

Jacek Hejduk

SOME PROPERTIES OF TOPOLOGICAL σ -IDEALS

This note is concerned with δ -ideals in a measurable space (X, S) , such that convergence with respect to a δ -ideal J induces the Fréchet topology on the space of all $S \vee J$ -measurable real functions, where $S \vee J$ is the smallest δ -field containing both S and J . These δ -ideals are called S -topological.

Suppose that we are given a nonempty set X . In all that follows below, we consider δ -fields and δ -ideals of subsets of X .

To begin with, let us recall two definitions.

Definition 1. (cf. [4]). Let J be a δ -ideal. We say that a property holds J -almost everywhere on X (abbr. J -a.e.) if the set of all points which do not have this property belongs to J .

Definition 2. (cf. [4]). We say that a sequence $\{f_n\}_{n \in \mathbb{N}}$ of real functions defined on X converges with respect to a δ -ideal J to a function f (abbr. $\{f_n\}_{n \in \mathbb{N}} \xrightarrow{J} f$) if each subsequence of $\{f_n\}_{n \in \mathbb{N}}$ contains a subsequence converging J -a.e. on X to f .

For a δ -field S and a δ -ideal J , denote by $S \vee J$ the smallest δ -field containing both S and J . One can easily check that

is the collection of all sets of the form $(A-B) \cup C$ where $A \in S$ and $B, C \in J$; moreover, $S \vee J = S$ if and only if $J \subset S$.

Without difficulty we can check that, for every δ -field S and any δ -ideal J , the set $\mathcal{L}^*(S, J)$ of all $S \vee J$ -measurable

real functions defined on X , equipped with convergence with respect to \mathcal{J} , is an \mathcal{L}^* -space (cf. [1; Problem Q, p.89]). Hence it is possible to define the closure operator on $\mathcal{L}^*(S, \mathcal{J})$ by letting $f \in \bar{A}$ if and only if A contains a sequence converging with respect to \mathcal{J} to the function f (cf. [4]). This closure operator has the properties: $\bar{\emptyset} = \emptyset$, $A \subset \bar{A}$ and $\bar{A \cup B} = \bar{A} \cup \bar{B}$ for any sets $A, B \subset \mathcal{L}^*(S, \mathcal{J})$; however, the equality $\bar{A} = \bar{\bar{A}}$ holds for each $A \subset \mathcal{L}^*(S, \mathcal{J})$ if and only if the following condition, usually labelled by (L4), is satisfied:

(L4) If $f_{j,n} \xrightarrow[n \rightarrow \infty]{\mathcal{J}} f_j$ and $f_j \xrightarrow[j \rightarrow \infty]{\mathcal{J}} f$ for each $j \in \mathbb{N}$,

then there exist sequences $\{j_p\}_{p \in \mathbb{N}}$ and $\{n_p\}_{p \in \mathbb{N}}$ of positive integers such that $f_{j_p, n_p} \xrightarrow[p \rightarrow \infty]{\mathcal{J}} f$.

Definition 3. (cf. [4] and [5]). Let S be a σ -field. We say that a σ -ideal \mathcal{J} is S -topological if the space $\mathcal{L}^*(S, \mathcal{J})$ fulfills (L4).

The above definition characterizes S -topological σ -ideals by their relations to space of S -measurable functions. In order to give some characterization of S -topological σ -ideals \mathcal{J} in terms of members of S and \mathcal{J} , we shall now introduce condition (E''). We concentrate on this condition, but some similar conditions (E), (E') also exist (cf. [4] and [5]).

Definition 4. Let S be a σ -field and \mathcal{J} a σ -ideal. We say that the pair (S, \mathcal{J}) fulfills condition (E'') if, for each set $D \in S - \mathcal{J}$ and for each double sequence $\{B_{j,n}\}_{j,n \in \mathbb{N}}$ of members of S such that

$$(1) \quad B_{j,n} \subset B_{j,n+1} \quad \text{for any } j, n \in \mathbb{N},$$

$$(2) \quad \bigcup_{n=1}^{\infty} B_{j,n} = D \quad \text{for each } j \in \mathbb{N},$$

there exists a positive integer-valued function $n(i, j)$ of positive integers i and j such that $(D - \bigcup_{i=1}^{\infty} \bigcap_{j=1}^{\infty} B_{j,n(i,j)}) \in \mathcal{J}$.

Studying condition (I) of [5; p. 99] formulated in the language of Boolean algebras, one easily observes that, in the case where $\mathcal{J} \subset \mathcal{S}$, our condition (E'') is equivalent to (I) of [4].

Theorem 1. For any δ -ideal \mathcal{J} and any δ -field \mathcal{S} , the following conditions are equivalent:

- (i) the δ -ideal \mathcal{J} is \mathcal{S} -topological;
- (ii) the pair $(\mathcal{S} \Delta \mathcal{J}; \mathcal{J})$ fulfills (E'');
- (iii) the pair $(\mathcal{S}; \mathcal{J})$ fulfills (E'').

Proof. Since $\mathcal{J} \subset \mathcal{S} \Delta \mathcal{J}$, the equivalence (i) \Leftrightarrow (ii) is an immediate consequence of Theorem 1 of [5]. The implication (ii) \Rightarrow (iii) follows from the inclusion $\mathcal{S} \subset \mathcal{S} \Delta \mathcal{J}$. Hence, the proof will be completed if we show that (iii) \Rightarrow (ii).

Let us consider any sets $D \in (\mathcal{S} \Delta \mathcal{J}) - \mathcal{J}$ and $B_{j,n} \in \mathcal{S} \Delta \mathcal{J}$ ($j, n \in \mathbb{N}$) which satisfy conditions (1) and (2) of definition 4. There exist sets $A_{j,n} \in \mathcal{S}$, $C_{j,n} \in \mathcal{J}$ and $E_{j,n} \in \mathcal{J}$ such that $B_{j,n} = \bigcap_{j=1}^{\infty} \bigcup_{n=1}^{\infty} A_{j,n}$ = $(A_{j,n} - C_{j,n}) \cup E_{j,n}$ where $j, n \in \mathbb{N}$. Denote $D^* = \bigcap_{j=1}^{\infty} \bigcup_{n=1}^{\infty} A_{j,n}$ and $B_{j,n}^* = \bigcup_{k=1}^{\infty} A_{j,k} \cap D^*$ for $j, n \in \mathbb{N}$. Of course, $D^* \in \mathcal{S}$ and $B_{j,n}^* \in \mathcal{S}$ for $j, n \in \mathbb{N}$. Moreover, $B_{j,n}^* \subset B_{j,n+1}^*$ and $D^* = \bigcup_{n=1}^{\infty} B_{j,n}^*$ whenever $j, n \in \mathbb{N}$. As $D = \bigcap_{j=1}^{\infty} \bigcup_{n=1}^{\infty} B_{j,n}$, then $D - D^* = \bigcap_{j=1}^{\infty} \left[\bigcup_{n=1}^{\infty} (A_{j,n} - C_{j,n}) \cup \bigcup_{n=1}^{\infty} E_{j,n} \right] - \bigcap_{j=1}^{\infty} \bigcup_{n=1}^{\infty} A_{j,n} \subset \subset \left[\left(\bigcap_{j=1}^{\infty} \bigcup_{n=1}^{\infty} A_{j,n} \right) \cup \left(\bigcup_{j=1}^{\infty} \bigcup_{n=1}^{\infty} E_{j,n} \right) \right] - \bigcap_{j=1}^{\infty} \bigcup_{n=1}^{\infty} A_{j,n} \subset \bigcup_{j=1}^{\infty} \bigcup_{n=1}^{\infty} E_{j,n}$. Since $\left(\bigcup_{j=1}^{\infty} \bigcup_{n=1}^{\infty} E_{j,n} \right) \in \mathcal{J}$, we have that $D - D^* \in \mathcal{J}$. This implies that $D^* \notin \mathcal{J}$, because $D \notin \mathcal{J}$ and $D = (D \cap D^*) \cup (D \setminus D^*)$. If the pair $(\mathcal{S}, \mathcal{J})$ fulfills (E''), then there exists a positive integer-valued function $n(i, j)$ such that $(D^* - \bigcup_{i=1}^{\infty} \bigcap_{j=1}^{\infty} B_{j,n(i,j)}^*) \in \mathcal{J}$. Denote $B = \bigcup_{i=1}^{\infty} \bigcap_{j=1}^{\infty} B_{j,n(i,j)}$, $B^* = \bigcup_{i=1}^{\infty} \bigcap_{j=1}^{\infty} B_{j,n(i,j)}^*$ and

$C = \bigcup_{i=1}^{\infty} \bigcap_{j=1}^{\infty} \bigcup_{k=1}^{n(i,j)} C_{j,k}$. Since $D-B \subset (D-D^*) \cup (D^*-B)$, $C \in J$ and $D^*-B^* \in J$, in order to prove that $D-B \in J$, it suffices to show that $D^*-B \subset (D^*-B^*) \cup C$.

Let us observe that $B = \bigcup_{i=1}^{\infty} \bigcap_{j=1}^{\infty} \bigcup_{k=1}^{n(i,j)} [(A_{j,k} - C_{j,k}) \cup B_{j,k}] = \bigcup_{i=1}^{\infty} \bigcap_{j=1}^{\infty} \bigcup_{k=1}^{n(i,j)} (A_{j,k} - C_{j,k}) \supset \left(\bigcup_{i=1}^{\infty} \bigcap_{j=1}^{\infty} \bigcup_{k=1}^{n(i,j)} A_{j,k} \right) - C$; this yields that $D^*-B \subset D^* - \left[\bigcup_{i=1}^{\infty} \bigcap_{j=1}^{\infty} \bigcup_{k=1}^{n(i,j)} A_{j,k} - C \right] \subset (D^*-B^*) \cup C$. Hence, $D-B \in J$ and (iii) \Rightarrow (ii).

It is worth mentioning that, in the case where a δ -ideal J is contained in a δ -field S , there are weaker conditions (E) or (E') which, together with the countable chain condition for the pair (S, J) , are equivalent for J to be S -topological (cf. [3]).

Theorem 2. Let S be a δ -field. If a δ -ideal J_1 is S -topological, then any δ -ideal $J_2 \supset J_1$ is S -topological.

Proof. If J_1 is an S -topological δ -ideal, then, by theorem 1, the pair (S, J_1) fulfills (E''). This implies that every pair (S, J_2) , where J_2 is a δ -ideal containing J_1 , fulfills (E''). Hence, the proposition follows from Theorem 1.

One can easily prove the following

Lemma. Let S be a δ -field and J - a δ -ideal. The pair (S, J) fulfills condition (E'') if and only if, for an arbitrary double sequence $\{B_{j,n}\}_{j,n \in N}$ of S -measurable sets such that

$$(1) \quad B_{j,n} \subset B_{j,n+1} \quad \text{for any } j, n \in N,$$

$$(2) \quad \bigcup_{n=1}^{\infty} B_{j,n} = X \quad \text{for each } j \in N,$$

there exists a positive integer-valued function $n(i,j)$ such that $(X - \bigcup_{i=1}^{\infty} \bigcap_{j=1}^{\infty} B_{j,n(i,j)}) \in J$.

Theorem 3. Suppose that S is a δ -field and $\mathfrak{J}_1, \mathfrak{J}_2$ are δ -ideals. Then the δ -ideal $\mathfrak{J}_1 \cap \mathfrak{J}_2$ is S -topological if and only if both \mathfrak{J}_1 and \mathfrak{J}_2 are S -topological.

Proof. By virtue of Theorem 2, it suffices to assume that both \mathfrak{J}_1 and \mathfrak{J}_2 are S -topological δ -ideals, and to show that the δ -ideal $\mathfrak{J}_1 \cap \mathfrak{J}_2$ is S -topological.

Let $\{B_{j,n}\}_{j,n \in \mathbb{N}}$ be an arbitrary double sequence of S -measurable sets which satisfies conditions (1) and (2) of our lemma. According to Theorem 1 and the lemma, there exist positive integer-valued functions $n_1(i,j)$ and $n_2(i,j)$ such that

$(x - \bigcup_{i=1}^{\infty} \bigcap_{j=1}^{\infty} B_{j,n_k(i,j)}) \in \mathfrak{J}_k$ for $k = 1, 2$. Let $n(i,j) = \max(n_1(i,j), n_2(i,j))$ for any $i, j \in \mathbb{N}$. As $B_{j,n} \subset B_{j,n+1}$ for any $j, n \in \mathbb{N}$, then $x - \bigcup_{i=1}^{\infty} \bigcap_{j=1}^{\infty} B_{j,n(i,j)} \in \mathfrak{J}_1 \cap \mathfrak{J}_2$. Thus, it follows from our lemma that the pair $(\mathfrak{J}_1 \cap \mathfrak{J}_2; S)$ fulfills condition (E"). Using Theorem 1, we conclude that the δ -ideal $\mathfrak{J}_1 \cap \mathfrak{J}_2$ is S -topological.

Corollary. Let S be a δ -field. If, for a δ -ideal \mathfrak{J}_1 , there exists an S -topological δ -ideal \mathfrak{J}_2 such that the δ -ideal $\mathfrak{J}_1 \cap \mathfrak{J}_2$ is not S -topological, then the δ -ideal \mathfrak{J}_1 is not S -topological.

In view of Theorems 2 and 3, a δ -ideal is S -topological if and only if it contains the common part of two S -topological δ -ideals.

Let us note still another consequence of the lemma and Theorem 1.

Theorem 4. Let \mathfrak{J} be a δ -field. If a δ -ideal \mathfrak{J}_1 is S -topological, then every δ -ideal \mathfrak{J}_2 , for which $\mathfrak{J}_1 \cap S = \mathfrak{J}_2 \cap S$, is S -topological, too.

For any δ -ideal \mathfrak{J} and any δ -field S , let us denote

$$\mathfrak{J}[S] = \{A \subset X: \text{there is } B \in S \subset \mathfrak{J} \text{ such that } A \subset B\}.$$

It is readily seen that the family $\mathfrak{J}[S]$ is a δ -ideal for which $\mathfrak{J} \cap S = \mathfrak{J}[S] \cap S$; moreover, $\mathfrak{J}[S]$ is contained in every δ -ideal \mathfrak{J}^* such that $\mathfrak{J}^* \cap S = \mathfrak{J} \cap S$.

Theorems 2 and 4 imply

Theorem 5. Let S be a δ -field. Then a δ -ideal J is S -topological if and only if the δ -ideal $J[S]$ is S -topological.

Denote by \mathcal{B} the δ -field of all Borel subsets of the real line R .

The last theorem leads to the notion of Borel δ -ideals.

Definition 5. (cf. [1]). We say that a δ -ideal J of subsets of R is Borel if $J[\mathcal{B}] = J$.

Example 1. It is well known and easy to observe that the Borel δ -ideal \mathcal{L} of all subsets of R of Lebesgue measure zero is \mathcal{B} -topological. Let J_0 denote the δ -ideal of all subsets of R having the property (s_0) (cf. [2]). Then the smallest δ -ideal J_1 , containing both J_0 and \mathcal{L} , is \mathcal{B} -topological. At the same time, there exists a nonmeasurable set having the property (s_0) (cf. [2]), hence $J_1 \neq \mathcal{L}$. But the δ -ideal J_1 is not Borel because $J_1[\mathcal{B}] = \mathcal{L}$. In connection with this example, one can ask the following questions:

Question 1. Does there exist a proper \mathcal{B} -topological Borel δ -ideal J of subsets of R such that $J \neq \mathcal{L}$?

Question 2. Does there exist a \mathcal{B} -topological Borel δ -ideal J of subsets of R such that $J \neq \mathcal{L}$?

In the case of the second question, it would be sufficient to find some \mathcal{B} -topological δ -ideal J such that $J \neq \mathcal{L}$, because the δ -ideal $J[\mathcal{B}]$ would be Borel.

Example 2. The δ -ideal \mathcal{K} of all sets of the first category in R is not \mathcal{B} -topological (cf. [4]). Let J_p be the δ -ideal of porous sets in R (cf. [6]). The δ -ideal J_p is Borel and, obviously, $J_p \subset \mathcal{K}$. Hence, by Theorem 2, J_p is not \mathcal{B} -topological. We can formulate the following problem:

Question 3. Does there exist a non- \mathcal{B} -topological Borel δ -ideal J of subsets of R such that $J \neq \mathcal{K}$?

The answers to questions 1-3 are not known to the author.

REFERENCES

- [1] M. B a l c e r z a k : A classification of δ -ideals on the real line, *Zeszyty Naukowe Wyższej Szkoły Pedagogicznej w Bydgoszczy, Problemy Matematyczne* 7 (1985) 51-61.
- [2] R. E n g e l k i n g : *Topologia ogólna*. Warszawa, 1975.
- [3] E. S z p i l r a j n - M a r c z e w s k i : Sur une classe de fonctions de W. Sierpiński et la classe correspondante d'ensembles, *Fund. Math.* 24 (1935) 17-24.
- [4] E. W a g n e r : Sequences of measurable functions, *Fund. Math.* 112 (1981) 89-102.
- [5] E. W a g n e r , W. W i l c z y n s k i : Spaces of measurable functions, *Rend. Circ. Mat. Palermo, Serie II*, 30 (1981) 97-110.
- [6] L. Z a j i č e k : Sets of δ -porosity and sets of porosity q , *Časopis Pest. Mat.* 101 (1976) 350-358.

INSTITUTE OF MATHEMATICS, UNIVERSITY OF ŁÓDŹ,
90-238 ŁÓDŹ, POLAND

Received April 28, 1988.

