 ) , ( 4 . 1 1 ) and ( 7 . 1 2 ) we get 

n 
( 7 . 1 3 ) 21, , • • T . A , l , n + l *r-t n+1, i l l - l 

- 294 -



Generating canonical frames 25 

for every p€ Mn . Hence, from Proposition 5 we get ( 7 . 9 ) . From (7.4-) 

we have 

n+N 
(7.14-) e , » a . - e , + } . a , e . n+1 n+1,n+1 n+1 » ' n + l , r r r-n+2 

From {A.12) and (7.14-) we get 

(7 .15 ) a . ( Y L A . . . V 
n+1,n+1 1 ,n+l \ i » l n + 1 ' 1 1 / 

From ( 4 . 2 ) and (7 .13) it follows that (7 .15 ) can be written in the 

form 

L l ( p ' i n + 1 ) 
(7 .16 ) a , . n+1,n+1 

From ( 7 . 8 ) and ( 7 . 1 6 ) we get 0 < a , hence n+i ,n+i 

(7 .17 ) O c e . - e , < 1 n+1 n+1 

for every p e M n . Denoting bycx(p), p e M n , the angle between 

and e , , (7 .17 ) can be written in the form n+i 

(7 .18 ) 0 < c o s a ( p ) ^ l or equivalently 0^« ( p ) < ^ . 

From (7 .18) it follows that is transversal to a t every 

point e j ( p ) 6 S n + N - 1 , p e Mn . 

For r - n+2 we get from (3 .34 ) 

(7 .19 ) A _ .. - a _ A . . . n+2,i] n+2,s si] 

From ( 4 . 2 ) , (4 .13) and (7 .19 ) we get 

n n+N n 
(7 .20 ) L - ( p , e J - - T A _ .. - - a _ T \ A .. - 0 , 

1 n+2 n + 2 , i i ' • n + 2 , s su l - l s=n+2 l - l 

where in (7 .20 ) satisfies ( 7 . 1 0 ) . From (7 .20) it follows that 

the function L2^P , 6n+2^ d e f i n e d b y ( 4 . 3 ) take the form ( 7 . 1 1 ) . 
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By e^ n+p» l ^ k ^ n , 1 g p <N, we denote the p-th canonical vec-
tor defined by means of L, , i . e . L, (p,e, ) is the maximal value 

N K K k,n+p 
of L ,/S k p 

An immersion ( 7 . 1 ) such that ( 7 . 2 ) i s satisfied is called canoni-

cal , if there exists a k, l ^ k ^ n , such that for every p e Mn 

^•21) en+l " ^ » n + l o r en+l ™ " e k ,n+l 

and 

(7 .22) L 2 j i p , ®2J ,n+2* " ° f o r e v e r y J ' 1 < 2 J < n -

Finally we prove the following 

T h e o r e m . If ( 7 . 1 ) is a canonical immersion of a closed and 

connected manifold Mn , n > 2 , then 

(7-23) " S n c - S n + N - 1 , 

where S n denotes the unit sphere and Mn is diffeomorphic with S n . 

P r o o f . From ( 7 . 7 ) and (7 .21 ) it follows 

(7 .24 ) A , .. - +A , .. - -6. 

where A , ... are coefficients of the second quadratic form evaluated n+l , i ] 
in the direction of e^ From (7.24-) i t follows that the equations 

U . 2 5 ) for 9 - 1 take the form 

k 
(7 .25 ) £ } det(-<S A - 6 ) - 0 , 

1-1 l q l q Y 1 
1 k 

where n+2 < r < n+N, l < k ^ n , 1 si n , l ^ m ^ k , qe , . . . »i^j, and 

A . are coefficients of the second quadratic form evaluated in the di-
3 - . j i _ rection of e . The vector e is an element of a base in N M (e , ) r r p n+l 

of the form 

(7 .26) W ^ . n + l W ' 
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We have 

( 7 . 2 7 ) det(-<5. , . . . , A . -6. ) - C - l ) k - 1 A . . . n i q Y 1 n 1 i 1 

Hence 
k 

( 7 . 2 8 ) HdetC-<5. , . . . , A -<5. ) -
ti l l q r i l q V 

- ( - l ^ U . . + . . . + A . . ) - 0 , 
r i l l l r V k 

where n + 2 ^ r ^ n + N . From ( 7 . 2 5 ) and ( 7 . 2 8 ) we get 

( 7 . 2 9 ) J ' (A . . + . . . + A . . ) - 0 , n + 2 ^ : r ^ n + N . i i r i . u r i . l. r i i h r V k 

The equations ( 7 . 2 9 ) are exactly the equations (A. 13 ) . Hence we have 

proved that for every k , l « k « n , if e^ n + 1 satisfies ( 7 . 2 1 ) , then the 

equations ( 4 . 1 3 ) are satisfied. 

Let e. „ e N M (e J , i i £n , denotes a second canonical vec-] ,n+2 p n+1 
tor . We choose a base 

( 7 . 3 0 ) e , ( p ) e , , e . „e 0 . . . e M E N , ( e . ) . n+1 r k , n + l j , n + 2 n+3 n+N 1 n+1 

The equations (4-. 25) now take the form 
j _ 

( 7 . 3 1 ) T . y . det(A A A ) - 0 , 
l t l i , < . . . < i n + 2 , i i q r i jq n + 2 , i q 

1 J 

where n + 3 ^ r ^ n+N and A „ . . are coefficients of the second quadra-n+2, i] 
t ic form evaluated in the direction of e . „. Let j , n + 2 

( 7 . 3 2 ) 

where T ( x ) is the total space of ( 3 . 4 ) , denotes a base in T M11 such 

that e. define principal axes of the matrix (A „ ..)• Then ( X „ . . ) l r r n+2,i} n+2 , i ] 
is a diagonal matrix and ( 7 . 3 1 ) takes the form 

<7 .33 ) t J Z Z L , A A ) - 0 . 
l - i i . < . . ,< i . ' 1 1 r 1 ' j j l ] 
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We have 

(7.34) det(X . . . A . . . . . . A _ . . ) = n+2,1,1, ri,q n+2fi.i. 1 1 1 J J 
rv — i-" 

«•A „ , . . . . . • A »A „ . . . n+2,1,1, ri,! . n+2,i.i. ' 1 1 11 ' j j 
From (7.33) and (7.34) it follows that (7.31) takes the form 

(7.35) E E Z L X n + 2 ( i 1 i 1 - - i r l 1 l 1 - - X n + 2 , l . i . - 0 ' 
1=1 i ,< . . .<i. 1 1 11 ' l 1 

1 ] J 

where n+3^r^n+N. We have 

( .<. . .<1 ^ ' V i r V i n + 2 ' Y i i j 

i n _ ^ 
• ~rr / , A - A . . •, . .*A « . . . l! / . 1 n+2,1,1- ri,i, n+2,i.i. \ ij-1 1 1 11 3 J 

Hence, we get 
j 

5 A _ . . . . . . - A . . - . . . ' A „ . . -t-rf ! , .' n+2,1,1, ri.i. n+2,i.i. 1-1 i ,< . . .<i. 1 1 11 ' 1 i 1 ] 

1 n - n 
" m y " ! Arii ) . J X n + 2 , i , i„ ' - - ' ' X in-2 , i . i . ' J l - l 2 2 J 3 

Therefore the equations (7.33) can be written in the form 

n _ n 
(7.36) y . A .. > ".A A . . . n 

rii ! . i n+2,i0i0 n+2,i.i. - 0, i - l l 2 ' ' ' ' 3 3 

Therefore the equations (7.33) can be written in the form 

n _ n 
(7.36) y~\ A .. > A _ . , A _ . . - 0 , 

i - I l 2 " • • 2 2 J 3 
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where n + 3 ^ r « n + N . From (4.13) it follows that (7.36) are identi-

t ies . This means that for every choice of 

n+N 
(7.37) en+2 - a n + 2 , s V T Z \ + 2 , s = 

s=n+2 

where e g are the vectors of ( 7 .24 ) , the function L ( p . e ^ ^ ) has 

same maximal value. Therefore 

(7.38) L . ( p , e „) = B. = const 
] n+2 ] 

for every j , l ^ n . From L ^ t p , - e n + 2 ) - L 2 m + 1 ( p , e n + 2 ) and 

(7.38) we get 

(7.39) B2m+1 = ° f o r e v e r y m ' 1 ^ 2 m + l ^ n . 

From (7.22) and (7.38) we get 

(7.40) B 2 m = 0 for every m, l <2ms£n . 

From ( 4 . 1 ) , (7 .38) , (7.39) and (7.40) we get 

(7.41) > det( A . ) f. . \ = 0 , 

1 ] ' 

where A n + 2 a r e coefficients of the second quadratic form evaluated 

in the direction of the vector (7 .37 ) . Let 

(7.42) e n + 1 ( P ) e r . . e n 6 T ( e n + 1 ) 

denotes a base in T Mn such that e. define principal axes of (A „ . . ) , p 1 n+2 , i j 
Then (7.41) has the form 

(7.43) > A _ . . , . . . , A _ . . - 0 ( . 1 n+2,1,1, n+2,i . i . X ^ . . . « ! ' 1 1 ' ] J 

for every j , l ^ j ^ n . From (7 .43) it follows that the eigenvalues 

.An+2 „ « 0 , 1«£ isgn. Hence in an arbitrary base of the form (7.42) 

of T M11 we get A _ .. - 0 , l s g i . j ^ n . This proves (7 .23 ) . p IIT^ f 1] 
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30 M. Rochowski 

Since Mn i s by (7.23) locally diffeomorphicwith S n and compact, 

it follows that Mn i s a finite covering of S n . Such a connected cover-

ing i s for n^.2 diffeomorphic with S n . 
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