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0 . I n t r o d u c t i o n 
We i n v e s t i g a t e the n o t i o n s of r i g i d i t y and weak r i g i d i t y 

of g e o m e t r i c a l l y a c c e p t a b l e s e t s (comp. [ l ] , [ z ] , [ 6 ] ) . Our 
purpose i s to examine whioh c l a s s of mappings and whioh geome-
t r i c a l or t o p o l o g i c a l o p e r a t i o n s ( a s union, C a r t e s i a n p r o d u c t , 
cone over a s e t e t c . ) p r e s e r v e r i g i d i t y and weak r i g i d i t y . 

I n any metr ic space (X,^>) i n which every two d i s t l n o t 
p o i n t s can be j o i n e d by an aro L of the f i n i t e l e n g t h | l | the 
i n t r i n s i c met r i c p * oan be i n t r o d u c e d a s f o l l o w s 

Q * ( x , y ) = i n f { | L | i L i s an a r c i n X and z , j e l } . 

The space ( X , g ) i s s a i d t o be g e o m e t r i c a l l y a c c e p t a b l e 
i f g * i s t o p o l o g i c a l l y e q u i v a l e n t t o 9 . The c l a s s of geome-
t r i c a l l y a c c e p t a b l e s p a c e s i s denoted by GA (comp. [ 1 ] , [ 2 ] ) . 

A s u r j e c t i v e map f s X Y i s an i n t r i n s i c i somet ry i f 
and only i f i t i s an i somet ry w i t h r e s p e c t t o the i n t r i n s i o 
m e t r i c s . A map f : X Y i s an i n t r i n s i c embedding i f and 
only i f f J X f ( X ) i s an i n t r i n s i c i s o m e t r y . By Theorem 2.1 
[ 3 ] a map f s X — Y i s an i n t r i n s i o i somet ry i f and only i f 
i t i s a homeomorphism p r e s e r v i n g the l e n g t h s of a r c s . Let 

' The paper c o n t a i n s most of the r e s u l t s of the A u t h o r ' s 
Ph.D. t h e s i s w r i t t e n under the s u p e r v i s i o n of Maria Mo-
s z y n s k a . 
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2 I . H e r b u r t 

(X, ( 7 , be m e t r i o s p a o e a , l e t A c l , (A, <?2 |A2) c OA 
and l a t ? be a c l a s s of i n t r i n s i o embeddings of A i n Y. 

0 . 1 . D e f i n i t i o n (comp. [ 6 ] ) s 
( i ) A i s weakly r i g i d w i t h r e s p e c t t o 7 i f f f o r e v e r y 

h e ? t h e s e t h(A) i s i s o m e t r i o t o A. 
( i i ) A i s r i g i d w i t h r e s p e o t t o 3 i f f e v e r y h e ? i s an 

i s o m e t r i o embedding of A i n Y. 
Le t us c o n s i d e r t h e f o l l o w i n g p a r t i c u l a r o a s e : 

0 . 2 . D e f i n i t i o n . A i s r i g i d (weakly r i g i d ) 
i n X i f f i t i s r i g i d (weakly r i g i d ) w i t h r e s p e o t t o a l l i n -
t r i n s i c embeddings of A i n X. 

Us ing t h i s t e r m i n o l o g y we oan r e f o r m u l a t e 3 . 1 [ 3 ] a s 
f o l l o w s i 

0 . 3 . Every open , c o n n e c t e d s u b s e t of t h e E u c l i d e a n 
n - s p a c e E i s r i g i d i n B. 

By 2 . 2 [ 6 ] 
0 . 4 . Every open , conneo t ed s u b s e t of t h e s p h e r e S D i n t h e 

E u c l i d e a n n - s p a c e i s r i g i d i n S n . 
I n t h e s e q u e l we s h a l l use t h e f o l l o w i n g t e r m i n o l o g y and 

n o t a t i o n « 

R° or ( R n , p n ) - t h e C a r t e s i a n n - s p a o e . 

£ n - t h e c l a s s of E u a l i d e a n n - s p a c e s ( i . e . spaoea i s o -
m e t r i c t o R n ) . 

For a s u b s e t A of a me t r i o s p a c e ( X , ^ ) : 
diam A - t h e d i a m e t e r of A, 
Cl^A - t h e c l o s u r e of A i n X, 
I n t j A - t h e i n t e r i o r of A i n X, 
P j ( A ) t» { c i C i s a component of I n t ^ A } , 
S2X( A) := {C1AC i C e T X ( A ) } . 

I f i t does no t l e a d t o a c o n f u s i o n we omit t h e i n d e x X i n 
t h i s n o t a t i o n . 
We s h a l l f r e q u e n t l y use t h e f o l l o w i n g immedia te consequence 
of 0 . 3 . 
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On intrinsic isometries 3 

0.5. Let Bee11 and AcE. I f A - C1A IntA, A e GA and IntA 
is connected than ^ is rigid in E. 

It is evident that i f A is rigid in X then it is weakly 
rigid in X. The following simple example shows that the con-
verse does not hold. 

0.6. E x a m p l e . Let A± - { ( x ,y ) e R2 : (x+(-1J1 )2 + 
+ j 2 <1 } for i = 1,2, and let A = A1 u Ag ( f i g .1 ) . 

Fig.1 
2 

Obviously A eGA and A is weakly r i g id in R . However the 
2 

function h i A — R defined by the formula 

f (x , -y ) f o r (x ,y ) e A1 
h(x,y ) = \ 1 

[ ( x , y ) f o r ( x ,y ) 6 A2 

i s an intr insic embedding but not an isometrio embedding. • 
Let E e e.n and le t H be an a f f ine subspace of E. I f 

dim H = n-1, then H is called a hyperplane. 
We shall use the fol lowing notation: 

: E —• ft- - the orthogonal projection of E onto H, 

a) - the a f f ine subspace orthogonal to H and passing 
through a, 
Af A = N { H I H i s an a f f ine eubspace of E and AcH } , 
Conv A - the convex hull of A, 

f o r a f f ine independent points 
ao» * * * »an* 
x v y - the l ine in E passing through x, y ( f o r x i y ) . 
For AcH and o q g B - H the cone C (c 0 , A ) over A with vertex cQ 

i s defined as follows 
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4 I . Herburt 

C(o ,A) - U A(o , a ) . 
0 aeA 0 

A oyUnder over A i s the Cartesian product of A by an Eucli-
dean segment. 

Given a me t r i o spaoe (X,p ) , a point xQ e X and a A>0 , 
l e t 

B?(x0,A,) i - { x e X j 

Let ( X ^ , ^ ) be a metric space f o r i • 1,2. Then p^ i s a pro-

ject ion of X1 *X 2 on XA , i - 1,2. 

1 * Preliminary lemmas and theorems 
Let us start with an easy lemma, proof of which w i l l be 

omitted. 
If n 

1.1. L e m m a . Let B1 e e , Eg e £ , A c E1, B cE2 , 
Af A » E1t Af B = B2, and le t (a ,b) c A > B , Then 

( i ) f o r every isometric embedding f s A * B Ê  * Eg 
there i s exaotly one pair (H^Hg) of orthogonal a f f ine sub-
spaces of E.jXEgt such that dim H1 = k, dim H2 = n, 
f ( A x { b } ) c H 1 and f ( { a } » B ) c H 2 . 

( i i j f o r any isometric embeddings f 1 : A —* E1, f 2 : B -*• E2 

and f : A*B —• E^*E2 i f 

f |(Ax{b}) u ( {a }xB) = ( f ^ f g ) ! (Ax {b } ) u ( { a } x B) 

than f = f ^ f g . 
Row we shall prove some statements concerning GA-spaces. 
1.2. T h e o r e m . Let f : X - * Y be an open Lip-

sohitz function of ( X , ^ ) onto (Y ,py ) . I f X e GA then f (X ) e GA. 
P r o o f . Let A be the constant of f . Take y l f y2 

in Y an x 1 , x2 in X such that f (x . j ) = y1 and f ( x 2 ) = y 2 . Let 
L c X be an arc of the f i n i t e length joining x1 and x 2 . Since 
f ( L ) i s arcwise connected, there i s an arc L' in f ( L ) joining 
y1 and y 2 . Moreover, | l ' | <51|l| < oo . Hence induoes the 
intr ins ic metrio To show that i s topological ly equi-
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On I n t r i n s i c i s o n e t r i e s 5 

valent to f j i t s u f f i c e s to prove the following condition 
(oomp. [ 5 ] ) 

( 1 ) V y e Y Ve> 0 3 6 > 0 B ( j , 8 ] c B , ( y , e ) , 
9 Y 

Take 7 e Y and x eX such that f ( x ) = y , Let us take an e > 0 
and l e t S > 0 s a t i s f i e s the condition o 

Sinoe f i s open, the set f(B^ ( x , 6 0 ) ) i s open in (Y, 

whence there i s 8>0 such that B ( y , 6 ) c f ( B (x ,5 ) ) . Take Vy Vz 

y ' e B ( y ,6 ) and x ' e B. (x ,5 ) such that f ( x ' ) = y ' , By (2) 
vy VX 

the points x ' and x can be joined in X by an aro LQ with 
| L01 < . Since f (L q ) i s arcwise connected, there i s an 
arc l'Q in f(L) joining y ' and y . Then y ' e B „ ( y , e ) because 
|L'0|<A[L0| <e. Henoe (1) i s proved» • 

Prom Theorem 1,2 we obtain immediately 
1 .3 . C o r o l l a r y , Let E e En, X cB, and l e t 

f : E -+• B be an a f f ine automorphism. If X e GA then f(X) e GA. 
1.4 . T h e o r e m , Let (E,p) e En , l e t H be a hyper-

plane in E, and l e t XcH and oQeE-H, If X e GA then C(co ,X)e 
e GA. 

P r o o f , Let A = C(c0 ,X). Let {x'} = ( x v c Q ) nH for 
x eA - {c0}« F i rs t we sha l l prove that every two d i s t inc t 
points in A can be joined by an arc of a f i n i t e length. Take 
x.j ,Xg e A, x^ ^ Xg. If x^ = c 0 or x2 = cQ or x^ = x 2 then ev i -
dently A(x.|,x2) c A. Assume now, that x.j , x 2 g A - jc 0 } and x.j 4 x 2 

Let L' be an arc of a f i n i t e length joining x^ and x^. Then 
L = Afx^x^) u L'u A (x 2 ,x 2 ) i s an arc in A joining x^ and x 2 

and | L | < 
I t remains to prove that p|AxA i s topologica l ly equiva-

lent to (p|A*A)*. To th i s aim we sha l l prove 

( 1 ) V x e A Ve> 0 3 6 > 0 B ? , A x A ( x , 5) c B{ ? , A (x , e ) . 
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6 I . Herburt 

For x = oQ the condition (1) i s evidently sa t i s f i ed . Take 
x e A - c and l e t e> 0. Since x ' e Z and Z eGA, there i s 5 > 0 o * o 
suoh that 

{ 2 ) I X - X ^ ' ^ o i cB(p|X»cXj< I 

Denote by Hx the hyperplane in E passing through x and pa-
r a l l e l to H. Let y " = (y vc^ ) n Hx f o r y e A - | o 0 } . For any 
a > 0 l e t 

Ua = { y eB i Q ( y , H x ) < « } . 

Take o^ > 0 such that U^ f o r c x « ^ . Since c lHBp|x*x( x ' » *>0 ) 
i s compact, there i s a posit ive number c*0, such that a 0 <o^ 
and 

(3) A ( y , y " ) | < | f o r J ^ « ^ ( o ^ ^ i ' , ^ ) ) , 

Let U = U^ n C(cq>B | X j ( X ( x / , 5 0 ) ) . Since x e Int U there i s 6>0 
o "< ' 

such that B^|AxA (x,5) cU. We shal l prove that c 

c |AxA)* (x» e ) * I n d e e d » t a k e y 6 B e | A x A { x • 5 , • T h e n 

7 e % IAxA^*' * ^ a n d * t i l 8 r e i s a n 8 1 0 i n wi*11 

L' < | , joining x ' and y ' . Let L " = C ( c 0 , L ' ) n H x , then L " 

i s an arc joining x and y " . Moreover 

(4) | L " | < I L ' | < § . 

Consider L = A ( y , y " ) u l " , Clearly L i s an arc in C(c0 ,Z) 
joining y and x. Moreover (3) and (4) imp-̂ y [ L | < e . Hence (1) 
i s proved. • 

The fol lowing proposition w i l l be used in the sequel 
(comp. [ 7 ] ) . 

1.5. I f fj_ : — i s an intr insic isometry for i = 1,2 
then f - ] " ^ : X1XX2 Y1xY2 l s a n i n t r i n s i o isometry. Observe 
that the implication converse to 1.5 is also true: 
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On intrinsic isometries 7 

1.6. I f f 1 * f 2 » IjxXg - * * i x l 2 i e a n i n t r i n B i c isometry, 
then t i j 11—• Y^ is an intrinsic isometry for i - 1,2. 

2. Rigid and weakly r ig id subsets of metric spaces 
Al l spaoes considered in this section w i l l be GA. From 

the def init ion of r ig id i ty (weak r i g id i t y ) follows immedia-
te ly. 

2.1. Let A c l , and le t f i A - * Y be an intrinsio em-
bedding. I f A is r ig id (weakly r i g id ) in X then f (A ) i s r i -
gid (weakly r i g id ) in 2. 

How we shall provei 
2.2. T h e o r e m . I f A is r ig id in XxY, and 

P^(A) fPy(A) e GA then Pj(A) and Py(A) are r ig id in X and Y 
respectively. 

P r o o f . Ve shall prove that pg(A) i s r ig id in X. 
Let h < px(A) —* X be an intrinsic embedding. Take , x 2 6 Pj (A) 
and y 1 t y 2 eY such that ( * 1 ) , ( x 2 , y 2 ) eA. Let us define h = 
«= hxidy. By 1.5 we infer that h is an intrinsic embedding 
as well as E|A. Then h|A is an isometric embedding. Hence 

= y p | ( h ( x 1 ) i h ( x 2 ) ) + p | ( y 1 , y 2 ) . 

Therefore ?J(x.J,x2) = ^ ( M x ^ ) , h ( x 2 ) ) } hence h is an isome-
tr ic embedding. 

Now we shall give an example of an af f ine automorphism 
2 in R which preserve neither r ig id i ty nor weak r i g id i t y . 
2.3. E x a m p l e . Let T1 = A ( ( 0 ,0 ) , ( 4 ,0 ) ( 0 ,2 ) ) , 

T2 = A(a,b,o) for a - b = ( | , o - J ) and le t 

T3 = Conv{(|, 0 ) , ( f , 1 ) , ( | , 1 ) , ( J , 0 ) } . Let A l - Int T 2 u { a } , 

A2 « T1 - ( T 2 uT 3 )u {a } and let A = A., u A2 ( f i g . 2 ) . 
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8 I . Harburi 

gg ( A ) 

Pig. 2 
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On intr ins ic isometries 9 

9 
Evidently A e OA. To prove that A i s r ig id in R i t suff ices 
to show that 

( 1 ) the only one isonetrio embedding f < Â  R suoh that f(A.|) nAg - {a} and f ( a ) • a i s f • idA . Indeed, assume 
2 ^ (1) and l e t h s A R be an intrinsic, embedding. By 0.5« 

i 2 2 h ^ i s an Isometric embedding for i • 1,2. Let h^ i R —• R 

be an isometrio extension of h|A£. Then hg1 h|Â  i s an i so-

metric embedding and hg MA2 * idA . Hanee hg Ma) » 

- h"1h(a) - a and hj^lMA.,) n A2 - hg1h(A1 n Ag) - {a}. Then, 

by (1) hg1 h|A1 » idA whence hg1h • idA uA . Therefore h i s 
an isometrio embedding. 

Let us now prove (1) . Let f : Â  — R be an isometric 
embedding, f(A.j) n Ag » {a} and f ( a ) = a . Let f 1 i B2 R2 be 
an isometric extension of f . It i s easy to verify that 
f , ( b ) - b 

and f^(c) = o thus f^ « idg • Hence f • idA and A 
2 2 1 

i s r ig id in R . Let us now define an aff ine automorphism 
2 2 

g » R —»•R by the formula g(x ,y) = (x+y,y). By Corolla-
ry 1.3, g(A) cGA. It can be proved that g(A) i s weakly r i g id 
in R2 and i t i s evident that gg(A) i s neither r ig id nor weakly 
r i g id in R2 ( f i g . 2 ) . • 

Ve sha l l now prove some statements oonoerning the closure 
operation of r ig id and weakly r ig id se t s . It i s evident that 

2.3. If A i s r ig id in Z and CljAeGA then CljA i s r i g id 
in Z. 

The analogue of 2.3 for weakly r ig id sets i s not true 
(see example 2 .6) . However we can easi ly prove 

2.4. If A i s weakly r ig id in a complete spaoe I and 
ClgA e GA then CljA i s weakly r i g id in Z. 

P r o o f . Let h i Cl̂ A I be an int r ins ie embedding. 
Since A i s weakly r i g i d , there i s an isometry f i A h(A). 
By virtue of [ * ] th. 4.3.10 there i s an extension f i CljA 
-•> Cljh(A) of f . Hence f(ClxA) - hfCljA). Thus Cl̂ A i s weakly 
r i g i d . • 
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10 I . H e r b a r t 

S i m i l a r l y i t oan be proved 
2*5. I f A i s weakly r i g i d i n p e r f e c t l y homogeneous apace 

X and C l j A 6 GA t h e n Cl^A i s weakly r i g i d i n X. 
2 . 6 . E x a m p l e . Let X • { ( x , y ) e R2« (x+1 ) 2 + y 2 < 

< 1 v ( x - 1 ) 2 + y 2 <1 } u { ( - 1 , 1 ) , ( 0 , 0 ) } . Let q be t h e C a r t e s i a n 
m e t r i c r e s t r i c t e d t o X. Let A = { ( i , j | e l t ( x i O A j <1) v 
v (x > 0 Ay } ( f i g . 3 ) . I t can be e a s i l y proved t h a t A i s 
weakly r i g i d i n (X,(>). However ClgA * A u { ( - 1 , 1 ) } i s not 
weakly r i g i d i n X. 

P i g . 3 

F i n a l l y l e t as n o t i c e t h a t sometimes the C a r t e s i a n p r o -
duct of r i g i d s e t s i s n e i t h e r r i g i d nor weakly r i g i d . 

2 . 7 . E x a m p l e . Let X = { ( x , y ) e R 2 1 x 2 + y 2 • 1 } 
and l e t ^ be the C a r t e s i a n m e t r i c r e s t r i c t e d t o X. Let Y • R 
and l e t ^ be t he C a r t e s i a n m e t r i c i n R. We d e f i n e 

A = { ( c o s <p , s i n tp) e X : 0 $ <p *5t}f B = {qj e Y » 0 «tp 

Then A*B «= { ( c o s cp, s i n cp, ip) i O $ « p $ J i , 0 < 4 > ^ l } . By 0 , 3 
and 0 . 4 the s e t s A and B are r i g i d i n X and Y r e s p e c t i v e l y . 

Let us d e f i n e an i n t r i n s i c embedding h 1 A*B -*• XxY by 
the fo rmu la h ( x , y , z ) = ( cos z , s i n z , a r c cos x ) , ( f i g . 4 ) . 
I t i s e v i d e n t t h a t h i s not an i s o m e t r i o embedding. Moreover 
the s e t s A*B and h(A*B) a re not i s o m e t r i c i n XxY. • 
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On intr ins ic isometries 11 

Pig. 4 

3» Rigid and weakly r ig id subsets of Euclidean spaces 
In th i s seotion we shal l r e s t r i c t our consideration to 

subsets of Euolidean spaces, 
3.1. The union of r ig id sets 
We start with some conditions under which the union of 

r ig id sets i s r i g i d . 
3 .1 .1 . T h e o r e m . Let ¿^A^eE e efl, A1 u Ag e OA, 

and dim Af(A1 n i 2 ) = n. If A1 and Ag are r ig id in B then 
Â  u A2 i s r ig id in B. 

P r o o f . Let h t Â  u Ag —• B be an intr ins ic embedd-
ing. Then hlA^ i s an isometric embedding for i = 1,2. Let 
hĵ  i B —»• B be an isometric extension of f^ for i «= 1,2. Let 
( a 0 , . . . , a Q ) be an aff ine base in A1 n Ag. Since h^a^) -
« « ^ = we 8e1; -̂j " ^2* Hence ^ 
i s an isometric embedding. • 

3 .1 .2 . L e m m a . Let B e en . If A i s weakly r ig id 
in B and A>1 then dim Af(A) = n. 

P r o o f . Assume dim Af A = k<n. By [7] th. 1.5 
there i s an intr ins ic embedding h : Af A —* B such that 
diam h(Af A) <diam A. Thus, diam h(A) <diam A| hence A and 
h{A) are not isometric, a contradiction. • 
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12 I . Herburt 

By Theorem 3.1.1 and Lemma 3.1.2 va obtain immediately 

and A1 n A2> 1. I f A ^ Ag and A1 n Ag are r ig id in 5 then 
A1u A2 i s r igid in B. 

Finally let us prove 
3.4.1. T h e o r e m . Let i ^ l j C g e ? 1 1 , A1 u Ag e GA, 

and let there i s a set U open and convex in Bt UcA 1 o A2, 
Unlnt A1 4 0 4 Unlnt Ap. I f A1 and A2 are r igid in B then 
Â  u A2 i s r igid in B. 

P r o o f . Let h t A1u A2 B ba an intrinsic embedd-
ing. By 0.3 the set U is r igid in E. The r ig idity of U, A1, 
and A2 implies that h | u , h|A1f and h|A2 are isometric em-
beddi'ngs. Let h^ i B B and g > B B be isometric exten-
sions of h.|A^ and h|U respectively, for i = 1,2. Consider an 

aff ine base ( a * , . . . , a * ) in Unlnt A i t i = 1,2. Since h^ (a j ) -

» Ji(a^) = g ( a j ) » f o r J = 0 1 = 1f2, we have • g. 
Hence h = g|A^uA2 is an isometric embedding. • 

3.2. Cartesian product of r igid (weakly r i g id j sets 
The example 2.7 shows that the Cartesian product of r igid 

sets need not be r ig id . For subsets of Euclidean spaces the 
problem is open. We shall give a partial solution, for some 
classes of subsets of Buolidean spaces (Cor. 3.2.4, 3.2.6, 
Th. 3.2.7, Cor. 3.2.8) . 

For any SQe £2(A) we define the following sequenoe 

fì1(So] = { S 0 } ' V l ( V = { S e i i ( A ) - £ ì ; j ( S 0 ) : Sn (u Ci ; j(S0)) 4 if } 

3.1.3. C o r o l l a r y Let A 1 ( A 9 c B e i D t A1uA0eGA 1 * 2 , «.|U«2 

for i } 1. 
3.2.1 I. L e m m a . Let A cB. I f A = U U f i , ( S j for 

j = 1 J 0 

£ ( A ) , than A = u u iL (S) f o r every S e f l ( A ) . 

oo 

oo j=1 
some 

;e oTi i t the easy proof of th i s lemma. 
.c* as now define a c lass 2 of subsets of E by the 

formula 
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On intrinsic isometrics 13 

2(E) «- {AGE . 3 S o e n U ) , A - UUftjfs,,)}. 

We shall prove that for Euclidean spaoss B1 and Eg the Car-
tesian produot of rigid sets A e S f E ^ and BeSfBg) i s 
rigid in B^Bg (Cor. 3*2.4)» 

For this purpose we shall f i r s t prove that the Cartesian 
produot of rigid subsets is rigid with respeot to some class 
of intrinsio embeddings (Th. 3.2.3). 

Let ( ¡ 1 ) f 1 ) e ! k , (B2»92'e^n» a n d l e t A c B1 • B c B 2* 
We define the class i (A,B) as followsi he7(A,B) i f and 

only i f h i s an intrinsio embedding and for every (a,b) e A«B 
there is a pair of orthogonal affine subspaaes (H f̂H2) in 
B̂ xBg suoh that 

(*) h(A*{b})cH1 and h({a}xB)cH2. 

3 .2.2. T h e 0 r_e m ._ If A and B are rigid in B1 

and E2 respectively, A>1, B>1, then A * B i s rigid with res-
pect to J(A,B). 

P r o o f . Let (a,b) e A«B and let he?(A,B). Let H1 

and Hg be the orthogonal subspaces in B-J*B2 satisfying (*). 
Prom Lemma 3.1*2 we infer that dim H1 • k and dim H2 = n. 
Let f 1 B̂ xBg ^ B̂  *fi2 be an isometry such that 

f(H.j) - B^fb} and f(H2) « {a}*B2. 

Then fh(A*fb}) c B ^ l } and fh({a}*B) c {a}*B2. Sinoe A and B 
are rigid, fh|A*{b} and fh|{a}*B are Isometric embeddings. 
We shall prove that 

(1) fh(A*{b}) u ({a}*B) i s an isometrio embedding. 

Let (x,b) e A«{b} and (a,y)s{a}*B. If fh(x,b) « (i',b) 
and fh(a ty) « (a,y') f then 
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1 * I . H e r b u r t 

( ? 1 x ? 2 ) ( f h ( a , y ) , f h ( x , b ) ) - ( 9 1 K p 2 ) ( ( « , y / ) t ( x / , b j ) -

« C e f ( a , x ' ) + ? § ( y ' t b ) ) ^ - [ { ? 1 * ? 2 ) 2 ( ( a , b ) , ( x ' , b ) ) + 

1 

+ ( ? 1 « e 2 ) 2 ( ( a , b ) , ( a , y ' ) ) ] 2 - [ ( ? 1 " ? 2 ) 2 ( ( a t b ) , ( x , b ) ) + 

1 1 

+ ( ? 1 « p 2 ) 2 ( ( a , b ) , ( a , y ) ) ] 2 - ( p ? ( a , x ) + 9 § ( y , b ) ) 2 -

whenee (1) i s p r o v e d . S i n e « f i s a n i s o m e t r y , by ( 1 ) , «a 

o b t a i n 

(2) h ({a}»B) u (A»{b}) i s an i s o m e t r i c embedding* 

L e t e A*B, i « 1 , 2 . S i n o e ( a ^ b ^ e {a.,}xB u Ax{bg} by 

(2) we i n f e r t h a t h|({a. ,}xB) u ( A * { b 2 } ) i a an i s o m e t r i o em-

b e d d i n g . Thus ( ? 1 * 9 2 ) ( h ( a 1 , b 1 ) , h ( a 2 , b 2 ) ) - ( ( « 1 , b 1 ) , 

( a 2 » b 2 ) ) , whenoe h i a a n i s o m e t r i o embedd ing . T h i s c o m p l e -

t e s t h e p r o o f . 

3 . 2 . 3 . L e m m a . I f A e S ( E . | ) , B e S f E g ) , and 

h i A*B —»•B1*B2 i s an i n t r i n s i c embedding , t h e n h e ? ( A , B ) . 

P r o o f . We may assume t h a t A 4 0 4 B . L e t 

h t A*B -»•E. J*E 2 be a n i n t r i n s i c embedd ing . Take ( a , b ) c A»B. 

I f S e f l ( A ) and T e f l ( B ) , t h e n S x T e f l ( A x B ) and by 1 . 3 

(1) h|SxT i s a n i n t r i n s i o embedd ing . 

Choose S o e i 2 ( A ) and T Q e ft(B) suoh t h a t ( a , b ) e S 0 * T 0 . By 

Lemma 1 . l ( i ) t h e r e i s e x a c t l y one p a i r (H^H, , ) o f o r t h o g o n a l 

a f f i n e aubspaoas s u c h t h a t d im H^ = k , d im H 2 = n , and 

(2) h ( S 0 * { b } ) c H v h ( { a } x T 0 ) c H 2 . 

We s h a l l prove by i n d u c t i o n t h a t f o r every j e N 

(3) h ( ( u i U S 0 ) ) x { b } ) c H r 
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On in t r ins i c isomstries 15 

By (2) the condition (3) holds for j = 1. Take an i M and 
suppose that (3) holds for j « i . Choose s i e % + i ( s „ ) a n d l a t 

x c S1 n u f í 1 ( S 0 ) . Thus, there i s S 2 e f í i ( S 0 ) such that x e S ^ , 
By the inductive assumption 

(4) h(S 2 x{b} ) c H r 

According to (1) , h|S2xTQ i s an isometric embedding. Hence, 
by (4) and Lemma 1 .1 ( i ) we obtain 

(5) h( {x} *T o ) c ü } ( i , b | , 

By (1 ) , h| S.j xTq i s an isometric embedding. Let HQ be an a f f ine 
k-dimensional subspace such that h(S^*{b}) C H 0 . By (5) , 
applying once again Lemma 1 . 1 ( i ) we conclude that H = H^, 
Thus (3) holds for j = i+1. Then by Lemma 3.2.1 

O© 
h(Ax{b}) = h ( ( J | J i i d (S 0 )x{b}) c H r 

> 1 

Similarly we prove that h({a} *B) cH2< The proof i s complete.« 
By Theorem 3.2 .2 and Lemma 3.2 .3 we obtain immediately 
3 .2 .4 . C o r o l l a r y . Let A e S ( B 1 ) , B e £ ( E 2 ) . 

I f A and B are r ig id in B̂  and S 2 respectively then A«B i s 
r ig id in B ^ E j . 

Now, l e t us define a subclass X of the o la s s E . Let 
B e S n . Then we define 

oC(B) : = {A cB : A i s connected, A = ClAInt A, r(A) i s 
local ly f i n i t e in a } . 

3 .2 .5 . L e m m a . o£(E) c 2 ( B ) . 
The straightforward proof of th i s lemma wi l l be omitted. 
Combining Corollary 3 .2 .4 and Lemma 3.2.5 we obtain 
3 .2 .6 . C o r o l l a r y . Let Ae«£(E.|), Be«£(B2). 
I f A and B are r ig id in Ê  and E2 respect ive ly , then 

A*B i s r ig id in B 1 *B p . 
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F ina l l y l e t us prove 
3 . 2 . 7 . T h e o r e m . Let A e 2 ( B 1 ) , B e S ( B 2 ) . IP A 

and B are weakly r i g i d r e spec t i ve l y in Ê  and E2 then AxB i s 
weakly r i g i d in B ^ B ^ 

P r o o f . The impl icat ion i s evident for A = 0 or 
B = 0. Suppose now that A ^ 0 ^ B and l e t ( a t b) e AxB. Let 
h : A*B B^Bg be an i n t r i n s i c embedding. By v i r tue of 
Lemma 3 . 2 . 3 , he^iAxB)} henoe there are orthogonal subspaces 
H1 and H2 i n E.jxE2 such that 

h(Ax{b})cH1 and h({a}xB)cH 2 . 

By Lemma 3 . 1 . 2 we obtain dim H1 = k and dim H2 = n. 
Let f : E ^ E g — B 1 x E 2 be an isometry such that f(H1) = 

= {b} and f(H2) = {a}xE2. Then fh( Ax{b} ) c E.,* {b} and 
fh({a}xB) c {a}xB2. Let us define f 1 s A —*• B̂  and f 2 s B - * E2 

by the formulae f ^ x ) = pE^fh(x ,b) , f 2 ( x ) = pg f h ( a , y ) . 

We s h a l l prove that 

(1) fh = f - , x f 2 . 

I t i s evident that 

(2) fh|(Ax{b}) u (a}xB) = ( f 1 » f 2 )| (Ax{b}u{a}xB) . 

Choose SQeft(A) and T o e i J (B) such that ( a ,b ) e S0*T0 . We s h a l l 
use the fol lowing notation 

Aj = u f t j f S j , Bj = u flj(T0), for j e N, kQ = {a}, BQ = {b}. 

We s h a l l prove by induction on j+k that 

(3) f h l A j x B k = i f i * f 2 , l V B k f o r j . k e N u { ° } » 

By (2) we in f e r that (3) holds for j = 0 or k = 0 and 

(4) fh(SQx{b} u{a}xTo) = [ i f t 2 ) |(S0*{b} u {a}xTo)„ 
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By 0 . 5 , f h | S 0
x T 0 i s an i s o m e t r i o embedding. T h e r e f o r e , by (4) 

and Lemma 1 . l ( i i ) we o b t a i n h f |S0>< TQ = ( f ^ f 2 ) j S 0 * T 0 . Hence 
(3) h o l d s f o r j = k = 1. Take an 2 and suppose t h a t (3) 
h o l d s f o r j+k ¡ c i . To prove (3) i t s u f f i c e s t o show tha t (3) 
h o l d s f o r i ndexes j+1 and k . Le t S1 e ( S Q ) , ^ e f t ^ T ^ , 
and x e Ŝ  n Â  , and y c T̂  n B^^ . A c co rd i ng to the i n d u c t i v e 
assumpt ion , 

(5) f h ( S l « { 3 r } u { x } K T 1 ) = (i ,1xf>2) ( s 1 »{y} u { x j x ^ ) . 

S inoe by 0 . 5 , fh|S^*T1 i s an i s o m e t r i o embedding by ( 5 ) , 
a p p l y i n g Lemma 1.1 ( i i ) we o b t a i n f h | S 1 *T 1 = ( f I S1* T1 • 
T h i s comple tes the p roo f o f ( 3 ) . S ince A e £ (E^) and B e E ( E 2 ) , 
by (3) and Lemma 3 . 2 . 1 we o b t a i n ( 1 ) . By (1) and 1 .6 we i n f e r 
t ha t f^ and f 2 are i n t r i n s i c embeddings. Henoe the re are i s o -
m e t r i e s g1 : A - » f ^ A ) and g 2 s B - » f ^ B ) . By ( 1 ) , 

(g1"g2)(A»<B) = f.| (A) x f 2 ( B ) = ( f 1 x f 2 ) ( AxB) = fh ( A*B) 

thus f " 1 (g^*& 2 ) (A*B) = h (A*B ) . Hence A*B i s weak ly r i g i d . » 
By Theorem 3 . 2 . 7 and Lemma 3 . 2 . 5 we o b t a i n 
3 . 2 . 8 . C o r o l l a r y . Le t AeoCfB.,) and B e , £ ( E 2 ) . 

I f A and B are weakly r i g i d i n B1 and E 2 r e s p e c t i v e l y t hen 
A*B i s weakly r i g i d i n B^*B2 . 

3 . 3 . Cones over r i g i d >ets 

Le t now B1 e £ n and B 2 e £ 1 . The C o r o l l a r y 3 . 2 . 4 says , i n 
p a r t i c u l a r , t ha t a c y l i n d e r i n B - i *^ o v a r a r i g i d se t i n E 1 

i s r i g i d i n E^E , , . We may ask i f the s i m i l a r i m p l i c a t i o n 
h o l d s f o r cones . The f o l l o w i n g example showB tha t w i t hou t 
a d d i t i o n a l assumpt ions the answer t o t h i s q u e s t i o n i s ne -
g a t i v e . 

3 . 3 . 1 . E x a m p l e . L e t T = M ( 0 , 0 ) , ( 4 , 0 ) , ( 4 , 4 ) ) , 

T q = A ( a , b , c ) where a = ( 3 , 1 ) , b = | ) , c = , and 

l e t P = { ( x , y ) e R 2 1 ( x - 3 ) 2 + ( j - 1 ) 2 < | A y > 1 L e t us de -

f i n e A1 = T - P - TQ u { a } , A2 « I n t T q u {a} , and A = A1 u A2 

( f i g . 5 ) . 
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18 I. Herburt 

A = A1 u Aj 
rig. 5 

It oan be easily shown that A is rigid in R2. Let d1 « 
» (0,4,3V2"). We shall prove that C(d1tAx{o}) is neither rigid 
nor weakly rigid in R3(fig.6). Let g:{(a,0),(b,0),(c,0),d} —»• 

{a1 ,b1 ,c1 ,d.j} be defined as follows: 
g(a,0) = g(3,1,0) = (3,1,0) = a v 

g ( b , 0 ) = J , o) o ( 3 , 1 , - J V2J - b 1 f 

g(c,0) = g(|, 0) = (2g, - M , = C v 

g(d1) = d r 

Simple calculations show that g is an isometry. Let 
g : R — R be an isometric extension of g. Let us define 
h : C(d1fAx{o}) R 3 by the formula 

I" x for x e C(d1, A..x{o}), 
h(x) = J _ 

[g(x) for x eC(d1,A2x{o}). 
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We s h a l l show that 

( 1 ) hi i s an i n t r i n s i o embedding. 

Let 01 « C(d^,A^*{o}) and Cg - C(d 1 ,A 2 *{o}) . Sìnoe h | c 1 and 
h|C2 are i sometr iea , and h |C. |nC 2 - idQ n C , to prove (1) i t 

s u f f i c e s to show that h{C.j ) n h(C2) •= Ĉ  n Cg. Let a 2 • a., and 

l e t b g 6 (b1 v d 1 ) n ( R 2
? { o } ) , and o 2 e f y d ^ n (E 2 x{o}) . I t oan 

be oheoked that 

(2) b 2 , o 2 e P * { o } . 

Let ^ « M a ^ b ^ o ^ , for i - 1 ,2 . By ( 2 ) , C1 n C(d1 ,T2) « 
= A i a ^ d ^ . Since C1 • h(C.|), we obtain 

(3) 

Sino e 

h(C^ ) nC(d 1 f T 2 ) - ¿ ( a ^ d ^ , 

h(C2) c C f d ^ I ^ = C(d1 fT2) u { ( x t 7 , z ) è C t d ^ T ^ j z < 0 } 
az 

(a,0)' 
ifc.O)/ 

c(drAx {o}) 
Fig . 6 
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20 I . Herburt 

and h(C.,) c { ( x , y , z ) e R3 : z :> o } by ( 3 ) , h(C.,) n h (C 2 ) c Ma^d . , ) . 
I t i s ev ident that A (a 1 , d 1 ) c h { C 1 ) n h ( C g ) , whenoe h(C1 ) n i i (C 2 ) » 
= A(a-pd.|) = C1 n C2 , which proves ( 1 ) . Henoe h i s an i n -
t r i n s i c embedding. However h i s not an i sometr i c embedding. 
Moreover there i s no isometry o f C ( d 1 f A * { o } ) onto 
h ( C ( d 1 , A * { o } ) ) . 

We sha l l show that under a d d i t i o n a l assumptions a oone 
over a r i g i d set i s r i g i d . 

2 
3 .3 .2 . Let B e t and l e t L c E be an Eucl idean l i n e . Let 

cQ e E-L, A e GA, A c L and A > 1 . Then C ( c 0 , A ) i s r i g i d i n E. 
P r o o f . Since A i s a connected subset of L and A> 1, 

the cone C ( c Q , A ) s a t i s f i e s the assumptions of 0 .5» whence 
i t i s r i g i d i n E. • 

Let us de f ine some c l a s s of i n t r i n s i c embeddings of 
a cone. Let E e £ n + 1 and l e t H be a hyperplane in Ej l e t 
c o e E-H, and A c H . Let 

A) = { h j C ( c 0 , A ) E : h i s an i n t r i n s i c embedding 
and dim Af h( A) ^ n } . 

3 . 3 . 3 . T h e o r e m . Let A e E ( H ) . I f A i s r i g i d 
i n H then C ( o 0 , A ) i s r i g i d i n E wi th respec t t o 3£(oQt A ) . 

P r o o f . Let A be r i g i d i n H and h e2i(co,A). Then 
there i s a hyperplane HQ i n E such that h ( A ) c H 0 « Take an 
isometry f : E E with f ( H 0 ) = H. Since A i s r i g i d i n H, 
fh|A i s an i somet r i c embedding. Hence 

( 1 ) h|A i s an i somet r i c embedding. 

Since A eZ j(H), we have 

C ( o o , A ) = C ( o 0 , u n ( A ) ) = u ( c ( o 0 , S ) : S e Q ( A ) } . 

Take x^ , x 2 e C ( c q , A ) - { c Q } . Let Sj^ e £1(A) s a t i s f y the cond i -
t i o n x^e C ( c 0 , S i ) f o r i = 1 ,2 . Let x± e (x±vc0) n H0 f o r 
i = 1 ,2 . By ( 1 ) we obta in 

( 2 ) ? ( h ( Z l ' ) f h ( x ^ ) ) = f U j , ^ ) . 
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According to 0,5 the cone C ( o 0 , S i ) i s r i g i d in E, whence 
h|C(c 0 ,S i ) i s an isometric embedding f o r i = 1,2. Therefore 

(3 ) ? ( h ( c 0 ) , h ( x ( ) ) = f o r i = 1,2, 

(4 ) ^ ( h ( c 0 ) , h ( x 1 ) ) = 9 ( c 0 , x 1 ) f o r i = 1,2. 

By ( 2 ) - ( 4 ) we obtain ^(h(x. j ) , h ( x 2 ) ) = 9 (1 . , , x 2 ) . This comple-
tes the proof . • 

Let us now define a c lass T(E) of cones as f o l l ows 

C(Cq ,A) e 7(E) : <=> VS._,S.. e 

e i2H( A) (S ± n S.. / 0 =i>JtH (c0 ) e A f ( S 1 n S J ) ) . 

3 .3.4. T h e o r e m . I f A e S (H ) and C(c 0 ,A ) e T(E) 
then every in t r ins i c embedding h : C (c 0 ,A ) E belongs to 
3C(o0,A). 

P r o o f . We may assume that A / jil, Let h :C (c 0 ,A ) E 
be an in t r ins i c embedding. Take S o e f l H ( A ) . According to 0.5 
the cone C (c 0 ,S 0 ) i s r i g i d in E„ Thus, h|C(cQ ,S) i s an i n -
t r ins i c embedding. Let HQ be a hyperplane in E such that 

(1 ) h ( S o ) c H o . 

We shal l prove by induction that f o r j e N 

(2 ) h(u flj(S0))c H0 . 

By ( 1 ) , the condit ion (2 ) hol^ds f o r j = 1. Suppose that i t 
holds f o r some keK and l e t j = k+1. Given S1 e ^ j c + 1 (S 0 ) and 
S 2 e i2 k (S Q ) such that S1 0 t 0, consider C(c .SjJ f o r i = 1 , 2 . 
By 0.5 the cone C ( c o , S i ) i s r i g i d in E, thus h|C(c ,Sj_) i s an 
isometric embedding f o r i = 1,2. Let g^ : E —> E be an i s o -
metric extension of h | c ( c f o r i = 1,2. I t i s evident 
that 

(3 ) g1|Af(S1 n S2J = g2|Af (S1 n S 2 ) 
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and 

(4) « l ^ o * - 62 (O0 ) = ^ ( o 0 ) . 

By the inductive assumption, g 2 (S 2 ) cH^. Let Ĥ  be a hyper-
plane in E such that g ^ S ^ c ^ . Let c'0 : » ^ ( « „ J * The vector 

- * • *• • 
°o ' °o i s o r t h ° S o n a l to H, thus g 1 ( c Q ) , g 1 ( c ^ ) and g 2 (o 0 ) ,g 2 (Op) 
are orthogonal to H1 and H2 respect ively. By the assumption 
c^e Af(S1 nS 2 ) , thus by (3) and (4) we conclude that 

g1 (o 0 ) (c'0) = g 2 ( o 0 ) , g 2 ( c^ ) . Hence HQ « H.,. Therefore (2) 
holds for j = k+1. Since A e E (H ) , by Lemma 3.2.1, we obtain 
h(A) cH0 . • 

As a consequenoe of Theorems 3.3.3 and 3.3.4 we obtain 
3.3.5. C o r o l l a r y . Let Ae 2(H) and C{c0,A) e 

e J (E ) . I f A is r ig id in H then C(cQ,A) is r ig id in E. F i -
nally, by Corollary 3.3.5 and Lemma 3.2.5 we obtain 

3.3.6. C o r o l l a r y . Let A e«C(H) and C(c ,A) e 
e T(E). I f A i s r ig id in H then C(c ,A) is r ig id in E. > o 
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