

Mirko Polonijo

TRANSITIVE n-QUASIGROUPS

In the present note we generalize the notion of right transitivity to n -quasigroups and define it by the constraints (T_n) and (U_n) . It is shown that for every right transitive n -quasigroup (\mathcal{C}, \cdot) there is a group $(Q, +)$ such that

$$\cdot(x_1, x_2, \dots, x_n) = x_1 - x_2 - \dots - x_n.$$

The law of right transitivity for binary quasigroups (Q, \cdot) is given by the identity

$$xz \cdot yz = xy$$

and it is well-known that the operation \cdot in a right transitive quasigroup is in fact subtraction in a certain group, [2], [3]. Namely, if (Q, \cdot) is a right transitive quasigroup, then there is a group $(Q, +)$ such that

$$xy = x-y$$

for all $x, y \in Q$, where $-y$ is the inverse of y in the group $(Q, +)$ and $x-y = x+(-y)$.

Now, for a group $(Q, +)$ let us introduce an n -ary operation \cdot on Q , $\cdot: Q^n \rightarrow \mathcal{C}$, $r \in \mathbb{N} \setminus \{1\}$, by the definition

$$\cdot(x_1^r) = \cdot(x_1, x_2, \dots, x_n) = x_1 - x_2 - \dots - x_n.$$

It is easy to verify that (Q, \cdot) is an n -quasigroup (see [1] for the definitions and notation) which satisfies the following two conditions:

$$(T_n) \quad A(A(x_1^j, y_1^{n-j}), y_{n-j+1}^{n-1}, A(x_{j+1}, y_1^{n-1}), x_{j+2}^n) = A(x_1^n)$$

for all $x_1, \dots, x_n, y_1, \dots, y_n \in Q$ and every $j \in \{1, 2, \dots, n-1\}$

(U_n) There is an element 0 ∈ Q such that

$$A(x, 0, x, 0) = 0$$

for all $x \in Q$ and every $j \in \{0, 1, \dots, n-2\}$.

Indeed, if one takes the zero of the group (Q, +) as the element 0, then (U_n) is fulfilled, and the condition (T_n) is valid too since we have

$$\begin{aligned} & A(A(x_1^j, y_1^{n-j}), y_{n-j+1}^{n-1}, A(x_{j+1}, y_1^{n-1}), x_{j+2}^n) = \\ & = (x_1 - x_2 - \dots - x_j - y_1 - \dots - y_{n-j}) - y_{n-j+1} - \dots - y_{n-1} - \\ & - (x_{j+1} - y_1 - \dots - y_{n-1}) - x_{j+2} - \dots - x_n = \\ & = x_1 - x_2 - \dots - x_j - y_1 - \dots - y_{n-1} + y_{n-1} + \dots + y_1 - x_{j+1} - x_{j+2} - \dots - x_n = \\ & = x_1 - x_2 - \dots - x_j - x_{j+1} - \dots - x_n = A(x_1^n). \end{aligned}$$

In particular, the identity (T₂) has the following form

$$A(A(x_1, y_1), A(x_2, y_1)) = A(x_1, x_2),$$

i.e. it is the right transitivity, and in that case (U₂) is satisfied too.

Therefore, we shall say that an n-quasigroup (Q, A) is a right transitive n-quasigroup iff it satisfies the constraints (T_n) and (U_n). Such an n-quasigroup will be shortly called transitive n-quasigroup.

Namely, let be reminded that the identity

$$zx \cdot zy = xy$$

is the law of left transitivity and it is obvious that a binary quasigroup (Q, ·) is left transitive iff the quasigroup

(Q, \circ) , defined by $x \circ y = yx$, is right-transitive. Hence one possibility for a generalization of left transitivity to n-quasigroups is the following: an n-quasigroup (Q, A) is left transitive iff n-quasigroup (Q, \hat{A}) defined by $\hat{A}(x_1^n) = A(x_n, \dots, x_2, x_1)$ is right transitive. Therefore, it is enough to investigate only right transitive n-quasigroups and, as we said before, they are shortly called transitive n-quasigroups.

Particularly, for a transitive 3-quasigroup, resp. 4-quasigroup (Q, A) we get:

$$\begin{aligned} (T_3) \quad & A(A(x_1, y_1, y_2), A(x_2, y_1, y_2), x_3) = \\ & = A(A(x_1, x_2, y_1), y_2, A(x_3, y_1, y_2)) = \\ & = A(x_1, x_2, x_3); \end{aligned}$$

(U_3) There is $0 \in Q$ such that

$$A(x, x, 0) = A(x, 0, x) = 0;$$

$$\begin{aligned} (T_4) \quad & A(A(x_1, y_1, y_2, x_3), A(x_2, y_1, y_2, y_3), x_3, x_4) = \\ & = A(A(x_1, x_2, y_1, y_2), y_3, A(x_3, y_1, y_2, y_3), x_4) = \\ & = A(A(x_1, x_2, x_3, y_1), y_2, y_3, A(x_4, y_1, y_2, y_3)) = \\ & = A(x_1, x_2, x_3, x_4); \end{aligned}$$

(U_4) There is $0 \in Q$ such that

$$A(x, x, 0, 0) = A(x, 0, x, 0) = A(x, 0, 0, x) = 0.$$

Proposition 1. If (Q, A) is a transitive n-quasigroup then the following assertions hold:

$$(i) \quad A(x, \overset{n-1}{0}) = x, \text{ for all } x \in Q,$$

$$(ii) \quad A(x, y, \overset{n-2}{0}) = A(x, \overset{j-2}{0}, y, \overset{n-j}{0}), \text{ for all } x, y \in Q$$

and every $j \in \{2, \dots, n-2\}$,

$$(iii) \quad A(A(x_1^j, \overset{n-j}{0}), x_{j+1}, \overset{n-2}{0}) = A(x_1^{j+1}, \overset{n-j-1}{0})$$

for all $x_1, \dots, x_{j+1} \in Q$ and every $j \in \{1, \dots, n-1\}$.

Proof. (i) Because of (U_n) it follows $A(0) = 0$ and hence $A(x, 0) = A(A(x, 0), A(0, 0), 0) = A(A(x, 0), 0)$ which implies (i),

$$(ii) \quad A(x, 0, y, 0) =$$

$$= A(A(x, 0, 0), y, 0, A(y, 0, y, 0), 0) =$$

$$= A(x, y, 0),$$

$$(iii) \quad A(A(x_1^j, 0), x_{j+1}, 0) = A(A(x_1^j, 0), 0, x_{j+1}, 0) =$$

$$= A(A(x_1^j, 0), 0, A(x_{j+1}, 0), 0) =$$

$$= A(x_1^{j+1}, 0).$$

Proposition 2. Let (Q, A) be a transitive n -quasigroup and $+$ binary operation on Q defined by

$$x+y = A(x, A(0, y, 0), 0).$$

Then $(Q, +)$ is a group.

Proof. Obviously, $(Q, +)$ is a quasigroup. Moreover, it is a loop with the unit 0 since

$$x+0 = A(x, A(0), 0) = A(x, 0) = x$$

$$0+x = A(0, A(0, x, 0), 0) =$$

$$= A(A(x, x, 0), A(0, x, 0), 0) =$$

$$= A(x, 0, 0) = x.$$

Further, for all $x, y, z \in Q$ we have

$$A(x, y, 0) = A(A(x, A(0, z, 0), 0), A(y, A(0, z, 0), 0), 0) =$$

$$= A(x+z, y+z, 0)$$

and hence

$$A(x+y, y, 0) = A(x+y, 0+y, 0) = A(x, 0) = x$$

and the associativity follows:

$$\begin{aligned} (x+y)+z &= A((x+y)+z, 0) = \\ &= A(A((x+y)+z, y+z, 0), A(0, y+z, 0)) = \\ &= A(A(x+y, y, 0), A(0, y+z, 0)) = \\ &= A(x, A(0, y+z, 0)) = x+(y+z), \end{aligned}$$

i.e. $(Q, +)$ is a group with the unit 0. The inverse $-x$ of an element $x \in Q$ is given by $-x = A(0, x, 0)$, because of $-x =$
 $= A(-x+x, x, 0)$.

Proposition 3. For a transitive n-quasi-group (Q, A) there is a group $(Q, +)$ such that

$$A(x_1^n) = x_1 - x_2 - \dots - x_n.$$

Proof. Let $(Q, +)$ be the group defined in the previous proposition. Then we get

$$A(x, y, 0) = A(x-y, y-y, 0) = A(x-y, 0) = x-y$$

and Proposition 1 implies

$$\begin{aligned} A(x_1^n) &= A(A(x_1^{n-1}, 0), x_n, 0) = \\ &= A(x_1^{n-1}, 0) - x_n = \\ &= \dots = \\ &= A(x_1^{j+1}, 0^{n-j-1}) - x_{j+2} - \dots - x_n = \end{aligned}$$

$$\begin{aligned}
 &= A(A(x_1^j, \underset{0}{\overset{n-j}{\dots}}, x_{j+1}, \underset{0}{\overset{n-2}{\dots}}) - x_{j+2} - \dots - x_n) = \\
 &= A(x_1^j, \underset{0}{\overset{n-j}{\dots}}) - x_{j+1} - x_{j+2} - \dots - x_n = \\
 &= \dots = \\
 &= A(x_1, x_2, \underset{0}{\overset{n-2}{\dots}}) - x_3 - \dots - x_n = \\
 &= x_1 - x_2 - \dots - x_n.
 \end{aligned}$$

REFERENCES

- [1] V.D. Belousov : *n-arye kvazigruppy*, Štiineca, Kišinev, 1972.
- [2] J. Denes, A.D. Keedwell : *Latin squares and their applications*, Akadémiai Kiadó, Budapest, 1974.
- [3] M. Polonijo : A note on Ward quasigroups, *An. Sti. Univ. Iași, Sect. Ia Mat.* 32 (1986), 5-10.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF ZAGREB,
41001 ZAGREB, YUGOSLAVIA

Received April 6, 1988.