

Bogusław Merdas

REMARKS ON SCHATTEN - VON NEUMANN CLASSES C_p

Operator ideals C_p ($0 < p \leq \infty$) have been introduced by J. von Neumann and R. Schatten [7] in 1946. They are natural generalizations of the nuclear (trace-class) operators and the Hilbert-Schmidt operators. In §1 we define the p -projective tensor product $X \hat{\otimes} Y$ of Banach spaces X and Y and describe its dual space. In §2 we show that the analogue of the Grothendieck theorem is not true for C_p . In §3 we show that C_p ($0 < p < 1$) does not have the minorant property. In §4 we consider Schur multipliers on C_p , $0 < p \leq 1$. In this paper we use the following notation: \mathbb{N} is the set of positive integers, \mathbb{R} - real numbers, \mathbb{C} - complex numbers, H - infinite dimensional separable Hilbert space, l_2^n - n -dimensional Hilbert space, $\langle \cdot, \cdot \rangle$ is the scalar product in a Hilbert space. We write "operator" ("functional") instead of "linear operator" (respectively "linear functional"). If X and Y are Banach spaces then $L(X, Y)$ is the space of all continuous operators from X into Y with the usual operator norm. $L(X)$ is the space of all continuous operators on X . All considered linear spaces are complex.

I am grateful to Marek Bożejko for drawing my attention to the subject of this paper and for helpful suggestions.

1. p -norms ($0 < p \leq 1$). p -projective tensor product of Banach spaces

Let us recall that a real-valued function $\|\cdot\|_p$ on a linear space X is said to be a p -norm if for all $x, y \in X$ and $\lambda \in \mathbb{C}$

(i) $\|x\|_p \geq 0$; $\|x\|_p = 0$ if and only if $x = 0$,
(ii) $\|\lambda x\|_p = |\lambda| \|x\|_p$,
(iii) $\|x + y\|_p^p \leq \|x\|_p^p + \|y\|_p^p$ (p-triangle inequality).

It follows from (iii) that

$$\|x + y\|_p \leq 2^{\frac{1}{p}-1} (\|x\|_p + \|y\|_p).$$

Putting $d(x, y) = \|x - y\|_p^p$ we define a (translation invariant) metric on X . $(X, \|\cdot\|_p)$ is said to be a p-Banach space, if the above metric is complete.

Let X and Y be Banach spaces and $X \otimes Y$ their algebraic tensor product. We define the function $\|\cdot\|_p$ on $X \otimes Y$ as follows

$$\|u\|_p = \inf \left(\sum_{i=1}^n \|x_i\|_p^p \|y_i\|_p^p \right)^{\frac{1}{p}}$$

where the infimum is taken over all representations

$$u = \sum_{i=1}^n x_i \otimes y_i, \quad x_i \in X, y_i \in Y.$$

Lemma 1.1. The function $\|\cdot\|_p$ is a p-norm on $X \otimes Y$.

Proof. (ii) is obvious. Let $u, v \in X \otimes Y$. Take $\epsilon > 0$ and such representations

$$u = \sum_{i=1}^n x_i \otimes y_i \quad \text{and} \quad v = \sum_{j=1}^m t_j \otimes s_j$$

that

$$\sum_{i=1}^n \|x_i\|_p^p \|y_i\|_p^p \leq \|u\|_p^p + \frac{\epsilon}{2} \quad \text{and} \quad \sum_{j=1}^m \|t_j\|_p^p \|s_j\|_p^p \leq \|v\|_p^p + \frac{\epsilon}{2}.$$

Then we have

$$\|u+v\|_p^p \leq \sum_{i=1}^n \|x_i\|_p^p \|y_i\|_p^p + \sum_{j=1}^m \|t_j\|_p^p \|s_j\|_p^p \leq \|u\|_p^p + \|v\|_p^p + \epsilon.$$

Letting $\epsilon \rightarrow 0$ we get (iii). Now we prove (i). Let $x^* \in X^*$, $y^* \in Y^*$, u as above. Then $(x^* \otimes y^*)(u) = \sum_{i=1}^n x^*(x_i) y^*(y_i)$ and

$$\left| \sum_{i=1}^n x^*(x_i) y^*(y_i) \right|^p \leq \sum_{i=1}^n |x^*(x_i)|^p |y^*(y_i)|^p \leq \|x^*\|^p \|y^*\|^p (\|u\|_p^p + \epsilon),$$

hence $|x^* \otimes y^*(u)| \leq \|x^*\| \cdot \|y^*\| \cdot \|u\|_p$. If $u \neq 0$ then we take such a representation $u = \sum_{i=1}^n x_i \otimes y_i$ that x_1, \dots, x_n are linearly independent. We define the functional \bar{x}^* on the subspace $\text{lin}\{x_1, \dots, x_n\}$ by $\bar{x}^*(x_i) = \delta_{ii}$ (δ_{ij} - Kronecker's symbol) and extend it to a functional $x^* \in X$. Taking $y^* \in Y$ so that $y_1 \notin \ker y^*$ we have $x^* \otimes y^*(u) = x^*(x_1) y^*(y_1) \neq 0$, hence $\|u\|_p \neq 0$. ■

Remark [6]. If $p > 1$ then we have for every $u \in X \otimes Y$

$$\|u\|_p = \inf \left(\sum_{i=1}^n \|x_i\|^p \|y_i\|^p \right)^{\frac{1}{p}} = 0.$$

The space $(X \otimes Y, \|\cdot\|_p)$, $0 < p \leq 1$, need not to be complete. Let $X \hat{\otimes} Y$ denote its completion and we call it the p -projective tensor product of X and Y . Using the same idea as in [3] with obvious modifications one can show

Theorem 1.2. Let $u \in X \hat{\otimes} Y$ and $\epsilon > 0$. Then there exist sequences (x_n) in X and (y_n) in Y such that $u = \sum_{n=1}^{\infty} x_n \otimes y_n$ and $\sum_{n=1}^{\infty} \|x_n\|^p \|y_n\|^p \leq \|u\|_p^p + \epsilon$.

Corollary 1.3. If X and Y are Banach spaces then $X \hat{\otimes} Y$ is p -Banach space.

Proof. Let $\epsilon > 0$ and $u, v \in X \hat{\otimes} Y$. Take representations

$$u = \sum_{i=1}^{\infty} x_i \otimes y_i, \quad v = \sum_{j=1}^{\infty} t_j \otimes s_j \quad \text{and} \quad n, m \in \mathbb{N}$$

such that

$$\sum_{i=1}^n \|x_i\|^p \|y_i\|^p \leq \|u\|_p^p + \frac{\epsilon}{2}, \quad \sum_{j=1}^{\infty} \|t_j\|^p \|s_j\|^p \leq \|v\|_p^p + \frac{\epsilon}{2}.$$

Reasoning analogically as in the proof of Lemma 1 we show that $\|\cdot\|_p$ is a p -norm on $X \hat{\otimes}_p Y$. ■

Let X be a p -Banach space. By the dual space X^* of X we mean the set of all continuous functionals on X .

Lemma 1.4. Let X be a p -Banach space. For $f \in X^*$

$$\|f\| = \sup \{ |f(u)| : u \in X \text{ and } \|u\|_p \leq 1 \}$$

is a norm and X^* with the above norm becomes a Banach space.

Proof. The triangle inequality follows from the properties of supremum. It is clear that other properties of a norm also hold. The proof of the completeness of X^* is identical to that in case of a normed space X . ■

Theorem 1.5. Let X and Y be Banach spaces. Then $(X \hat{\otimes}_p Y)^*$ is isometrically isomorphic to $L(X, Y^*)$, the space of all bounded operators from X to Y^* . The isomorphism is given by the correspondence $F: L(X, Y^*) \rightarrow (X \hat{\otimes}_p Y)^*$, $F(A) = f_A$, where

$$f_A \left(\sum_{i=1}^{\infty} x_i \otimes y_i \right) = \sum_{i=1}^{\infty} (Ax_i)(y_i) \quad \text{for } A \in L(X, Y^*).$$

Moreover, $\|f_A\| = \sup \{ |f_A(u)| : \|u\|_p \leq 1, u \in D \}$, where

$$D = \{ x \otimes y : x \in X, y \in Y \}.$$

Proof. Let $A \in L(X, Y^*)$. We show that f_A is a continuous functional on $X \hat{\otimes}_p Y$ and $\|f_A\| \leq \|A\|$. Let $\epsilon > 0$. Take such a representation $u = \sum_{i=1}^{\infty} x_i \otimes y_i$ that $\sum_{i=1}^{\infty} \|x_i\|^p \|y_i\|^p \leq \|u\|_p^p + \epsilon$. Then

$$|f_A(u)|^p \leq \left| \sum_{i=1}^{\infty} (Ax_i)(y_i) \right|^p \leq \sum_{i=1}^{\infty} \|Ax_i\|^p \|y_i\|^p \leq \|A\|^p (\|u\|_p^p + \varepsilon).$$

Letting $\varepsilon \rightarrow 0$ we obtain $|f_A(u)| \leq \|A\| \cdot \|u\|_p$, so $\|f_A\| \leq \|A\|$. Conversely, consider sequences (x_n) in X and (y_n) in Y such that $\|x_n\| \leq 1$, $\|y_n\| \leq 1$ and

$$\|Ax_n\| \geq \|A\| - \frac{1}{2n}, \quad |(Ax_n)(y_n)| \geq \|Ax_n\| - \frac{1}{2n}.$$

Then we have

$$\begin{aligned} \sup \{ |f_A(u)| : \|u\|_p \leq 1, u \in D \} &\geq |f_A(x_n \otimes y_n)| = |(Ax_n)(y_n)| \\ &\geq \|Ax_n\| - \frac{1}{2n} \geq \|A\| - \frac{1}{n}. \end{aligned}$$

Consequently, $\|f_A\| \geq \sup \{ |f_A(u)| : u \in D, \|u\|_p \leq 1 \} \geq \|A\|$ and F is "1-1". On the other hand, if $f \in (X \otimes Y)^*$ then we define $A \in L(X, Y^*)$ as follows: for $x \in X$ and $y \in Y$ we put $(Ax)(y) = f(x \otimes y)$. Then $f_A = f$. ■

2. $C_p(H)$ -spaces

Let $A: H \rightarrow H$ be a compact operator. Then it has the Schmidt representation $A = \sum_{n=1}^{\infty} \mu_n f_n \otimes g_n$, where (f_n) , (g_n) are orthonormal sets in H and (μ_n) is the sequence of eigenvalues of the operator $|A| = (A^* A)^{\frac{1}{2}}$ rearranged in decreasing order. Let us recall that $f \otimes g: H \rightarrow H$ is the operator of rank one defined by $(f \otimes g)(x) = \langle x, g \rangle f$, for $x \in H$.

Let $0 < p < \infty$. We say that A belongs to the Schatten-von Neumann class $C_p(H) = C_p$, if $\|A\|_p = \left(\sum_{n=1}^{\infty} \mu_n^p \right)^{\frac{1}{p}} < \infty$. We define $C_{\infty} = L(H)$ and $\|A\|_{\infty} = \|A\|$. In the case $p = 1$ we have the trace class operators; $p=2$ - the Hilbert-Schmidt operators. It is

well known that if $1 \leq p \leq \infty$, C_p is a Banach space with the norm $\|\cdot\|_p$, and, if $0 < p < 1$, a p -Banach space with the p -norm $\|\cdot\|_p$. If $0 < p \leq q \leq \infty$ then $C_p \subset C_q$ and for $A \in C_p$ $\|A\|_q \leq \|A\|_p$, see [4]. C_p are also operator ideals i.e. if $A \in C_p$, $T, S \in L(H)$ then $TAS \in C_p$ and $\|TAS\|_p \leq \|T\| \cdot \|A\|_p \|S\|$. Since $\|A\| = \|A\|_\infty \leq \|A\|_p$, C_p are algebras under the operator composition. If $A \in C_1$ we define the trace of A by $\text{Tr}(A) = \sum_{n=1}^{\infty} \langle Ae_n, e_n \rangle$, where (e_n) is (any) orthonormal basis of H . $\text{Tr}(A)$ does not depend on the choice of the basis (e_n) . If $\frac{1}{p} + \frac{1}{q} = 1$, $1 \leq p < \infty$, $A \in C_p$, $B \in C_q$ then $AB, BA \in C_1$, $\text{Tr}(AB) = \text{Tr}(BA)$ and $|\text{Tr}(AB)| \leq \|A\|_p \|B\|_q$, $\|AB\|_1 \leq \|A\|_p \|B\|_q$. Moreover,

$$\|A\|_p = (\text{Tr}|A|^p)^{\frac{1}{p}} = \sup\{|\text{Tr}(AB)| : \|B\|_q \leq 1\}.$$

The dual C_p^* is isometrically isomorphic to C_q and $(K(H))^* = C_1$, where $K(H)$ is the space of all compact operators on H . The isomorphism is given by $B \in C_q \rightarrow \{C_p \ni A \rightarrow \text{Tr}(AB) \in C\}$. We shall use the following result [10]:

$$H \underset{p}{\hat{\otimes}} H = C_p \quad \text{for } 0 < p \leq 1.$$

Corollary 2.1. If $0 < p \leq 1$ then C_p^* is isometrically isomorphic to $C_\infty = L(H)$. The isomorphism is given by the mapping

$$(*) \quad C_p \ni U \rightarrow \text{Tr}(AU) \in C, \quad \text{where } A \in C_\infty.$$

Proof. This is an immediate consequence of Theorem 1.5 and the result mentioned above. We only check that $(*)$ and the formula given in Theorem 1.5 are the same. In fact, if $U = \sum_{n=1}^{\infty} \mu_n f_n \otimes g_n$ then $f_A(U) = \sum_{n=1}^{\infty} (A(\mu_n f_n))(g_n) = \sum_{n=1}^{\infty} \mu_n \langle Af_n, g_n \rangle$. In turn, if (e_i) is an orthonormal basis in H , we have

$$\begin{aligned}
 \text{Tr}(AU) &= \text{Tr}\left(\sum_{n=1}^{\infty} \mu_n(Af_n) \otimes g_n\right) = \sum_{i=1}^{\infty} \left\langle \left(\sum_{n=1}^{\infty} \mu_n(Af_n) \otimes g_n\right)(e_i), e_i \right\rangle = \\
 &= \sum_{i=1}^{\infty} \sum_{n=1}^{\infty} \langle \mu_n \langle e_i, g_n \rangle Af_n, e_i \rangle = \sum_{n=1}^{\infty} \mu_n \sum_{i=1}^{\infty} \langle Af_n, e_i \rangle \langle e_i, g_n \rangle = \\
 &= \sum_{n=1}^{\infty} \mu_n \langle Af_n, g_n \rangle. \blacksquare
 \end{aligned}$$

Some properties of C_p (we may also define $C_0 = K(H)$), i.e. inclusions, duality, are similar to those of sequence spaces c_0 , l_p . We recall an interesting result of Grothendieck and we show that its analogue for C_p is not true. Let X and Y be Banach spaces. A bounded operator $T: X \rightarrow Y$ is said to be p -absolutely summing ($0 < p < \infty$) if there exists a positive constant K such that for every $n \in \mathbb{N}$ and $x_1, \dots, x_n \in X$

$$\sum_{i=1}^n \|Tx_i\|^p \leq K^p \cdot \sup \left\{ \sum_{i=1}^n |x^*(x_i)|^p : x^* \in X^*, \|x^*\| \leq 1 \right\}.$$

Grothendieck has proved [5] that every bounded operator $T: l_1 \rightarrow l_2$ is 1-absolutely summing.

Theorem 2.2. The injection $C_p \hookrightarrow C_2$ is not a p -absolutely summing operator for $1 \leq p < 2$.

Proof. Let (e_i) be an orthonormal basis in H , $n \in \mathbb{N}$. Let us define $P_{ik}: H \rightarrow H$, $P_{ik}(e_l) = \delta_{il}e_k$. Then

$$\|P_{ik}\|_2 = 1 \text{ and } \sum_{k=1}^n \|P_{ik}\|_2^p = n. \text{ Now we estimate}$$

$\sup \left\{ \sum_{k=1}^n |\text{Tr}(P_{1k}B)|^p : B \in C_{\infty}, \|B\| \leq 1 \right\}$. Let $(b_{ij}) = B(i, j)$ be the matrix of B in the basis (e_i) . Then

$$P_{1k}B(i, j) = \begin{cases} b_{1j} & \text{if } i = k \\ 0 & \text{otherwise.} \end{cases} \text{ and } \text{Tr}(P_{1k}B) = b_{1k}.$$

Since $\|B\| = \|B^*\| \geq \|B^*e_1\| = \left\| \sum_{k=1}^{\infty} \bar{b}_{1k} e_k \right\| \geq \left(\sum_{k=1}^n |b_{1k}|^2 \right)^{\frac{1}{2}}$, it is sufficient to compute the maximum of the function $h_p(b_{11}, \dots, b_{1n}) = \sum_{k=1}^n |b_{1k}|^p$, $1 \leq p < 2$ if $\sum_{k=1}^n |b_{1k}|^2 = 1$. It is well known, that h_p has its maximum if $|b_{11}| = \dots = |b_{1n}| = n^{-\frac{1}{2}}$. Consequently, we have

$$\max h_p(b_{11}, \dots, b_{1n}) = n \cdot \left(n^{\frac{1}{2}} \right)^p = n^{1-\frac{p}{2}}.$$

If the injection $C_p \hookrightarrow C_2$ is a p -absolutely summing operator, then we have for some positive constant K

$$\begin{aligned} n &= \sum_{k=1}^n \|P_{1k}\|_2^p \leq K^p \sup \left\{ \sum_{k=1}^n |\text{Tr}(P_{1k}B)|^p : B \in C_q, \|B\|_q \leq 1, \frac{1}{p} + \frac{1}{q} = 1 \right\} \\ &\leq K^p \sup \left\{ \sum_{k=1}^n |\text{Tr}(P_{1k}B)|^p : B \in C_\infty, \|B\| \leq 1 \right\} = K^p \cdot n^{1-\frac{p}{2}}. \end{aligned}$$

Since n may be arbitrarily large, we get the contradiction. ■

3. The minorant property in C_p

Let (e_i) be an orthonormal basis in H . For $A \in L(H)$ we set $a_{ij} = \hat{A}(i, j) = \langle Ae_j, e_i \rangle$, $i, j \in \mathbb{N}$. Let $A, B \in L(H)$. We say that A is a minorant of B if $|a_{ij}| \leq b_{ij}$ for every $i, j \in \mathbb{N}$. Then we write $|\hat{A}| \leq \hat{B}$. $C_p(H)$ is said to have the minorant property (positive minorant property) if for every $A, B \in C_p(H)$ from $|\hat{A}| \leq \hat{B}$ ($0 \leq \hat{A} \leq \hat{B}$ respectively) it follows that $\|A\|_p \leq \|B\|_p$. It has been proved by Peller [9] that $C_p(H)$ has the minorant property if and only if $p = 2k$, for some $k \in \mathbb{N}$. Moreover, for every $p \neq 2k$ there exists $n \in \mathbb{N}$ such that $C_p(l_2^n)$ does not have the minorant property. Let $N(p) = \min\{n \in \mathbb{N} : C_p(l_2^n)$ does not have the minorant property}. Dechamps-Gondim, Lust-Piquard and Queffélec proved [2] that

- 1) $N(p) \leq \left[\frac{p}{2} \right] + 2$, $1 \leq p < \infty$, $p \neq 2k$;
- 2) $C_p(H)$ has the minorant property if and only if it has the positive minorant property;
- 3) $C_p(l_2^2)$ does not have the positive minorant property for $1 \leq p < 2$.

We show that result for the case $0 < p < 1$.

Proposition 3.1. If $0 < p < 1$ then $C_p(l_2^2)$ does not have the minorant property nor the positive minorant property.

Proof. Let $A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$, $B = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$. Then $0 \leq A \leq B$ and $\|A\|_p = (\text{Tr}|A|^p)^{\frac{1}{p}} = 2^{\frac{1}{p}}$. On the other hand, $B = |B|$ and the matrix of B in the basis of its eigenvectors is $\begin{bmatrix} 2 & 0 \\ 0 & 0 \end{bmatrix}$, so $\|B\|_p = (\text{Tr}|B|^p)^{\frac{1}{p}} = (2^p)^{\frac{1}{p}} = 2$. ■

4. Schur multipliers on C_p , $0 < p \leq \infty$

Throughout this section we fix an orthonormal basis (e_i) in H . We consider bounded operators on H as matrices i.e. functions on $N \times N$. For $A \in L(H)$ let $a_{i,j} = A(i,j) = \langle Ae_j, e_i \rangle$. If A, B are infinite matrices, we define their Schur product to be the matrix $A \cdot B$ such that $A \cdot B(i,j) = A(i,j) \cdot B(i,j)$. An infinite matrix Φ is said to be a Schur multiplier on C_p , if $\Phi \cdot A \in C_p$ whenever $A \in C_p$. Let $M(C_p)$ denote the set of all Schur multipliers on C_p . It follows from closed graph theorem (which is also true for p -Banach spaces) that

$$\|\Phi\|_{M(C_p)} = \sup \{ \|\Phi \cdot A\|_p : A \in C_p, \|A\|_p \leq 1 \} < \infty$$

for $\Phi \in M(C_p)$. It is easy to see that $M(C_p)$ is a Banach space with the norm $\|\cdot\|_{M(C_p)}$, if $1 \leq p \leq \infty$, and a p -Banach space with the p -norm $\|\cdot\|_{M(C_p)}$, if $0 < p < 1$. It is known that $M(C_1) = M(C_\infty)$ consists of all matrices of the form $(\langle x_i, y_j \rangle)$, where x_i, y_j are vectors in a Hilbert space, $\|x_i\| < \infty$, $\|y_j\| < \infty$ for

some constant c (Grothendieck [5], Bennett [1]). $M(C_p)$ is the set of all bounded matrices, because $\|A\|_2 = \left(\sum_{i,k}^{\infty} |a_{ik}|^2 \right)^{\frac{1}{2}}$. We are interested in the case $0 < p < 1$.

Proposition 4.1. Let $A, B \in C_p$, $0 < p \leq 1$. Then $A \cdot B \in C_p$ and $\|A \cdot B\|_p \leq \|A\|_p \|B\|_p$.

Proof. We use the characterisation of C_p : $C_p = H \hat{\otimes} H$. Let $\epsilon > 0$. Take such representations $A = \sum_{n=1}^{\infty} x_n \otimes y_n$ and $B = \sum_{m=1}^{\infty} u_m \otimes v_m$ that

$$\sum_{n=1}^{\infty} \|x_n\|^p \|y_n\|^p \leq \|A\|_p^p + \epsilon \quad \text{and} \quad \sum_{m=1}^{\infty} \|u_m\|^p \|v_m\|^p \leq \|B\|_p^p + \epsilon.$$

For $x, y \in H$ we define $x \cdot y \in H$ as follows: $\langle x \cdot y, e_1 \rangle = \langle x, e_1 \rangle \langle y, e_1 \rangle$. Then

$$\begin{aligned} \|x \cdot y\| &= \left(\sum_{i=1}^{\infty} |\langle x \cdot y, e_i \rangle|^2 \right)^{\frac{1}{2}} \leq \sum_{i=1}^{\infty} |\langle x \cdot y, e_i \rangle| = \\ &= \sum_{i=1}^{\infty} |\langle x, e_i \rangle| |\langle y, e_i \rangle| \leq \left(\sum_{i=1}^{\infty} |\langle x, e_i \rangle|^2 \right)^{\frac{1}{2}} \left(\sum_{i=1}^{\infty} |\langle y, e_i \rangle|^2 \right)^{\frac{1}{2}} = \\ &= \|x\| \cdot \|y\|. \end{aligned}$$

We have

$$A \cdot B = \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} (x_n \cdot u_m) \otimes (y_n \cdot v_m)$$

and

$$\begin{aligned} \|A \cdot B\|_p^p &\leq \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \|x_n \cdot u_m\|^p \|y_n \cdot v_m\|^p \leq \\ &\leq \sum_{n=1}^{\infty} \|x_n\|^p \|y_n\|^p \sum_{m=1}^{\infty} \|u_m\|^p \|v_m\|^p \leq (\|A\|_p^p + \epsilon) (\|B\|_p^p + \epsilon). \blacksquare \end{aligned}$$

Consequently, we have $C_p \subset M(C_p)$ and $\|A\|_{M(C_p)} \leq \|A\|_p$.

Proposition 4.2. $M(C_p) \not\subseteq M(C_1)$ for $0 < p < 1$.

Proof. We use Corollary 2.1. Let $\Phi \in M(C_p)$, $B \in C_\infty$, $A \in C_p$. Then

$$|\text{Tr}((\Phi \cdot B)A)| = |\text{Tr}(B(\Phi^T \cdot A))| = |\text{Tr}(B^T(\Phi \cdot A^T))| \leq$$

$$\leq \|B\|_\infty \|\Phi \cdot A\|_1 \leq \|B\|_\infty \|\Phi \cdot A\|_p \leq \|B\|_\infty \|\Phi\|_{M(C_p)} \|A\|_p,$$

so $\Phi \in M(C_\infty) = M(C_1)$. A^T is the matrix transposed to A .

Now we give an example of a multiplier on C_1 which is not a multiplier on C_p for $0 < p < 1$. Let I be the matrix of the identity operator. Since $I = (\langle e_i, e_j \rangle)$, $I \in M(C_1)$. Let us define the matrices A_n for $n \in \mathbb{N}$:

$$A_n(i,j) = \begin{cases} \frac{1}{n} & i,j \leq n \\ 0 & \text{otherwise.} \end{cases}$$

Then we have $\|I \cdot A_n\|_p = n^{p-1}$, hence, $\|I \cdot A_n\|_p \rightarrow \infty$ if $n \rightarrow \infty$.

On the other hand, $\|A_n\|_p = 1$, so I can not be a bounded (equivalently [11], a continuous) operator on C_p . ■

Proposition 4.3. If $0 < p < q < 1$ then $M(C_p) \subset M(C_q)$.

Proof. We use the following result of Oloff [8]. Using the so called K-method of real interpolation he showed that, if $0 < p < r < \infty$ and $0 < \theta < 1$ then

$$(C_p, C_r)_{\theta, q; K} = C_q$$

where $\frac{1}{q} = \frac{1-\theta}{p} + \frac{\theta}{r}$ and the quasi-norms are equivalent. If $p < q < 1$ then we have for $\theta = \frac{q-p}{q-pq}$

$$(C_p, C_1)_{\theta, q; K} = C_q.$$

Let $\Phi \in M(C_p)$. Then $\Phi \in M(C_1)$ (Proposition 4.2), hence, $\Phi \in M(C_q)$ and

$$\|\Phi\|_{M(C_q)} \leq k \cdot \|\Phi\|_{M(C_p)}^{1-\theta} \|\Phi\|_{M(C_1)}^{\theta} \leq k \cdot \|\Phi\|_{M(C_p)}$$

for some constant k . ■

REFERENCES

- [1] G. Bennett : Schur multipliers, Duke Math. J. 44 (1977), 603-639.
- [2] M. Déchamps-Gondim, F. Lust-Piquard, H. Queffélec : On the minorant properties in $C_p(H)$, Pacific J. Math. 119 (1985), 89-102.
- [3] J. Diestel, J.J. Uhl : Vector measures, Math. Surveys, vol. 15, Amer. Math. Soc., Providence R.I., 1977.
- [4] I. Gohberg, M. Krein : Introduction to the theory of non self-adjoint operators, Trans. Math. Monographs 18 (1969).
- [5] A. Grothendieck : Résumé de la théorie métrique des produits tensoriels topologiques, Bol. Soc. Mat. São Paulo 8 (1956), 1-79.
- [6] R. Khalil, B. Merdas, R. Szwarc : Erratum to "Multipliers on Schatten Classes", J. Funct. Anal. 63 (1985), 137-138.
- [7] J. von Neumann, R. Schatten : The cross-spaces of linear transformations, Ann. of Math. 47 (1946), 608-630.
- [8] R. Oloff : Interpolation zwischen den Klassen \mathcal{S}_p von Operatoren in Hilberträumen, Math. Nachr. 46 (1970), 209-218.
- [9] V. Peller : Dokl. Akad. Nauk Math. 252 (1980), 43-47.

- [10] A. Pietsch : Operator ideals, VEB Berlin 1978.
- [11] S. Rolewicz : Metric linear spaces, Monografie Matematyczne vol. 56, PWN Warszawa 1972.

INSTITUTE OF MATHEMATICS, WROCŁAW UNIVERSITY,
50-384 WROCŁAW, POLAND

Received April 5, 1988.

