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Bogustaw Merdas

REMARKS ON SCHATTEN - VON NEUMANN CLASSES C,

Operator ideals C_ (0O < p g =) have besn introduced by
J. von Neumann and R. Schatten [7] in 1946. They are natural
generalizations of the nuclear (trace~class) operators and
ths Hilbert-Schmidt opserators. In §1 we define the p~projec-
tive tensor produoct X ® Y of Banach spaces X and Y and de-

scribe its dual space.p In §2 we show that the analogue of
the Grothendieck theorem is not trus for Cp. In §3 we show
that C_ (0< p <1) does not have the minorant property. In §4
wa conslder Sochur multipliers on C_, O0<p <1. In this paper
we use the following notation: N is the set of positive in~-
tegers, R - real numbers, C - complex humbers, H - infinite
dimsnsional separable Hilbert space, lg - n=-dimensional Hil-
bert space, {+*,*> is the scalar product in a Hilbsrt spaoce,
We write "operator" ("functional®™) instead of "linear opera-
tor" (respectively "linear functional"). If X and Y are Banaoh
spaces then L(X,Y) is the space of all continuouns operators
from X into Y with the usnal operator norm. L(X) is the space
of all continuous operators on X. 4ll considsred linear spaces
are complex,

I am grateful to Marek Bozejko for drawing my attention
to the subject of this paper and for helpful suggestions,

1. p-norms {(0<p<1). p-projective tenssr product of

Banach spaces
Let us recall that a resl~valued function ||¢]l_ on a linear
space X is said to be & p-norm if for all x,ye X and A ¢C
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2 B, Merdas

(1) Hxﬂpz 03 Hx"p = 0 1f and only if x = O,
(11)  faxfl, = "[Allixl,,
(111) ||x +'y][§s|]x[|g + ||y||g (p-triangle inequality).

It follows from (iii) that
1

1.4
= + vllpszp (=l + Mgly)e

Putting d(x,y) = |x - y]|P we define a (translation invariant)
metric on X. (X, "'”p) is said to be a p-Banach space, if
the above metric is complete.

Let X and Y be Banach spaces and X ® Y their algaebraio
tensor product, We define the function II-IIP on X ® Y ag fol-
lows

1

n -
lul, = sn2(3 Nyl Py 1P)’
i=1

where the infimum is taken over all representations
n
u-z Xi®71, xiex’ yieYO
1=1

Lemma 1.1, The funotion lI'llp is a p-norm on X ® Y.
Proof. (i1) 1is obvious., ILet u,ve X ® Y, Taks £€> 0
and such representations

n m
u= > x, @3y, and v=Z1::l®s:j
1=1 3=1
that
n m
p P p L€ p p p L £
12; =g FllygI* <llulg + 3 and 321: e 40" le 4l $||”||p +35 .

Then we have

n m
P ¢ Ply. [P Plo.lP <llufP p
||'1+V||p\§ =g P34l + 321 e ;0 PHe,llP <lullD + lIviD + €.
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Schatten-von Neumann classes 3

Letting € —» O we get (iii). Now we prove (i). Let x* ¢ X%,

y¥e¢Y*, u as above. Then (x ®y*)(u) = Z x*(xi)y*(yi) and

lz x (xi)y*(yi)|p<z |x (xi)l ‘7 (71)|p

<I=*IPly 1Pl ull® + €),

hence [x¥@y*(u)| < [Ix*ll'[]y*“ [[u|| « If u # 0 then we take such

a representation u = Z X; ® yy that x1,...,x are linearly

n
independant, We define the functional %* on the subspaoce
lin{x1,...,xn} by X (xi) =84, (81.‘1 - Kronecker s symbol) and

extend 1t to a functional x¥e¢ X , Taking y¥c¢ Y so0 that
4 ker 3% we have x*@y*(u) = x"‘(x1 )y*(y1) # 0, hence
(2l 4 0.
Remark [6], If p>1 then we have for every
nexe®y
: :
lull, = 102(3" lIxy) Pl3y1P)" = o.

i=1

The space (X ® ¥, "'"p)’ O<pg1, need not to be complete.
Let X ® Y denote its completion and we call it the p-projec-

p
tive tensor product of X and Y. Using the same idea as in [3]
with obvious modifications one can show
TheoTrsnm 1.2, Let uexéx and ¢ > 0. Then there

exist _sequences (x,) in X and (y,) in Y such that u = Z X873,
n=1
and Z ||xnu“’||wnn"<nunp + €.

C orollary 1.3.. If X and Y are Banach spaces

then X ® Y is p~-Banach spaas,
P A
Proof, Let €> 0 and u,ve X ® Y, Take rspressnta~

tions P
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4 B, Merdas

o0 o0
u=in®yi, V=th®sj and n,me N

i=1 j=1
such that
n . o .
20 Ixg Pl lP<liuld + 5 5 20 UylPlsylP<livlp + 5
i=1 3=1

Reasoning analogically as in the proof of Lemma 1 we show

that ll-llp 18 a p-norm on X ® Y.m
p
let X be a p~Banach space. By the dual spacs x¥ of X we

mean the set of all continuous functionals on X,
Lemnma 14, Let X be a p~-Banach space. For fex*

£l = sup{lf(u)l: ueX and Hul[ps1}

ia a norm and X* with the above norm becomes a Banach 8pace.,
Proof, The triangle inequality follows from the
properties of supremum. It is clear that other properties of
a norm also hold. The proof of the completness of x* is iden-
tical to that in case of a normed space X.®
Theorem 1,5 Let X and Y be Banaca spaces, Then
(x & Y)* is isometrically isomorphic to L(X,Y*), the spsace

p
of all bounded operators from X to Y*. The isomorphism 1s
given by the correspondence F:L(X,Y*) —» (X & Y)*, Fl{A) = Tho
where P

fA(i I yi) = Z (Axg)(y5) for Ae L(X,Y%).
i=1 1=1

lioreover, | f,| = sup {IfA(u)l : ||u||ps1, ueD}, where

D={x®y: xeX,er}.

Proof. Let AeL(X,Y*). We show that fA is a conti-
nuous functional on X @Y and ||£, |<{laf. Let > O, Take such
o0

[eacd
a representation u = iZ: x; ® yy that ; x4 1Ph3yll P Sllu”g-i-e.
Then = -
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Sohatten~von Neumann classes 5

Z. (A"i)(yi)l P Z "Axi"p"yinp s][AI]P( Ilullg +€),
im1 1i=1

IfA(u)Ips

Letting € —» O we obtain lfA(u)l s]lAlI°l|ullp, so |2, || <llall.
Conversely, consider sequences (xn) in X and (yn) in Y such
that |x | <1, [y,]l <1 and

laxy 28] = 5b s [Caxg) (300> laxpl - 5
Then we have

sup{|£,(ul] s [lu], €1, weD}> |f,(x, ® 3] = [(axy)(y,)]>

551

> laxy | = 5 > (4l -

Consequently, [f, H;sup{lfA(u)I: u €D, Hu]|ps1}>||A|] and P
is "1-1", On the other hand, if fe (X & Y)” then we define

' p
AeL(X,7") as follows: for xc X and yeY we put (ax)(y) =
= f(x ® y). Then fA = f. @

2. Cp(H) ~-gpaces

Let AtH—»H be a compact operator. Then it has the
Schmidt representation 4 = nZ=% Ppfn ® 8y» where (£,), (g,) are
orthonormal sets in H and (yn) is the sequence of eigenvalues
of the opsrator |A] = (8%4)2 rearranged in decreasing order.
Let us recall that £ ® gt H —+» H is the operator of rank one

defined by (f ® g)(x) = <(x,g>f, for xeH,
Let 0<p <o, We say that A belongs to the Schatten-von

£ 1
Neumann class C _(H) = C_, if [A] . = (Z yp)p <o, We define
p p p\g ta

Coo = L{(H) and ||A|lo= ||Allc In the case p = 1 we have the trace
class operators; p=2 - the Hilbert-Schmidt operators., It is
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6 B, Merdas

well known that if 1< p < oo, Cp is a Banach space with the
norm ||+|,., and, if 0 <p <1, a p~Banach space with the p-norm
fell ;s T£70<p<q< = then G c Cy and for acC, [laf <[a],,

see [4]. C, are also operator ideals l.e. if 4¢C,, T,S¢ L(H)

then TaS ¢ C, end [[2as]l ) <[ Tl [all [sl. since [la] = fallws<lall,,

Cp are algebras under the opsrator &omposition. If A eC1 we

define the trace of A by Tr{4a) = jE: {4ep,8,>, where (en) is
n=1

(any) orthonormal basis of H. Tr(4) does not depend on the

cholce of the basis (a). If 15 +1 =1, 1¢p <o, AeC_, BecC

then 4B, BA ¢C,, Tr(4B) = Tr(B4) and |Tr(aB)| sllAllpllBllq,

laBll, < §all jliBlly+ Moreover,

b

p
= p -
lal, = (2elal®)” = sup{|Tr(4B)| 1 ||B||q<1}.

The dual C* is isometrically isomorphic to Cq and (K(H))* =
= C,, where K(H) is the space of all compact operators on H,
The isomorphism 1s given by B e Cq—> {Cps A —» Tr(AB) eC}. We
shall use the following result [10]:

H®H =C_ for 0<pcgi,
p p
Corollary 2.1. If0O<pcg? thenC';isisometri-
cally isomorphic to C, = L(H). The isomorphism is given by
the mapping

(%) C,2 U —» Tr(aU) ¢ C, where accC_.

Proof., This is an immediate consequencs of Theo-
rem 1.5 and the result mentioned above. We only check that ()
and the formula given in Theorem 1.5 are the same. In fact, if

U= E bpfp © &, then £,(U) = nZﬂi (alu £,))(8y) =
[+ =]
= Ei; Pp<Af,,8,> In turn, if (ei) is an orthonormal basis

in H, we have
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Schatten-von Neumann olasses 1

Tr(AU) = Tr(i pylaL,) ®'gn) -2 (Z pn(Afn)gsn")(ei),e:,_)-

n=1 i=1 n=1

= Z Z <pn<ei,gn>Afn,ei> = Z Pn Z(Atn,ei><ei,gn>-
i=1 n=1 n=1 i=1

= D, Hp<AL,,8 0.
n=1

Some properties of Cp (we may also define C, = K(H)),
i.,s8. inclusions, duality, are similar to those of sequenoce
spaces o, 1l . We recall an interesting result of Grothendieck
and we show that its analogue for C_ is not true., ILet X and Y
be Banach spaces. & bounded operator TsX —» Y 1s said toc be
p-absolutely summing (0 <p <o) if there exists a positive
constant K such that for every n e Nand XqpeeesXpe X

n n
S "Txi"p“p.sup{z | x*(x,) |Ps x*e x*,llx*lls1}.
i=1 i=1

Grothendieck has proved [5] that every bounded operator
Ts 11 —> l2 is 1-absolutely summing,

Theorem 2.2, The injection CPC-» 02 is not a
p-absolutely summing operator for 1< p<2,.

Proof., Let (e;) be an orthonormal basis in H,
ne N, Let us define Pyy:H — H, Py (e)) = §;,e,. Then

n
[Psllo = 1 and kZ "Pik“g = n. Now we estimate
=1
n
sup{Z |Tr(P1kB)[p: BeCo ."B||<1}. Let (b, .) = B(1,3) be
k=1 J
the matrix of B 1n the basis (ei). Then

b1J if 1=k
and Tr(P1kB) - b1ko

P1kB(i,;]) ={
(o} otherwise
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8 B. Merdas

=

ki n
= 2
Since [|B] = [[B*[>{BYe, | = ng1 D, k) a(kZﬂ: | o4 )", 1t e

sufficient to compute the maximum of ths functionm

n n
= P 2 _
By(bygyeensbyp) = E |byi|Ps 1<p<2 it E |65 = 1
It is well known, that hp hes 1ts maximom if |b11; E ses =

= |b1n| = n 2, Consequently, we have
1p
C (g2 1-5
max hp(b11,ooo,b1n) = Qe \n ) = n .

If the injection Cp %02 is a p~absolutely summing operator,
then we have for some positive constant K

n: n
n = kz1 ||p1k|[gsxpaup{kz1 |2e(2,,3)| Pime o, I8l <1, 1411

n 1-8

stsup{Z ITr(P.IkB)lp:Be Coo 5l Bl s1} = KPen .
k=1

Since n may be arbitrarily large, we get the contradiotion.m

3. The minorant property in Cp

Let (ei) be an orthonormal basis in H, For A ¢ L(H) we set
85y = A(1,3) = <Ae“e >, 1,3eN, Lot 4,Bec L(H), We say that
Ais a mlnorant of B if [ai;jl bi;j for every 1,3 e N. Then we

write |A] <B. Cp(H) is said to have the minorant property
(positive minorc.rt property) if for every 4,Be¢ C_{(H) from
|4l <B (0<A<B raspectively) it follows that | AT, <[IBf,.. It
has been proved by Pellsr [9] that C_(H) has the 'wirmragt
property if ard only if p = 2k, for scme k¢ N, Morascver,

for every p # 2k there exists neN such that C (lg‘ ces not
have the minorant property . Let N{p) = min{neN: ¢ \ln) does
not have the minorant property} Dechamps~Gondim, Lust-Piquard
and Queffélec proved [2] that
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Schatten=von Neumann olasses 9

1) N(p) <[B] +2, 1<p <y p# 2k

2) C (H) has the minorant property if and only if it has the
positive minorant property; '

3) Cp(lg) does not have the positive minorant property for
1¢<p<2

We show that result for the case 0<p<1,
Proposition 3.1. If0<p<1thoncp(1§)

does not have the minorant properity nor the positive minorant

property.

Proof. LetAs [2, ?], B [} ]] Then 0 <4 <B and

1

1
P

lall, = (Tr|a|P)P = 2P, oOn the other hand, B = |B| and the

matrix of B 1n the basis of its eigenvectors is_[g 8 s BO
1 1

I=, = (ze|B|P)P = (2P)P = 2,m

4, Sohur multipliers on c s 0<pg

Throughout this section we fix an orthonormal basis ('1)
in H, We consider bounded operatora on H as matrices 1,e,
functions on NxN., For A ¢ L(H) let a4 = A(1,3) = <Aoj,oi>.
If A, B are infinite matrices, we define their Schur product
to be the matrix A-B such that A+B(i,j) = 4(1,3)*B(i,3i). an
infinite matrix ¢ is said to be a Schur multiplier on Cps ir
$ea ¢ C_whenever A ecp. Let M(C_) denote the met of all Sohur
multipliers on Cp. It follows from closed graph theorem (which
is also trme for p-Banach spaces) that

"Q“u(cp) = SDP{HQ‘A“pt Ae cp' "‘“p$1}<ﬂ

for e M(C_). It 18 easy to see that I(c ) is’ a Banaoch space
with the norm [* "u(c o I 1<pP < =, and a p-Banach space

with the p-norm |« “M(Cp)’ 1f 0<p<1. It 1s known that M(C,) =

= M(C,) oconsists of all matrices of the fora (< xi,yj)). whers
Xys J4 ave vectors in a Hilbert space, ||x,f <o, Ile [€e tor
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some constant o (Grothendisok (5], Bennett [1]). M(C,) is

1

. s 2 2

the set of all bounded matrices, because [Af, = (Z |aikl ) .
We are interested in the case 0<p <1, i,k

Proposition 4.1, Let A,Becp,0<ps1. Then

. . < °
A+BeC, and |la-B|, <4l 3],

Proof, We use the characterisation of Cp: CpsH ® H.
p

Let £ > 0. Take suoch representations A = Z X, ® 7, and B =

n=1
= Z Wy ® Vo that

n=1
(-] . (- -]
2o IxalP13IP < aD + € ana D [uy|Plvy )P <[BID + €.
B m=1
For x,yc¢H we define x*ye H as follows: (X+3,84> = (Xy047<7,04>
Then
-] % [--]
=y |l =(Z I<x-y.ei>l2) > [<x+y,8,>| =
i=1 i=1
1 1
= ZI(x,ei>l [<ys0,>] s(Zl(:,eiﬂ ) (ZI(y,ei>| ) =
i=1 =1 i=1
= [|x]fl7].
We have
- -] o0
heB = D" > (xpeuy) @ (3,0vy)
n=1 me1
and
00 - -]
JasBIB <> S lxgeuglPly, vyl Ps
n=1 m=1
[~ -] ©0
< 20 IxglPlonl® D5 DuglPhvglP < C1alS + ) (UBI + €)om
n=1 m=1
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Schatten-von Neumann classes 11

Consequently, we have Cc M(Cp) and Ao )< |[A||p.
Proposition 4.2. M(Cp)sim(c1)for0<p<1.

Proof ., We use Corollary 2.1, Let Qe M(Cp), BeCyy
AeCp. Then

|Te((®+B)A)| = |Tr(B(2T+a))] = |Tr(BT(8-4T))]| <

<IBll Heeally <l leeaf < llBll,,,H@IlM(Cp,llAlip.
80 PeM(Co) = M(C1). AT is the matrix transposed to A,
Now we give an example of a multiplier on C1 which is not
a multiplier on C_ for C<p <1, Let I be the matrix of the
identity operator. Since I = (<°i’°j>)' IeM(C1). Let us de-
fine the matrices A, for neN:

i,ij<n
An(i.:l) =
14
Then we have [[I-4||, = nP ', hence, IToapl, > 1f n > o,
On the other hand, |4, “p = 1, s0o I can not be a bounded (equi-
valently [11], a continuous) operator on C _.®
Proposition 4,3, If0<p<q<1thenM(Cp)c
c M(Cq).
Proof. We use the following resunult of Cloff {8].
Using the sc called K~method of real interpolation he showed
that, if 0 <p<r <o and 0 <8 <1 then

1
n
0

otherwise,

(Cpr Crlo,q3x = G

where -;— = 3—;—6 +g and the quasi-norms are equivalent, If

p<q <1 then we have for 6 = g:gq

(Cpr C1)e,q5x = e
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12 B. Merdas

Let QeM(Cp). Then dien(c1) {Propositien 4.2), hence, Gell(cq')
and '

Jla1=86 8 .
"Q“ M(cq') <k “QHM(CP)"Q“M(Q‘) <k “Q"n(cp)

for some constant k.®
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