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ON INTRINSIC ISOMETRIES AND RIGID SUBSETS
OF EUCLIDEAN SPACES*

0. Intrpduction

We investigate the notions of rigidity and weak rigidity
of geometrically acceptable sets (comp. [1], [2], [6]). Our
purpose is to examine which olass of mappings and whioh geome-
trical or topological operations (as union, Cartesian product,
gone over a set etc.) preserve rigidity and weak rigidity.

In any metric space (X,Q) in which every two distinct
points can be jolned by an arc L of the finite length |L| the
intrinsioc metric p* can be introduced as follows

o*(x,3) = inf{]LIx L is an arc in X and Xx,3y eL]~.

The space (X,p) is sald to be geometrically acceptable
if Q* is topologically equivalent to ¢. The class of geome-
trically acceptable spaces is denoted by G4 (comp. [1], [2]).
A surjective map f : X —» Y is an intrinsic isomeiry if
and only if it is an isometry with respect to the intrinsie
metricg. 4 map £ : X & Y is an intrinsic embedding if and
only if £ ¢ X - f(X) is an intrinsic isometry. By Theorem 2.1
(3] amap £ :+ X — Y is an intrinsic isometry if and only if
it is a homeomorphism preserving the lengths of arcs. Lst

*) The paper contains most of the results of the Aunthor’s
Ph.D, thesis written under the supervision of Maria Mo-
szyiska.
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2 I. Herburt

(x, px). (Y, QY) be metric spaces, let A cX, (4, QxlAe) € GA
and let ¥ be a olass of intrinsio embeddings of A in Y,
Oele Definition (comp, [6]):
(1) A is weakly rigid with respect to ¥ iff for every
h €3 the set h{(A) is isometrio to 4.
(11) A is rigid with respect to ¥ iff every h ¢ ¥ is an
isometric embedding of A in Y.
Let us consider the following particular casse:

02, Definition, 4 1s rigid (weakly rigid)
in X iff it is rigid (weakly rigid) with respect to all in-
trinsio embeddings of A in X,

Using this terminology we can reformulate 3.1 [3] as
follows:

Oe3. Every open, connected subset of the Euclidean
n-space B is rigid in E.

By 2.2 [ 6]

0.4. Bvery open, connected subset of the sphere s% in the
Buclidean n-space is rigid in st.,

In the sequel we shall use the following terminology and
notations

R® or (R", op) - the Cartesian n-space.

ER _ the class of Euclidean n-spaces (i.e. spaces iso-
metric to R").

For a subset A of a metrio space (X,¢):

diam A - the diamster of A&,

Cle - the closure of A in X,

IntxA-the interior of A in X,

Px(A) t= {C ¢+ C is a component of IntxA},

Qr(8) 3= {C1,C 1 CeMy(a)}.
If it does not lead to a confusion we omit the index X in
this notation,
We shall frequently use the following immediate conseguence
of 0.3,
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On intrinsiec isometries 3

0s5. Lot Bee™ and AcE. If A = Cl IntA, A e€GA and IntA
18 connected then } is rigid in E.

It is evident that if A is rigid in X then it is weakly
rigid in X. The following simple example shows that the con-
verse does not hold,

0 6 Example. Lot 4 ={(x,3)eR: (x+(-1)

2¢1} for 1 = 1,2, and let 4 = A U b, (fig.1).

1)2 "

Fig.‘l

Obviously A ¢eGA and A is weakly rigid in R2. However the
function h 1+ 4 —» R2 defined by the formula

h(x,y) = {ix.-y) for  (x,3) 4,

x,¥) for (x,y) €4,

is an intrinsic embedding but not an isometric embedding. ®m
Let B et and let H be an affine subspace of E, If

dim H = n-1, then H is called a hyperplanse.
We shall use the following notations

ﬂh + E—» B ~ the orthogonal projection of E onto H,

Hl(a) - the affine subspace orthogonal to H and passing
through a,

Af A = n {H $ H i8 an affine subspace of E and AcIi},

Conv A4 - the convex hull of A4,

A(ao,...,an) = Conv{ao,....an} for affine independent points
ByreeesBpy

XVvy - the line in B passing through x, y (for x £ 3).

Por A cH and 0 € E - H the cone C(cD,A) over A with vertex ¢
is defined as follows

[}
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4 I. Herburt

Cc ,A = G .
(0,04) ak‘;JAA(':o a)

A oylinder over A is the Cartesian product of A by an Eueli-
dean segment,

Given a metric space (X,p), a point x,cX and a 1>0,
let

Be(xo,k) 1= {xeX 1 o(x,,x) <a}.

Let (xi,gi) be a metric space for i = 1,2. Then pxi is a pro-
Jection of X, xx2 on xi, i=1,2

1. Preliminary lemmas and theorsms

Let us start with an easy lemma, proof of which will be
omitted.

1.1, Lemma. Lot By ee, Byeeh, acE,, BcE,,
Af A = B,, Af B = B,, and let (ay,b) € A x B, Then

(1) for every isometric embedding £ : A xB —» E, x B,
there is exmotly one pair (H1 ,Hz) of orthogonal affine sub-
spaceés of E.IXEZ, such that dim H1 = k, dim H2 = n,
£(ax{b}) cH, and £({a}:B) c H,.

(i1) for any isometric embeddings £, : A +E, £, 1B—>E,
and £ : AxB —» B, xE, if

1
£l(ax{b} v ({a}=B) = (£.x2,)] (ax{b}) v ({a} x B)

then £ = f1xf2.

Now we shall prove some statements oconcerning GA-spaces.
2. The oremnm. Let £ : X —»Y be an open Lip-
sohitz function of (X,py) onto (Y,QY). If X eG4 then f(X) ¢ GA.
Proof. Let A be the constant of f, Take 31; ¥
in Y an x,, X, in X such that f(x1) =y, and f(x5) = y,. Let
LcX be an arc of the finite length Joining X, and Xoe Since
f(L) is arcwise connected, there is an arc L’ in f(IL) joining

¥, and y,. Moreover, |L'| <A|L| <o, Hence Py induces the

intrinsic metric 9?. To show that Oy is topologically equi~
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On intrinsic isometries. 5

valsnt to Q*Y it suffices to prove the following condition
(comp. [5])

(1) VyeY Ve>0 36>0 B (y,8)cB , (y,€)e
oy Cy

Take y ¢ Y and x ¢ X such that f£(x) = y. Let us take an e>'0
and let 5°> 0 satisfies the condition

(2) (x 5 )CBQ (x,a

Since f 1is open, the set f(BQX(X’So” is open in (Y, QY)
whence thers is 8> 0 such that B, (y,8) < f(B, (x,5_ )). Take
8¢ °x 7 °

3’ e Bey(y.& and x’e Béx(x,So) such that f(x’) = y'. By (2)
the points x’ and x can be joined in X by an are Lo with
[Lo] < %. Since f(L,) is arcwise connscted, there is an
arc L; in f(L) Joining y’ and y. Ther y'e¢ B ,(y,€) because
|L;| <2[L0| <€, Henoce (1) is proved. m

Prom Theorem 1.2 we obtain immediately

143, Corollary. Let EcEP, XcE, and let
f : E —»E be an affine automorphism., If X e GA then f(X) ¢ GA.

4. Theorem, Let (E,p)cE”, 1ot H be a hyper-
plane in E, and let XcH and ¢ e B-H, If X ¢GA then C(co,X) €
€ GA.

Proof. LetAs=C(c,X. Let {x’} = (xvec )nH for
Xecd - {co}. First we shall prove that every two distinct
points in A4 can be joined by en arc of a finite length, Take
Xy0Xp €4y X, # x50 If X, = ¢ O X, = ¢ OF x; = X, then evi-
dently A(x1,x ) c A. Assume now, that Xq,Xp € A-{c } and x, ;!x .
Let L’ be an arc of a finite length Jjoining x1 and x2. Then
L = A(x ,x )ul'u A(x2,x2) is an arc in 4 jJoining x, and x,
and lLl < oo,

It remains to prove that p|AxA is topologically equiva-
lant to (p|axA)¥, To this aim we shall prove

(1) Vxeda Ve>0 38>0 BQ,AXA(x,S)cB(Qle“x(x,e).
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6 I. Herburt

For x = o, the condition (1) is evidently satisfied. Take
xehd ~c  and let €> 0. Since x’'¢ X and X ¢ GA, there is 6°> 0
such that

(2) BQIXxx(x,'so) CB(p|XxX)* (x’, §2‘ )e

Denote by I-Ix the hyperplane in E passing through x and pa-
rallel to H. Let 3" = (yve )nH, for yea - {°o}' For any
x>0 let

U, = {y €E 3 Q(y,Hx)<a}.

Take o, > 0 such that o ¢ U, for a<oy. Since ClHBeIXxx(x,vso)
is compact, there is a positive number o«

0! such that Ot <o q
and

(3) ]A(y,y”)]<% for 39Ua°”°(°o’Bg|x-x(x"?o”'

Let U =U_ n C(co,Be‘xxx(x’,So)). Since x ¢ Int U there is §>0

&
o
(x,8) c

such that BQ (x,8) cU. We shall prove that B

|axa olaxa
< B(e |AXA)*(X’E). Indeed' take yeBQIAXA(x'S)' Then

3’ € By |axalx’58) and, by (2), there is an erc L' in X, with

L’ <%, joining x’ and y’. Let L” = Ca ,L') nH_, then L”

is an arc joining x and y’. Moreover

(4) L <121 <& .

Consider L = A(y,y”) vL"., Clearly L is an arc in C(co,x)
joining y and x. Moreover (3) and (4) imp.y [L|< €. Hence (1)
is proved.®m

The following proposition will be used in the sequel
(comp. [7]).

1e50 If £y 2 X3 —» Yy is an intrinpsic isometry for i=1,2
then f.le 2 XXy~ YyxY, is an intrinsic isometry. Observe

2 1
that the implication converse to 1.5 is also truet
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On intrinsic isometries 7

1.6, I tyxfy ¢ XxX, > Y4xT, 18 an intrinsic isometry,
then fy ¢+ Xy — 1y is an intrinsioc isometry for i = 1,2,

2. Rigid and weakly rigid subsets of metric spaces

411 spaces oonsidered in this section will be GA. From
the definition of rigidity (weak rigidity) follows immedia-
tely.

2+1. Let AcX, and let £ ¢+ A —» Y be an intrinsio em-
bedding. If A is rigid (weskly rigid) in X then f(4) is ri-
gid (weakly rigid) in X,

Now we shall prove:

22, Theorem, If 4 is rigid in XxY, and
px(4),py(4) € GA then py(A) and py(4) are rigid in X and Y
respectively.

Proof. We shall prove that px(A) is rigid in X.
Let h : py (o) —» X be an intrinsic embedding. Take x T px(A)
and y,,3, €Y such that (x1,y1) (12,32) ¢A. Lot us define h =
= hxidy. By 1.5 we infer that h is an intrinsic embedding
as well as h|A. Then h|A is an isometric embedding. Hence

\[9121("1"‘2’ +07(3147p) = exq((x137)4(x07,)) =

= g,y B(x331),8(%5,35)) = 0y, g((B(x1),34),(h(x,),3,)) =

= ‘/Qi(h(x1)’h(x2)) + ?%(31,72)-

Therefore Qx(x1,x2) = gx(h(x1),h(x2)); hence h 1is an isome-
tric embedding.

Now we shall give an example of an affine automorphism
in R2 which preserve neither rigidity nor weak rigidity.

2,3, Example. LetT, = a((0,0),(4,0)(0,2)),

T, = Ala,b,0) for a = (%. %), b = (g, %), 0 = (%, %) and let

, = comv{(F, o) (3. 13 3 (F o)} Tt a4y = 18 1,0 {a),
4 = T4 - (T,uT5)u{a} and let 4 = A U4, (fig.2).
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On intrinsio isometries 9

Evidently A e GA. To prove that 4 is rigid inm B2 it suffices
to show that

(1) the only one isometric embedding f i1 4, —» RZ such
that f(A1) na, = { } and f(a) = a is £ = id‘ . Indeed, assume

(1) and let h 1 4 - RZ be sn intrinsic embeddins. By 0.5,
hIAi is an 1sometric embedding for i = 1,2, Let h,1 : R —» R

be an isometric extension of h|4,. Then h§1 h|4; 18 an iso-
metric embedding and h, =1 hIA = id, . Henee h3! h(a) =
2 2 Az 2

-1 -1 -
h™'h(a) = a and h3'|h(A,) n4, = by h(A1n A,) = {a}. Then,
by (1) h3' h|a, = 1d, whence h3'h = 14, ia, Thevefors h 1

an isometric embedding.

Let us now prove (1), Let £ : L — R® be an isometric
embedding, f(4,) n4, = {a} and f(a) = a. Let £, R2 —» B2 be
an isometric extsnsion of f, It is easy to verify that

z, (b) = b and f, (e) = 0 thus £y = idR2. Hence £ = id, and A
A,
is rigid 1n R2. Let us now define an affine automorphism

g + B2 —»R? by the formula g(x,y) = (x+y,y). By Corolla-

ry 1.3, 8(4) ¢ GA., It can be proved that g(A) is weakly rigid
in R? and it is evident that gg(A) is neither rigid nor weakly
rigid in R? (fig.2).

We shall now prove some statements ooncerning the closure
operation of rigid and weakly rigid sets. It is evident that

2.3. If A 18 rigid in X and ClyA € GA then ClyA is rigid
in X,

The analogue of 2,3 for weakly rigid sets is not true
(see example 2.6). However we can easlly prove

2.4, If A is weakly rigid in a complete space X and
Cle € GA then Cle is weakly rigid in X,

Proof. Let h 3 CIXA -+ X be an intrinsic embedding.
Since A is weakly rigid, there is an isometry £ : A — h(A).
By virtue of [4] th. 4.3.10 there is an extension I3 ClyA ~»
- Clxh(A) of f. Hence £(ClyA) = h(Clya). Thus ClyA is weakly
rigid. s
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10 I. Herburt

Similarly it ocan bs proved

2:5. If A is weakly rigid in perfectly homogeneons spacs
X and Cle e GA then Cle is weakly rigid in X,

2,6, Example, Let Xa= {(x,y) esz(x+1)2+32<
< 1'V(x-1)2+-y2 <1‘}u{(-1,1),(0,0)}. Let ¢ be the Cartesian
metriec restricted to X. Let 4 = {(x,y) eX s (xc0Ay <)V
v (x>0Ay'<\%)} (fig.3). It can be easlly proved that A is
weakly rigid in (X,¢). However ClzA = Au{(-1,1)} is not
weakly rigid in X. '

Y]
1",‘—/-/\"

56557 55225
g
AcX
Fig.3

Finally let us notioce that sometimes the Cartesian pro=-
duct of rigid sets is neither rigid nor weakly rigid.

27« Bxample. Letx={(1.7)eR2 tx2+12-1}
and let ¢y be the Cartesian metric restricted to X. Let Y=R
and let gy be the Cartesian metric in R, We define

A= {(cos ¢y8in @) eX 3 O Squ}, B = {q:eY t Ostp$1}-

Then AxB = {(coB ¢, 8in @, y) &+ 0 < 9sM, 0 <y $1}. By 0.3
and 0.4 the sets A and B are rigid in X and Y respectively.

Let us define an intrinsic embedding h 1 4xB —» XxY by
the formula h(x,y,z) = (cos z, sin z, arc cos x), (fig.4).
It is evident that h is not an isometric embedding. Morsover
the sets AxB and h(4xB} are not isometric in XxY.®m
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On intrinsic isometries 11
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3. Riglid and weakly rigid subsets of Euclidean spaces

In this seotion we shall restrict our conslderation to
subsets of Euclldean spaces,

3.1, The union of rigid sets

We start with some conditions under which the union of
rigid sets is rigid.

30141 Theorem, Lot A,b,cE ce?, 4,04, caa,
and dim Af(A1 nA2) = n, If A, and A, are rigid in F then
A1LJA2 is rigid in BE.

Proof., Let h A1LJA2-—» E be an intrinsic embedd-
ing. Then hlAi is an isometric embedding for i = 1,2. Let
hi $t E—»E be an isometric extension of fi for i = 1,2, Let
(ao,...,an) be an affine base in A4 nA,. Since h1(ad) =
= h(aj) = h2(a ) for J = Oy0es,n, We geat h, = h,, Hence h
is an isometric embedding. m

3¢1e2. L e mma, Let EeeP, If 4 is weakly rigild
in B and A>1 then dim Af(4) = n.

Proof, Assume dim Af A = k<n. By [7] th. 1.5
there 18 an intrinsic embedding h : Af A — B such that
diam h(Af A) <diam A, Thus, diam h(A) <diam Aj; hence 4 and
h{A) are not isometric, a contradiction.m
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12 I. Herburt

By Theorem 3,11 and lemma 3.1.2 we obtain immediately
313, Corollary. Let A1,A2cE een, A1UA2eGA

and A, n&y> 1. If A4y Ay and A, N A, are rigid in E then
A1u A2 is rigid in E.

Finally let us prove

3.4« Theorem., Let A ,A,cE c el Ay u Ay €GA,
and let there is a set U open and convex in E, Ut:A1u Ay,
UnInt A, ¥ ¢ ¢ UnlInt Aye If A, and A, are rigid in B then
A1lJA2 is rigid in BE.

Proof. Let h 1 ayu A2 —» F be an intrinsic embedd-
ing. By 0.3 the set U is rigid in E. The rigidity of U, Ays
and A, implies that h|u, hlA1, and hlA2 are isometric em-
beddings. Let hi t E—» B and g :+ E & B be isometric exten~-
sions of hIAi and h|U respectively, for i = 1,2. Comnsider an

affine base (al,...,al) in UnInt 4, 1 = 1,2. Since hi(aj) -

= h(ajj') = g(ai). for § = Oyeeeyn and 1 = 1,2, we have h; = g.
Hence h = g]A1 Uk, 18 an isometric embedding.m

3.2. Cartesian product of rigid (weakly rigid) sets

The example 2.7 shows that the Carteslan product of rigid
sets need not be rigid. For subsets of Buclidean spaces the
problem is open. We shall give a partial solution, for some
classes of subsets of Buclidean spaces (Cor. 3.2.4, 3.2.6,
The 342.7, CoT. 342.8).

For any S e Q(4) we define the following sequence

(Qj(so)l,jeN'

91(s°)={so}, szj+1(so) = {SeQ.(A)-QJ(SO):Sn(u czj(so)) £ ¢}

for j> 1. oo
3.2.1. Lemma. Let &cB. If & = UUQj(SO) for
oo J=1
some &< Q(a), then & = \UJ{Ja,(5) for every seq(a).

; J
J=1
%e omit the easy proof of this lemma.
Lct us now define a class 2 of subsets of E by the
formula

- 1216 -



On intrinsioc isometries 13

SE) 1= {A eB 1 IS eqld), A = ;HU Qj(so)}'

We shall prove that for Euclidean spaces B, and E, the Car-
tesian product of rigid sets A 62(31) and BeZ(Bz) is
rigid in B,xB, (Cor. 3.2.4).

For this purpose we shall first prove that the Cartesian
product of rigid subsets is rigid with respeat to some class
of intrinsic embeddings (Th. 3.2.3).

Let (E1,Q1) eEk. (32,92) ¢ ER, and 1let AcE,, BCE,.

We define the class ¥ (4,B) as followss he¥(A,B) if and
only if h is an intrinsic embedding and for svery (a,b) € AxB
there 18 a pair of orthogonal affine subspaces (I:I1 ,Hz) in
E1 sz such that

(%) h(ax{o}) cH, and h({a}xB)cH,.

3.2.2. T he o Tem._ If A and B are rigid in 31
and 32 respectively, A>1, B>1, then A xB is rigid with res-
pect to F(4,B).

Proof., Let (a,b)eaxB and lot h e ¥F(A,B). Let H,
and H, bs the orthogonal subspaces in E1XB2 satisfying (*).
From Lemma 3.1.2 we infer that dim H1 = k and dim Hy, = n.

Let £ E1x32—’ E1XE2 be an isometry such that

£(H,) = Bx{b} and £(H,) = {a}B,.

Then fh(Ax{’b}) c 31*{b} and fh({a}xB) C{a}sz. Since A and B
are rigid, fh|ax{b} and fh|{a}+B are isometric smbeddings.
We shall prove that

(1) fh(AR{b}) v ({a}uB) is an isometric embedding.

Let (x,b)e ax{b} and (a,y) e {a}=B. If fh(x,b) = (x’,b)
end fh(a,y) = (a,y’), then
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14 I. Herburs

(o4x0p) (fh(a,y),th(x,b)) = (o4xp,)((8,3/),(x,b)) =

= (Q?(..x’, + eg(’loh)) = [(91192)2((a,b)’(x"b)) +

1

+ (pyxep)2((a,b),(8,301]2 = [(04%0)2((a,b),(x,b)) +
1

+ (o4x0p)2((8,) ,(8,3))]2 = (o3(a,x) + ¢3(3,5))% =

= (91“?2“(507)0(101’))'

whence (1) is proved. Since f is an isometry, by (1), we
obtain

(2) h ({a}*B) u (ax{d}) 18 an isometric embedding.

Let (a;,b;) € AxB, 1 = 1,2, Since (ay,b;)c¢ {31}XB qu{bz} by
(2) we infer that h|({a;}xB) u(ax{b,}) is an isometric em-
bedding. Thus (@4x¢,)(k(a;,b ),h(ay,b,)) = (04x0,)((ay,b,),
(aa,ba)), whence h 1s an isometric embedding. This comple~
tes the proof.
3¢2.3. Lemma., If AeE(E1), BeZ(Ez), and
h 1 4xB —» B xE, 18 an intrinsic embedding, then h e%(4,B).
Proof. We may assume that A ¥ ¢ ¥ B, Let
h 3 AxB —» E,xE, be an intrinsio embedding. Take {a,b) ¢ AxB.
If SeQ(A) and Te Q(B), then SxTe¢ Q(AxB) and by 1.3

(1) h|SxT 4is an intrinsic embedding.

Choose SoeSI(A) and T e Q(B) such that (a,b) eSxTo. By
Lemma 1.1(1) there is exactly one pair (H1,H2) of orthogonal
affine subspaces such that dim H1 = k, dim H2 = n, and

(2) h(sx{v}) cH,, h({a}xT ) cH,.
We shall prove by induction that for svery jeN

(3) n((uszj(so))x{b}) CHy.
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On intrinsio isometrles 15

By (2) the condition (3) holds for j = 1. Take an 12> 1 and
suppose that (3) holds for j<i, Choose S, € Qi+1(so) and let
xeS;nvu Qi(So). Thue, there is SQeQi(So) such that xeS,.
By the inductive assumption

(4) h(s,x{b}) cH,.

According to (1), h[SQxTO is an isometric embedding. Hencs,
by (4) and Lemma 1.1(i} we obtain

(5) h({x}xTo)cHaL(x,b).

By (1), h|S xI is an isometric embedding. Let H, be an affine
k-dimensional subspace such that h(S, «{b}) cH o* By (5),
applying once again Lemma 1.1(1} we conclude that H H1.
Thus (3) holds for J = i+1. Then by Lemma 3.2.1

h(ax{v}) = h(C]LVJQJ(SO)x{b})cIH.
3=1

Similarly we prove that h({a}xB)<:H2. The proof is complete.m
By Theorem 3.2.2 and Lemma 3.2,3 we obtaln immediately
3.2.4. Corollary. Let AeZ(E1),BeE(E2).

If A and B are rigid in E1 and B, respectively then AxB is

rigid in E1XE2.

Now, let us define a subclass £ of the olass X. Let

E ¢ €%, Then we define

L(B) := {A cE : A is connected, 4 = Cl,Int 4, r{a) is
locally finite in a}.

3,25 Lemma. J(E)cZ(E).

The straightforward proof of this lemma will be omitted.

Combining Corollary 3.2.4 and Lemma 3.2.5 we obtain

30206 Corollary. Let aed(E,), Be«L(Ea).

If A and B are rigid in E
AxB is rigid in E1XE2.

1 and E, respectively, then
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16 I. Herburt

Finally let us prove

3.2.7« Theorem., Let AeZ}(E1),BeZ(Ez). IF A
and B are weakly rigid respectively in E1 and E, then AxB is
weakly rigid in E1*E2.

Proof. The implication is evident for A = ¢ or
B = ¢. Suppose now that &4 # ¢ # B and let (a,b) ¢ AxB, Let
h : AxB —» E1xE2 be an intrinsic embedding. By virtue of
Lemma 3.2.3, h eF(4xB); hence thers are orthogonal subspaces

H1 and H2 in E1XE2 such that

h(ax{b}) cH, and h({a}xB) cH,.

By Lemma 3.1.2 we obtain dim H1 = k and dim H2 = Ne
Let £ : B XEQ-—b B,*E, be an isometry such that f(H1) =
= Bx{b} and f(H,) = {a}xE,. Then fh(ax{b})c E,x{b} and
th({a}»B) c {a}xB,. Let us define f, : A —» B, and f,:B —» &,
by the formulas f.{(x) = p, fh{x,b), £,(x) = p, fh(a,y).
1 E1 2 E2

We shall prove that
(1) fh = £,xf,.

It is evident that
(2) thi (ax{b}) v {a}xB) = (£,x£,)| (ax{v} u{a}xB).

Choose S, ¢ Q(a) and Toesz(B) such that (a,b) e SoxTQ. We shall
use the following notation

Ay = vQs(8.), By = uay(T), for jeN; 4, = {a}, B, = {b}
We shall prove by induction on j+k that
(3) fh|asxBy = (£y%f,)] AyxBy  for i, kenuv{o}.

By (2) we infer that (3) holds for j = O or k = 0 and

(4) fh(SOX{b}lJ{a}xTo) = (f1xf2)|(S°x{b}u{a}X‘1‘°)°
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By 0.5, fh[SoxTo is an isometric embsdding. Theraefors, by (4)
and Lemma 1.1(ii) we obtain hf|S xT = (£,x£,)|5 T . Hence
(3) holds for J = k = 1, Take an 1> 2 and suppose that (3)
holds for j+k <i. To prove (3) it suffices to show that (3)
holds for indexes j+1 and k. Let S1e Qj+1(so), T1e,Qk(T°),
anhd x eS111A3, and ye Tjr\Bk_1. According to the inductive
assumption,

(5} fh(S1x{y}kJ{x}xT1) = (f1xf2)(S1x{y}tJ{x}XT1).

Since by 0.5, fh}S1XT1 is an isometric embedding by (5]},
applying Lemma 1.1(ii) we obtain fh|SxT, = (f1xf2)|s1*T1.
This completes the proof of (3). Since 4 e Z:(E1) and B e E(Ez),
by (3) and Lemma 3.2.1 we obtain (1). By (1) and 1.6 we infer
that f1 and f2 are intrinsic embeddings. Henos there are iso-
metries g, : 4 —*-f1(A) and g, : B —» fz(B). By (1),

(81"82)(1\*3) = f1(A)"f2(B) = (f1"f2)(A"B) = fh(A"B)

thus £7'(g,xg,) (AxB) = h(AxB). Hence AxB is weakly rigid.m

By Theorem 3.2.7 and Lemma 3.2.5 we obtain

3.2,86, Corollary. Let AeoC(E1) and BeJ,‘(Ee).
If A and B are weakly rigid in E1 and E, respectively then
AxB is weakly rigid in E1xE2.

3.3. Cones over rigid sets

Let now B, e e? and E, 681. The Corollary 3.2.4 says, in
particular, that a cylindsr in E1XE2 over a rigid set in E1
is rigid in E1xE2. We may ask if the similar implication
holds for cones. The following example shows that without
additional assumptions the answer to this question is ne-
gative,

3'3’1' Example . LetT=A((0’0)'(4’0)'(4,4)),
T, = o{a,b,c) where a = (3,1), b = (l%, %), c = (%, %), and
let P = {(x,y) eR% ¢ (x-3)2 + (y-1)2<%/\y> 1}. Let us de~-
fine A, = T ~ P - Tou{a}, A, = Int Tou{a}, and A& = A, U A,
(fig.5).
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It oan be easily shown that A is rigid in R2. Let d1 =

= (0,4,3V2). We shall prove that C(d,,ax{0}) is neither rigid
nor weakly rigid in R3(fig.6). Let gz{(a,O),(b,o),(c,O),d} —»
—-» {a1,b1,c1,d1} be defined as follows:

gla,0) = g(3,1,0) = (3,1,0) = ay,
g(bio) = g(l%’%lo) = (3’ 1, -%Vé‘) = b1’
B(coo) = 8(%, %’ 0) = (gg’ g, "Beﬁ) = 01,
gld,) = d,.

Simple caloulations show that g 1s an isometry. Let
: R> —» R° be an isometrio extension of g. Let us define
h : C(d1,Ax{0}) — R3 by the formula

for xeC(dy,a,x{0}),
h(x) =
g(x) for xeC(d1,A2x{0}).

o |
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We shall show that
(1) h 1is an intrineiec embedding.

Let C, = C{d,,A,x{0}) and G, = Cld;,a,x{0}). Since h|C, and
h|C, are isometries, and h|C, nC, = 14; g0 $0 prove (1) 1%

suffices to show that h(C1)n h(Ca) = C,nCyhe Lot.az = a; and

let bye (b v d,) n(R%{0}), and oy e (eg v d,) n (B%{0}). It can
be checked that

(2) by, 0, ¢ Px{0}.

Let Ty = A(ai,bi,ci), for 1 = 1,2, By (2), C1rwc(d1,T2) -
= A(a1,d1). Since C, = h(c1), we obtain

Since

h(Cy) c C(d,,T4) = c(d1,T2)tJ{(x,y,z)e C(d,,T) 12 <0}

hic(dy.ax{o})
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and h(C,) < {(x,3,2) ¢ R? ¢ 23 0} by (3), h(C;) n h(Cpy) calayydy)
It is evident that A(a1,d1)c h(C1)r\h(02), whence h(C1)nh(C2)=
= A(a1,d1) = C, nC,, which proves (1) Hence h is an in-
trinsic embedding. However h 1is not an isomeiric embedding.
Moreover there is no isometry of C(d1,Ax{0}) onto
h(c(d,,ax{0})).

We shall show that under additional assumptions a oons
over a rigid set is rigid.

3.3.2. Let B¢ €2 and let LcE be an Euclidean line, Let
¢ € E-L, AeGA, AcL and A>1. Then Clc,,4) is rigid in B,
Proof. Since A is a connected subset of L and A> 1,
the cone C(co,A) satisfies the assumptions of 0.5, whence
it is rigid in E. ® _
Let us define some class of intrinsic embeddings of
a cone. Let E e &' and let H be a hyperplane in E; let
Co€ E~H, and AcH. Let

Bf(co,A) ={h C(co,A) —+ E : h is an intrinsic embedding
and dim Af h(a) ¢ n}.

3¢3e3 Theorem. Let ae¢ 2(H)., If & is rigid
in H then C(co,A) is rigid in B with respect to %(co,A).

Proof, Let 4 be rigid in H and h e?t(co,A). Then
there is a hyperplane H, in E such that h(A)c:Ho. Take an
isometry £ : B —» E with f(HD) = H, Since A is rigid in H,
fh|A is an isometric embedding. Hence

(1) h|A 1is an isometric embedding.
Since A € 2(H), we have

C(oo,A) = C(Co,lJQ(A)) =y {C(oo,S) : Sc}Q(A)}.

Take x,,X, ¢ Clc_,4) - {cy}e Lot S;e Q(a) satisfy the condi-
tion x e C(co,Si} for 1 = 1,2, Let xi e(xi\/co)rwﬂo for
i=1,2. By (1) we obtain

(2) e(hi(xy),h(x3}) = olxq,x5).
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According to 0.5 the cone C(oo,Si) is rigid in E, whence
h|c(c ,5;) is an isometric embedding for i = 1,2, Therefore

[t}
1]

(3) olh(e ),h(x])) = plo,x{) for 1 = 1,2,

(4) e(h(cy),h(xg)) 1,2,

1]
]

Q(co,xi) for i

By (2)=(4) we obtain Q(h(x1),h(x2)) = Q(x1,x2)o This comple-
tes the proof. m
Lat us now define a class J(E) of cones as foliows

C(co,A)e J(E) : <=:-VSi,Sje

eQH(A)(SinSj F Y = mylc,) eAf(SinSj)).

3.3.4, Theorem., If Ae 3(H) and C(co,A)e T(E)
then every intrinsic embedding h : C(co,A) ~» E belongs to
Hc,,a).

Proof. We may assume that A # ¢, Let h:C(co,A)-* B
be an intrinsic embedding. Take S,¢ QH(A). According to 0.5
the cone C(c_,5 ) is rigid in E. Thus, th(co,S) is an in-
trinsic embedding. Let Ho be a hyperplane in E such that

(1) h(s,)cH,.
We shall prove by induction that for jeN

(2) h(vu Qj(So))CHO.

By (1), the condition (2) holds for j = 1. Suppose that it
holde for some ke XN and let j = k+1. Given S1e Qk+1(so) and
SQeSQk(SO) such that S1r182 # ¥, consider C(co,Si) for i=1,2.
By 0.5 the cone C(c_,S5;) is rigid in E, thus n]c(co,si) is an
iscmetric embedding for i = 1,2, Let 8y E —» E be an iso-
metric extension of hIC(cO,Si), for i = 1,2, 1t is evident

that

(3) g1|Af(S1r\S2) = gQIAf(S1n S,)
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and

(4) g4(ay) = 85(e,) = hio,).

By the inductive assumption, gz(s )c:H + Let H, be a hyper-
plane in E such that g1(S ) cH,. Let c t= ﬂH(o )e The veotor

——————“‘—? — 7
°.c° is orthogonal to H, thus g1(c°).81(c°) and gz(oo),82(c°)
are orthogonal to H, and H, respectively. By the assumption

c e Af(S, r\S o) thus by (3) and (4) we conclude that

g1(o°),g1(c°) = gz(c ),gz(c ). Hence H = H,. Therefors (2)
holds for j = k+1. Since A e¢ L(H), by Lemma 3.2.1, we obtain
h(a) cH . m

A8 8 oconsequence of Theorems 3.3.3 and 3.3.4 we obtain

3.3.5« Corollary. Let ae X(H) and C(co,A)e
e J(E). If A is rigid in H then C(co,A) is rigid in E, Fi=~
nally, by Corollary 3.3.5 and Lemma 3.2.5 we obtain

36360 Corollary. Let 4 eL(H) and C(co,A)e
e J(B). If 4 is rigid in H then C(cO,A) is rigid in E,
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