

Khalil I. Tabash

AUTOMORPHISM GROUPS OF P_2 -LATTICES

The concept of a P_0 -lattice was first introduced by T. Traczyk [4]. Epstein G. and Horn A. [1] used this concept to define a P_1 - and P_2 -lattices.

The aim of this paper is to describe the automorphism groups of finite P_2 -lattices.

In this paper we use terminology and notation of [1] and [2]. In particular, V denotes the lattice join.

1. Preliminaries

A P_0 -lattice is a bounded distributive lattice P which is generated by its center B and a finite subchain $\circ = e_0 < e_1 < \dots < e_{n-1}$ containing \circ and 1 . It is denoted by $P = \langle B, e_0, \dots, e_{n-1} \rangle$.

- (i) e_0, \dots, e_{n-1} is called a chain base of P .
- (ii) A P_0 -lattice P is of order n ($n > 1$), if n is the smallest integer such that P has a chain base with n terms.
- (iii) Every element $x \in P$ can be written in the form

$$x = d_1 e_1 V d_2 e_2 V \dots V d_{n-1} e_{n-1} = V_{i=1}^{n-1} d_i e_i, \quad d_i \in B,$$

$$i = 1, \dots, n-1 \text{ and } d_1 \geq d_2 \geq \dots \geq d_{n-1}.$$

Such a representation is called a monotonic representation (mon. rep.) of x .

Let P be a bounded distributive lattice with center B . Let $x \rightarrow y$ denotes the largest $z \in P$ (if it exists) such that

$xx \leq y$. Let $\neg x = x \rightarrow 0$. P is a Heyting algebra if $x \rightarrow y$ exists for all $x, y \in P$.

An element $x \in P$ is called dense if $\neg x = 0$. A P_1 -lattice is a P_0 -lattice which is a Heyting algebra together with a chain base,

$$e_0, \dots, e_{n-1} \text{ such that } e_{i+1} \rightarrow e_i = e_i.$$

Hence $e_i \rightarrow e_j = e_j$ if $i > j$ and $e_i \rightarrow e_j = 1$ if $i < j$. It was proved ([1], Theorem 3.3) that, if $P = \langle B, e_0, \dots, e_{n-1} \rangle$ is a P_0 -lattice which is a Heyting algebra, then there exists a chain base $0 = f_0 < f_1 < \dots < f_{n-1} = 1$ such that $P = \langle B, f_0, \dots, f_{n-1} \rangle$ is a P_1 -lattice. Such a chain is unique.

Let P be a bounded distributive lattice with center B . Let $x \Rightarrow y$ denotes the largest $b \in B$ (if it exists) such that $xb \leq y$. P is called a B -algebra, if $x \Rightarrow y$ exists for all $x, y \in P$. $\neg x = 1 \Rightarrow y$ is called the pseudo-supplement of x .

If P is a B -algebra then $x \rightarrow y = y \vee (x \Rightarrow y)$ for all $x, y \in P$.

A P -algebra is a B -algebra satisfying $(x \Rightarrow y) \vee (y \Rightarrow x) = 1$ for all $x, y \in P$. P_0 -lattices which are P -algebras are called P_0P -lattices [2].

Let the least Boolean element greater than or equal to x (if it exists) is noted by $x!$.

It was proved in [2] that, in any P_0P -lattice $P = \langle B, e_0, \dots, e_{n-1} \rangle$:

$$(i) \quad (x \Rightarrow y) \vee (y \Rightarrow z) \leq x \Rightarrow z,$$

$$(ii) \quad x! = \overline{x \Rightarrow 0},$$

$$(iii) \quad (x \vee y)! = x! \vee y! \text{ and } (xy)! = x! \cdot y!$$

(iv) Every element $x \in P$ can be written in the form

$$x = \bigvee_{i=1}^{n-1} D_i(x) \cdot e_i \quad \text{where} \quad D_i(x) = x! \cdot (e_i \Rightarrow x),$$

$i = 1, \dots, n-1$ and the following properties hold:

$$(a) \quad D_1(x) \geq D_2(x) \geq \dots \geq D_{n-1}(x),$$

$$(b) \quad D_1(xy) = D_1(x) \vee D_1(y),$$

$$(c) \quad D_i(xy) = D_i(x) \cdot D_i(y),$$

(d) $D_1(b) = b$ for $b \in B$,

(e) $D_1(e_j) = e_j!$ for $i \leq j$ and $D_1(e_j) = e_j!$ ($e_i \Rightarrow e_j$)
for $i > j$ and in particular $D_{n-1}(e_j) = !e_j$.

A P_2 -lattice is a P_1 -lattice $P = \langle B, e_0, \dots, e_{n-1} \rangle$ such that $!e_i$ exists for all i .

It was proved ([1], Theorem 4.4) that, if $P = \langle B, e_0, \dots, e_{n-1} \rangle$ is a P_0 -lattice of order n and P is a B -algebra, then there exists a unique chain f_0, \dots, f_{n-1} such that $P = \langle B, f_0, \dots, f_{n-1} \rangle$ is a P_2 -lattice.

2. The P_2 -lattice automorphisms

Definition 2.1. Let $P = \langle B, e_0, \dots, e_{n-1} \rangle$ and $P' = \langle B', e'_0, \dots, e'_{m-1} \rangle$ be two P_2 -lattices of orders n and m respectively, then a lattice homomorphism $h : P \rightarrow P'$ is a P_2 -lattice homomorphism provided:

- (i) $h|B$ is a Boolean homomorphism of B into B' ,
- (ii) $h(e_i) \in \{e'_1, \dots, e'_{m-1}\}$ for every $i = 1, \dots, n-1$,
- (iii) $h(x \Rightarrow y) = h(x) \Rightarrow h(y)$.

A one-to-one P_2 -lattice homomorphism of a P_2 -lattice P onto itself is a P_2 -lattice automorphism. Hence, if h is an automorphism of a P_2 -lattice $P = \langle B, e_0, \dots, e_{n-1} \rangle$, then $h(B) = B$, $h(e_i) = e_i$, $i = 1, \dots, n-1$ and $h(x \Rightarrow y) = h(x) \Rightarrow h(y)$, for all $x, y \in P$.

Since in a P_2 -lattice $P = \langle B, e_0, \dots, e_{n-1} \rangle$ $e_i \rightarrow e_j = e_j$ for $i > j$, $!e_i = e_i \rightarrow o = o$ for all $i = 1, \dots, n-1$. Hence, if a is an atom in B ($a \in B$, $a \neq o$ and if $o \neq b \leq a$, then $b = a$), then either $a e_i = a$ or $o < ae_i < a$.

Lemma 2.1. In a P_2 -lattice $P = \langle B, e_0, \dots, e_{n-1} \rangle$ of order n , if $ae_1 = ae_{i+1}$, $a \in B$, then $ae_1 = a$, $i = 1, \dots, n-2$.

Proof. It is obvious for $a = o$. Let $a \neq o$ and $ae_1 = ae_{i+1}$, then $a \neq 1$. Hence $a < ae_{i+1} = ae_1 < e_1$ (because $ae_1 = e_1$ implies e_1 is not dense) which implies $a \leq e_{i+1} \Rightarrow e_1 = !(e_{i+1} \rightarrow e_1) = !e_1 < e_1$ i.e. $a < e_1$.

Definition 2.2. Let $P = \langle B, e_0, \dots, e_{n-1} \rangle$ be a P_2 -lattice of order n with an atomic center B . Let:

- (i) $D_{e_i} = \{a : a \text{ is an atom in } B \text{ and } ae_i = a\}, i = 1, \dots, n-1.$
- (ii) $P_{e_i} = \{a : a \text{ is an atom in } B \text{ and } ae_i < a\}, i = 1, \dots, n-1.$

It is clear that,

$$(a) D_{e_1} \subseteq D_{e_2} \subseteq \dots \subseteq D_{e_{n-1}},$$

$$(b) P_{e_1} \supseteq P_{e_2} \supseteq \dots \supseteq P_{e_{n-1}},$$

and if A is the set of all atoms in B , then

- (c) $A = P_{e_1} \dot{\cup} D_{e_1}$ for all $i = 1, \dots, n-1$, where $\dot{\cup}$ denotes the disjoint union of sets.

Lemma 2.2. $A = \dot{\cup}_{i=1}^{n-2} (P_{e_i} - P_{e_{i+1}}) \dot{\cup} D_{e_1}$ provides a partition of A (some of the terms $P_{e_i} - P_{e_{i+1}}$ may be empty).

Proof. Since $P_{e_{n-1}} = \emptyset$, $P_{e_1} = (P_{e_1} - P_{e_2}) \dot{\cup} (P_{e_2} - P_{e_3}) \dot{\cup} \dots \dot{\cup} (P_{e_{n-2}} - P_{e_{n-1}}) = \dot{\cup}_{i=1}^{n-2} (P_{e_i} - P_{e_{i+1}})$. (Some of the terms $P_{e_i} - P_{e_{i+1}}$ may be empty). Hence, $A = P_{e_1} \dot{\cup} D_{e_1} = \dot{\cup}_{i=1}^{n-2} (P_{e_i} - P_{e_{i+1}}) \dot{\cup} D_{e_1}$ constitute a partition of A .

Lemma 2.3. Let $P = \langle B, e_0, \dots, e_{n-1} \rangle$ be a finite P_2 -lattice of order n . Let h be an automorphism of P , then:

$$(i) h(P_{e_i}) = P_{h(e_i)} = P_{e_i}, i = 1, \dots, n-2,$$

$$(ii) h(D_{e_i}) = D_{h(e_i)} = D_{e_i}, i = 1, \dots, n-2.$$

Proof. (i): Let $a \in P_{e_i}$, $i = 1, \dots, n-2$, then $o < ae_i < a$. Hence, $o < h(a) h(e_i) < h(a)$. Since the chain e_0, \dots, e_{n-1} is unique ([1], Theorem 4.4), $h(e_i) = e_i$, $i = 1, \dots, n-1$ and $o < h(a) e_i < h(a)$ i.e. $h(a) \in P_{e_i}$. The converse implication is simple.

(ii): Let $a \in D_{e_i}$, then $ae_i = a$ and $h(a) e_i = h(a)$ which implies $h(a) \in D_{e_i}$.

The converse implication is simple:

Lemma 2.4. Let $P = \langle B, e_0, \dots, e_{n-1} \rangle$ be a finite P_2 -lattice of order n . Let a be an atom in B , then for any $x \in P$, if $a \leq D_j(x)$ and $a \in D_{e_j}$, then $a \leq D_i(x)$ for all $i = 1, \dots, n-1$.

Proof. The proof is clear for $i \leq j$. Suppose $i > j$ and $a \in D_{e_j}$. Now, $a \leq D_j(x) = x! (e_j \Rightarrow x) \leq e_j \Rightarrow x$ which implies $ae_j \leq x$. Hence, $ae_1 \leq x (a = ae_j \leq ae_1 \leq a)$ which implies $a \leq e_1 \Rightarrow x$. Since $a \leq x!$, $a \leq D_1(x)$.

Theorem 2.1. If $h_0 : B \rightarrow B$ is an automorphism of a finite Boolean algebra B and $P = \langle B, e_0, \dots, e_{n-1} \rangle$ is a P_2 -lattice, then there exists an automorphism h of P such that $h|B = h_0$ if and only if $h_0(P_{e_i}) = P_{e_i}$, $i = 1, \dots, n-2$ and $h_0(D_{e_i}) = D_{e_i}$, $i = 1, \dots, n-2$.

Proof. Since P is finite, P is a P -algebra ([1], Theorem 4.11) and hence is a $P_0 P$ -lattice. Suppose h_0 satisfies $h_0(P_{e_i}) = P_{e_i}$ and $h_0(D_{e_i}) = D_{e_i}$, $i = 1, \dots, n-2$. Let $x, y \in P$, then x and y have the monotonic representations.

$$x = V_{i=1}^{n-1} D_i(x) e_i \quad \text{and} \quad y = V_{i=1}^{n-1} D_i(y) e_i$$

where

$$D_i(x) = x! (e_i \Rightarrow x) \quad \text{and} \quad D_i(y) = y! (e_i \Rightarrow y).$$

Let $h : P \rightarrow P$ be defined by

$$h(x) = V_{i=1}^{n-1} h_0(D_i(x)) e_i.$$

Then,

$$(1) \quad h(D_i(x)) = V_{j=1}^{n-1} h_0(D_j(D_i(x))) e_j = V_{j=1}^{n-1} h_0(D_i(x)) e_j = h_0(D_i(x)).$$

Since $B(x)$ is Boolean, $h|B = h_0$.

$$\begin{aligned}
 (2) \quad D_1(h(x)) &= D_1(v_{j=1}^{n-1} h_0(D_j(x)) e_j) = \\
 &= v_{j=1}^{n-1} D_1(h_0(D_j(x))) D_1(e_j) \quad (D_1 \text{ are homomorphisms}) \\
 &= v_{j=1}^{n-1} h_0(D_j(x)) D_1(e_j) = \\
 &= v_{j=1}^{i-1} h_0(D_j(x)) (!e_j) v_{j=i}^{n-1} h_0(D_j(x)) e_j.
 \end{aligned}$$

Now, $e_j! = \overline{e_1} \Rightarrow \overline{o} = !(\overline{e} \rightarrow \overline{o}) = \overline{!o}$ (e_1 is dense) $= \overline{o} = 1$.

$$\text{Hence } D_1(h(x)) = v_{j=1}^{i-1} h_0(D_j(x)) (!e_j) v_{j=i}^{n-1} h_0(D_j(x)).$$

It is clear that $!e_j = v_{j=i}^{n-1} D_{e_j}$, for $j = 1, \dots, n-1$. In order to prove that $D_1(h(x)) = h_0(D_1(x))$, it remains to show that:

$$(i) \quad h_0(D_j(x)) (!e_j) \leq h_0(D_1(x)), \quad j = 1, \dots, i-1.$$

We shall do it in two steps:

a) If $a \in P_{e_j}$ and $a \in D_j(x)$ for certain $j < i$, then

$h_0(a) \in P_{e_j}$. Since $P_{e_j} \cap D_{e_j} = \emptyset$, $h_0(a) (!e_j) = o$ and hence (i) holds.

b) If $a \in D_{e_j}$ and $a \in D_j(x)$, then $a \in D_1(x)$ (Lemma 2.4).

Hence, $h_0(a) (!e_j) = h_0(a) \leq h_0(D_1(x))$ and again (i) holds. Since there is no third possibility, (i) has been proved.

$$\begin{aligned}
 \text{Hence } D_1(h(x)) &= v_{j=1}^{i-1} h_0(D_j(x)) (!e_j) v_{j=i}^{n-1} h_0(D_j(x)) = \\
 &= h_0(D_1(x)).
 \end{aligned}$$

(3) $h(xVy) = h(x) V h(y)$ and $h(xy) = h(x)h(y)$. The easy proof is omitted.

(4) We shall prove here that $h(e_i) = e_i$, $i = 1, \dots, n-1$. Since $e_i! = 1$ for $i = 1, \dots, n-1$ and

$$e_j \Rightarrow e_i = \begin{cases} 1 & \text{if } j \leq i \\ !e_i & \text{if } j > i \end{cases}.$$

We have $h(e_1) = v_{j=1}^{n-1} h_0(D_j(e_1)) e_j = v_{j=1}^{n-1} h_0(e_1!)(e_j \Rightarrow e_1) e_j =$
 $= v_{j=1}^{n-1} h_0(e_j \Rightarrow e_1) e_j = v_{j=1}^1 e_j v_{j=i+1}^{n-1} h_0(!e_1) e_j =$
 $= e_1 v h_0(!e_1) = e_1 (!e_1 \leq e_1).$

(5) To prove h is one-to-one, let $x, y \in P$, $x = v_{i=1}^{n-1} D_i(x) e_i$,
 $y = v_{i=1}^{n-1} D_i(y) e_i$ and $h(x) = h(y)$. Since the representation
is unique, $h(x) = h(y)$ implies that $D_i(h(x)) = D_i(h(y))$
for $i = 1, \dots, n-1$. Hence, (2) implies $h_0(D_i(x)) =$
 $= h_0(D_i(y))$ for $i = 1, \dots, n-1$. Hence $x = y$.

(6) To prove h is onto, let $y = v_{i=1}^{n-1} D_i(y) e_i$ be a mon. rep.
of $y \in P$. Let $x = v_{i=1}^{n-1} h_0^{-1} - 1 (D_i(y)) e_i$. It is easy to
show that $x = v_{i=1}^{n-1} h_0^{-1} (D_i(y)) e_i$, is a mon. rep. of x ;
and $h(x) = y$.

(7) We shall prove that, $h(x \Rightarrow y) = h(x) \Rightarrow h(y)$ for all
 $x, y \in P$. Since h is a lattice automorphism, h is
order embedding i.e. $x \leq y$ if and only if $h(x) \leq h(y)$
([3] Theorem III. 1.4), hence,
(i) $h(x \Rightarrow y) h(x) = h(x(x \Rightarrow y)) \leq h(y)$ which implies
 $h(x \Rightarrow y) \leq h(x) \Rightarrow h(y)$.
(ii) Let $b = h(x) \Rightarrow h(y)$, then $b h(x) \leq h(y)$ which
implies $h_0^{-1}(b) x \leq y$ (h is order embedding). Hence,
 $h_0^{-1}(b) \leq x \Rightarrow y$ and $b \leq h_0(x \Rightarrow y) = h(x \Rightarrow y)$ i.e.
 $h(x) \Rightarrow h(y) \leq h(x \Rightarrow y)$ and (7) is proved.

Now, (i), ..., (7) imply that h is a P_2 -lattice automorphism
of P with $h(e_i) = e_i$ for $i = 1, \dots, n-1$ and $h|B = h_0$. The con-
verse implication follows by Lemma 2.3.

It is clear that the automorphism h defined by The-
rem 2.1 is unique.

R e m a r k 2.1. The following theorem is well known
in abstract algebra "If A is a set of m elements, then the
number of permutations on A that leaves a set $S \subseteq A$ or r ele-
ments ($r < m$) fixed is $(m-r)! r!$ ".

Theorem 2.2. Let $P = \langle B, e_0, \dots, e_{n-1} \rangle$ be a finite P_2 -lattice with the center $B = 2^m$, then the number of automorphisms of P is

$$\prod_{i=1}^{n-2} (p_i)! (d_1)! \quad \text{where} \quad d_1 = |D_{e_1}|, \quad p_i = |P_{e_i} - P_{e_{i+1}}|$$

$i = 1, \dots, n-2$, D_{e_1} and P_{e_i} , $i = 1, \dots, n-2$ defined earlier.

Proof. Let A be the set of all atoms in B . Hence $|A| = m$ and by Lemma 2.2 A has the partition

$$A = \dot{\cup}_{i=1}^{n-2} (P_{e_i} - P_{e_{i+1}}) \dot{\cup} D_{e_1}. \quad \text{Hence, if } m = |A|,$$

$$p_i = |P_{e_i} - P_{e_{i+1}}|, \quad i = 1, \dots, n-2 \text{ and } d_1 = |D_{e_1}|,$$

then,

$$m = \sum_{i=1}^{n-2} p_i + d_1.$$

By Theorem 2.1, the only automorphisms h_0 of B that can be extended to automorphisms of P are the automorphisms that leave each of the sets $P_{e_i} - P_{e_{i+1}}$, $i = 1, \dots, n-2$ and D_{e_1} fixed. Hence, by Remark 2.1, the number of automorphisms of P is greater than or equal to $\prod_{i=1}^{n-2} (p_i)! (d_1)!.$ Since the extension of h_0 is unique, the number is exactly $\prod_{i=1}^{n-2} (p_i)! (d_1)!.$

REFERENCES

- [1] G. Epstein, A. Horn: Chain based lattices, Pacific J. Math. 55 (1974), 65-84.
- [2] J. Kłukowski, N. Zworski: On the representation of P_0 -lattices being P -algebras, Demonstratio Math. 18 (1985) 103-114.

- [3] H. Rasiowa : An algebraic approach to non-classical logics. North Holland Publishing Company, Amsterdam, 1974.
- [4] T. Traczyk : Axioms and some properties of Post-algebras, *ibidem* 10 (1963) 193-209.

AL-FATEH UNIVERSITY, TRIPOLI, LIBYA,

Received April 8, 1988.

