

Anatolij Dvurečenskij

A STATE CRITERION OF THE COMPLETENESS
FOR INNER PRODUCT SPACES

We show that a separable real or complex inner product space is complete if and only if its orthomodular orthocomplemented orthoposet of all splitting subspaces possesses at least one state. This gives a new measure-theoretic characterization of Hilbert spaces among inner product spaces.

Preliminaries

Let V be a real or complex inner product space with an inner product (\cdot, \cdot) . By a subspace of V we shall understand a linear closed submanifold of V . By \bar{M} we denote the completion of M .

A subspace M of V is said to be strongly closed if $M = M^{\perp\perp}$, where $M^\perp = \{x \in V : (x, y) = 0 \text{ for all } y \in M\}$. Let us denote by $L(V)$ the set of all strongly closed subspaces of V . It is well-known [1], that $L(V)$ is an orthocomplemented complete lattice with the operations \wedge_L , \vee_L satisfying equalities

$$(1) \quad \bigwedge_{t \in T^L} M_t = \bigcap_{t \in T} M_t, \quad \bigvee_{t \in T^L} M_t = \text{sp} \left(\bigcap_{t \in T} M_t \right)^{\perp\perp},$$

where the symbol sp means the linear span.

1980 Mathematics Subject Classification 46C10, 03G12,
81B10.

The main object of our study will be the set $E(V)$ of all splitting subspaces of V , i.e., the set of all subspaces M of V for which the condition $M \oplus M^\perp = V$ holds. The simple verification shows that any complete subspace, and therefore any finite-dimensional subspace, of V belongs to $E(V)$, and $E(V)$ is an orthocomplemented orthomodular orthoposet [6] for which

$$(2) \quad E(V) \subseteq L(V).$$

Denote by \wedge_E and \vee_E the meet and join in $E(V)$. Then $\bigwedge_{t \in T} M_t = \bigcap_{t \in T} M_t$ whenever the left-hand side exists in $E(V)$. Moreover, the de Morgan laws hold in $E(V)$.

Theorem 1. Let $\{M_t : t \in T\}$ be a system of mutually orthogonal splitting subspaces of V . If $\bigvee_{t \in T} M_t$ exists in $E(V)$, then

$$(3) \quad \bigvee_{t \in T} M_t = \left(\sum_{t \in T} M_t \right)^{\perp\perp} = \bigvee_{t \in T} M_t,$$

where $\sum_{t \in T} M_t = \{x \in V : x = \sum_{t \in T} x_t, x_t \in M_t\}$. If $T = \{1, 2\}$, then $M_1 \oplus M_2 \in E(S)$ and

$$(4) \quad M_1 \vee_E M_2 = M_1 \oplus M_2.$$

If $\{x_t : t \in T\}$ is an orthonormal basis of a splitting subspace M , then

$$(5) \quad M = \bigvee_{t \in T} \text{sp}(x_t) = \sum_{t \in T} \text{sp}(x_t).$$

Proof. It is evident that $M_0 = \sum_t M_t$ is a submanifold of V . Let $x_n \in M_0$ and $x_n \rightarrow x \in V$. Then $x_n = \sum_t x_t^n$, and $x = x_t + x_t^\perp$, where $x_t^n, x_t \in M_t$, $x_t^\perp \in M_t^\perp$ for all $n \geq 1$ and $t \in T$. Calculate

$$\begin{aligned}\|x_n - x\|^2 &= \left\| \sum_t x_t^n - x_s - x_s^\perp \right\|^2 = \left\| (x_s^n - x_s) + \sum_{t \neq s} x_t^n - x_s^\perp \right\|^2 = \\ &= \|x_s^n - x_s\|^2 + \left\| \sum_{t \neq s} x_t^n - x_s^\perp \right\|^2 \geq \|x_s^n - x_s\|^2 \rightarrow 0.\end{aligned}$$

Hence, $x_t^n \rightarrow x_t$ for any $t \in T$.

If $x_t \neq 0$, then $(x, x_t / \|x_t\|) = \|x_t\|$ and using the Bessel inequality, $x_0 = \sum_t x_t \in \bar{V}$, where \bar{V} denotes the completion of V . We claim to show $x_0 = x$. Let $y \in M_t$, then $(x - x_0, y) = 0$. Hence, $x - x_0 \perp M_t$, and, consequently, $x - x_0 \perp \bar{M}_0$. On the other hand, $x - x_0 \in \bar{M}_0$, which gives $x = x_0$, and $x \in \sum_t M_t$.

Now we show that (3) holds. Let $x \in M_0$, then $x = \sum_t x_t$, and there exists a countable subset $T_0 = \{t_1, t_2, \dots\} \subseteq T$ such that $\|x_t\|^2 = 0$ for any $t \in T - T_0$. Putting $x_n = \sum_{i=1}^n x_{t_i} \in M := \bigvee_{t \in T} M_t$, we have $x_n \rightarrow x$, so that $x \in M$. Therefore, $M_0 \subseteq M$ and $M_0^{\perp\perp} \subseteq M^{\perp\perp} = M$.

On the other hand, $M_t \subseteq M_0$. Hence, $M_0^\perp \subseteq M_t^\perp$ which yields $M_0^\perp \subseteq \bigcap_t M_t^\perp = M^\perp$. Therefore, $M \subseteq M_0^{\perp\perp}$ and $M = M_0^{\perp\perp}$.

Due to (1), we see that $\bigvee_t M_t = \text{sp}(\bigcup_t M_t)^{\perp\perp} \subseteq M_0^{\perp\perp}$, since $\text{sp}(\bigcup_t M_t) \subseteq M_0$. Inasmuch as $M_0^\perp = \text{sp}(\bigcup_t M_t)^\perp$, we conclude that (3) holds. Q.E.D.

The following two assertions follows either easily from the above or directly from [2]. The equality (5) is a consequence of (3). Q.E.D.

Let m be a mapping from $E(S) \rightarrow [0,1]$ such that

(i) $m(S) = 1$;

(ii) $m\left(\bigvee_{t \in T} M_t\right) = \sum_t m(M_t)$ whenever $\{M_t : t \in T\}$ is a system of mutually orthogonal splitting subspaces for which the join exists in $E(S)$.

If (ii) holds for any finite index set, any countable or any T , m is said to be a finitely additive state, state or totally additive state.

Analogically we define these notions for $L(V)$.

Theorem 2. Let x be a unit vector of V . The mapping $m_x: E(V) \rightarrow [0,1]$ defined via

$$m_x(M) = \|x_M\|^2, \quad M \in E(V),$$

where x_M is a unique vector from M such that $x = x_M + x_M^\perp$, $x_M^\perp \in M^\perp$, is a finitely additive state on $E(V)$. Moreover, the system $\{m_x: x \in V, \|x\| = 1\}$ is a quite full system of finitely additive states, that is, the statement "if $m_x(M) = 1$, then $m_x(N) = 1$ " implies $M \subseteq N$.

Proof. See [3].

It is well-known that Gleason [5] described all states for the case of a separable Hilbert space V , $\dim V \neq 2$.

The systems $L(V)$ and $E(V)$ have been used to determine the algebraic conditions in order to V would be a Hilbert space (i.e., $V = \bar{V}$).

Theorem 3. The following statements are equivalent:

- (i) V is complete.
- (ii) $L(V)$ is orthomodular ([1]).
- (iii) $E(V)$ is complete ([6]).
- (iv) $L(V) = E(V)$.
- (v) $E(V)$ is a δ -lattice ([2]).
- (vi) $E(V)$ is a quantum logic ([3]).
- (vii) $E(V)$ contains the join of any sequence of mutually orthogonal atoms of $E(V)$ ([3]).

State criterion of the completeness

A very elegant characterization of Hilbert spaces among inner product spaces is given by Hamhalter and Pták [7]: A separable real inner product space is complete iff $L(V)$ possesses at least one state. We note the assertion is valid also for any complex separable inner product space. This re-

sult has been generalized in [4] for inner product spaces whose orthogonal dimension is a non-measurable cardinal and also for any arbitrary space (in the latter case we demand the existence of a totally additive state on $L(V)$).

In the present section, we show that the assertion of Hamhalter and Pták is valid if we assume the existence of a state on the system of all splitting subspaces.

Theorem 4. A separable inner product space is complete whenever $E(V)$ possesses at least one state.

Proof. We try to extend m to $L(V) \ni E(V)$ using Theorem 1.

First of all we describe the state m on $E(V)$. Let $S(V) = \{x \in V : \|x\| = 1\}$ and define a mapping $f: S(V) \rightarrow [0,1]$ via

$$f(x) = m(sp(x)), \quad x \in S(V).$$

Applying the Gleason theorem [5] on any finite-dimensional subspace M of V , we may show that there is a unique symmetric bilinear form t_M such that

$$f(x) = t_M(x,x), \quad x \in S(V) \cap M.$$

We shall now define a bilinear form t on V as follows: let x, y be two vectors of V and let M be a two-dimensional subspace containing x and y ; then we put $t(x,y) = t_M(x,y)$. It is straightforward to verify that t is a well-defined positive symmetric bilinear form, moreover,

$$t(x,x) = m(sp(x)) \leq 1, \quad x \in S(V).$$

The form t may be extended uniquely to a bounded positive symmetric bilinear form \bar{t} defined on whole \bar{V} . Hence, there is a unique positive Hermitian operator $U: \bar{V} \rightarrow \bar{V}$ such that

$$t(x,x) = (Ux,x), \quad x \in V.$$

The separability of V entails that V contains (and also any subspace M of V) at least one orthonormal basis $\{x_n\}$ of it. In view of (5),

$$1 = m(V) = m\left(\bigvee_{n \in E} \text{sp}(x_n)\right) = \sum_n (Ux_n, x_n),$$

which gives U is of finite trace. Let M be an arbitrary splitting subspace. (5) entails that if $\{e_i\}$ is an orthonormal basis of M , then

$$(6) \quad m(M) = m\left(\bigvee_{i \in E} \text{sp}(e_i)\right) = \sum_i (Ue_i, e_i) = \text{tr}(UP_M),$$

where P_M is the orthoprojector of \bar{V} into \bar{M} . In the last equality we have used the fact that if $\{e_i\}$ is an orthonormal basis of M , so it is for \bar{M} .

The equality (6) enables us to extend m onto $\bar{m}: L(V) \rightarrow [0,1]$ via

$$(7) \quad \bar{m}(M) = \text{tr}(UM), \quad M \in L(V).$$

Hence, if $\{x_i\}$ is an orthonormal basis for M , then

$$\bar{m}(M) = \sum_i m(\text{sp}(x_i)).$$

Suppose now that $\{e_n\}_{n=1}^{\infty}$ is a maximal orthonormal system of vectors from V . It may be shown that

$$(8) \quad \bigvee_{n=1}^{\infty} \text{sp}(x_n) = V.$$

Let $\{x_i\}$ and $\{y_j\}$ be orthonormal basis in M and M^{\perp} , respectively. Then $\{x_i\} \cup \{y_j\}$ is a maximal orthonormal system in V . Indeed, if there is $x \perp x_i, x \perp y_j$ for all i, j , then $x \perp M, x \perp M^{\perp}$ which gives $x \in M \cap M^{\perp}$, so that $x = 0$. According to (8),

$$(9) \quad \bar{m}(M) + \bar{m}(M^\perp) = 1 \quad \text{for any } M \in L(V).$$

Let now $\{M_n\}_{n=1}^{\infty}$ be a sequence of mutually orthogonal subspaces from $L(V)$ with the join M in $L(V)$. Let $\{x_j^n : j \in N_n\}$ and $\{x_j : j \in N_0\}$ be orthonormal bases in M_n and M . Then $\bigcup_{n=1}^{\infty} \{x_j^n : j \in N_n\} \cup \{x_j : j \in N_0\}$ is a maximal orthonormal system in V . Suppose the converse, then $x \perp x_j^n, x_j$, so that $x \perp M_n, x \perp M^\perp$. Therefore $M_n \subseteq \text{sp}(x)^\perp, M \subseteq \bigvee_n M_n \subseteq \text{sp}(x)^\perp$, which gives $x \perp M$ and simultaneously $x \perp M^\perp$, so that $x = 0$.

In view of (8) and (9),

$$\begin{aligned} 1 &= \sum_{n=1}^{\infty} \sum_{j \in N_n} m(\text{sp}(x_j^n)) + \sum_{j \in N_0} m(\text{sp}(x_j)) = \sum_{n=1}^{\infty} \bar{m}(M_n) + \bar{m}(M^\perp) = \\ &= \bar{m}(M) + \bar{m}(M^\perp). \end{aligned}$$

Consequently, $\bar{m}(M) = \sum_{n=1}^{\infty} \bar{m}(M_n)$, in other words, \bar{m} is a state on $L(V)$.

Applying the theorem of Hamhalter and Pták [7], we conclude finally V is complete. Q.E.D.

We remark in conclusion that $E(V)$, for a separable incomplete inner product space V , gives an example of a stateless orthocomplemented orthomodular orthoposet with a quite full system of finitely additive states which is not a quantum logic.

In addition, we note that the presented methods are not applicable to nonseparable inner product spaces because of the possible nonexistence of any orthonormal basis in V , in general.

REFERENCES

[1] I. Amemiya, H. Araki : A remark on Pi-ron's paper, *Publ. Res. Inst. Math. Sci. Kyoto* 2 (1966-67) 423-427.

- [2] G. Cattaneo, G. Marino: Completeness of inner product spaces with respect to splitting subspaces, *Letters Math. Phys.*, 11 (1986) 15-20.
- [3] A. Dvurečenskij: Completeness of inner product spaces and quantum logic of splitting subspaces, *Letters Math. Phys.*, 15 (1988).
- [4] A. Dvurečenskij, L. Mišík, Jr.: Gleason's theorem and completeness of inner product spaces, *Inter. J. Theor. Phys.*, 27 (1988) 419-428.
- [5] A. Gleason: Measures on closed subspaces of a Hilbert space, *J. Math. Mech.*, 6 (1957) 447-452.
- [6] H. Gross, A. Keller: On the definition of Hilbert space, *Manuscript. Math.* 23 (1977) 67-90.
- [7] J. Hamhalter, P. Pták: A completeness criterion for inner product spaces, *Bull. London Math. Soc.*, 19 (1987) 259-263.

MATHEMATICAL INSTITUTE, SLOVAK ACADEMY OF SCIENCES,
CS-814 73 BRATISLAVA, CZECHOSLOVAKIA

Received March 28, 1988.