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ON SOME APPLICATIONS OF LIMIT ELEMENTS OF MAPPINGS

In the artiocle, the notion of limit elements of mappings
is applied to studying closed mappings, those having closed
graphs and w-Darboux mappings (of. [2]-[6]). Moreover, the
purpose of the paper is to lnvestigate the notion of poilnts
of closedness of mappings which was introduced by R. Pawlak
in [6], To begin with, let us establish some notation and
recall the most important definitions.

A1l mappings to be considered here are defined on Haus=-
dorff spaces and take values in Hausdorff spaces. All spaces
are assumed to be Hausdorff, The space of real numbers with
the natural topology is denoted by R. As usual, N denotes the
set of positive integers. The derived set of A is denoted
by Ad. The fact that f 1s a mapping of a space X to a
space Y is written in symbole as f: X —» Y (we do not reguirs
the continuity of f). The graph of f: X —» Y is denoted by
G(f)., All other symbols are standard. Generally, the notation
here conforms to that of [1].

Definitions (cf. [6]). Let £: X -» Y.

(1) A point yeY is called a limit element of f at
a point x e X if there exists a net {x ; se S}cX\{x} such

that x = lim x, and 3 = lim f(xs). Denote by L(f,x) the set
seS seS

of all 1limit elements of f at x.
(2) A point yeL(f,x) is called a (x)=-limit element of £

at x if, for any net {xs; Se S}c:x such that x = lim x, end
seS
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2 E. Wajoh

y = lim f(xs), there exisis s e S for which f(xs) = y when-

seS .
ever s> 8. Denote by L*(f,x) the set of all (*)-limit ele~

mente of f at x.

(3) If 1L{£,x) \{f(x)} c1*(f,x), then we say that x is
a point of closedness of f or, equivalently, that f is closad
at Xo

(4) I L(f,x) c{f(x)}, then we say that the graph of f
is closed at x.

The orenm 1e For every mapping f: X —+» Y, any
point x e X and any base U(x) of neighbourhoods of x, we haves:

(1) L(f,x) = ﬂ{f(U\{x}): Ueu(x)}, so L(f,x) is a closed
subset of Y (ef. [3; pp.51-52]).
(11) 1*(£,x) = L(£,x) nU {£(U) \ £(0)%: Ueu(x)}.

(111) L*¥(£,x) nL(£,x)% = &, so L*(£,x) is a discrete
subspace of Y.

(iv) If x is a point of closedness of f, then
L(f,x) \{f(x)} is a disorete subspace of Y.

Proof. (i1) For a point yeY, lat ¥(y) be a base
of neighbourhoods of y. Suppose first that y e f(U)d whenever
UeU(x), To each UelU(x) and Ve V(y) we can assigh some
X(y,v) © U such that f(x(U,V)) eV\{y}. Let us define, for
UneU.(x) and Vne‘V'(y) (n=1,2), that (U1,V1) S(Uz,vz) if
Uy >U, and V, >V,. The set S = U(x) xv(y) is directed by the
relation < . The net {x(U,V)‘ (u,v) eS} converges to x and
the net {f(x(U’v)); (U,V) € S} converges to y; therefors
ya L (f,x).

Conversely, if ye L(f,x) \ L¥(£f,x), then there exists
a net {x.3 teT}cX such that f(x,) #y for any teTl,

lim x, = x and 1lim f(x,.) =y, S0 ¥ ef(U)d whenever Uel(x).
teT ¢ teT ¢
This completes the proof of (il).

Property (iii) follows from (i) and (ii). Property (iv)
is a consequence of (iii),
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Limit elements of mappings 3

Let us recall that a mapping f: X —» Y is called closed
provided f transforme each closed subset of X onto a olosed
subset of Y.

R, Pawlak proved in [6; Theorem 1(b)] that if each point
of a compact spase X is a polnt of closedness of f1 X —» 7Y,
then £ is closed. We shall show that the converse of the
above-mentioned theorem does not hold,

Example 1. Let us consider the one-point compac-
tification wR of R and the space Y obtained from R by identi-
fying the set N with a point Tor Derote by x_ the point of
wR \R and define

0

b 4 for xeR\N,
f{x) = ¥, for xeN,

-1 for =x = Xoe

Of course, the mapping f: wR — Y i8 closed. If U is an open
neighbourhood of x_ in wR and V is an open neighbourhcod of

¥, in ¥, then (v {75}) n£(UN{x,})} # & because R\ U is com-
pact in R; hence, by Theorem 1 (i)-(ii), yot:L(f,xo)\[{f(xo)}u
U L*(f,xo)J, so f 1is not closed at x,. As L(f,x } = {yo},
this example also poinfs out that the converse of Theorem 1(iv)
does not hold,

I¥ 1s easily seen that the assumption of the compactness
of X is needless in the second part of Proposition 3 of [6};
accordingly, we have

Theorean 2. Let f be a mapping of a space X to
& space Y. Then G(f) is a closed subset of Z<Y if and only if
G(f) is closed at each point xe X,

Let us present the following local version of a well-known
result concerning mappings which iske values in cowpact spa-
ces:

Theoranm 3. Suppoge that f is a mapping of
a space X tc a compact spacs Y. Then xe¢ X is a point of zon~
tinuity of £ if and only if 5(f) is closed at x (cf. [1;
Exercise 3,1.D]).
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4 Ee Wajﬂh

Theorem 4, Let f be a oclosed mapplng of a re~
gular space X to a spadge Y., For any xe¢ X, the following con~-
ditions are equivalent:

(1) G(f) is closed at x;

(i1) £"V(y) is closed whenever y ¢ L(f,x) \ {£(x)}.

Proof, Assume (iil) and supposs that y eIJf,x]\{ﬂxﬂ;
There exist disjoint open subsets U and W of X suoch that
xeU and £71(y) c W, Since £ is alosed, the set V = Y\£(X\W)
is an open neighbourhood of y and, morsover, Vnf(U) = #.
Henoe ¥y Qf(TJf, whioch is impossible by Theorsm 1(1i).

The assumption of the regularlty of X is essential in
Theorem 4.

’ Exanm ple 2. Let Y be the space deseribad in
Example 1. In the set X = wR consider the topology generated
by all the sets that either are open in wR or are of the form
UNN where U is open in wR. Then X 18 a non-regular Hausdorff
gpace, Let f defined in Example 1 be considered as & mapping
of X to Yo Then f is closed and, moreover, all fibers of f
are closed in X, Howaver, the grapn of f is not closed at X e

From our Theorems 3 and 4 we immediately obtain the
following local version of Theorem 4.9 of [2]:

Theorea S 4 closed mappirg f of a regular spa-
ce X to a compact space Y is continuous a¥ & point xe X if
and only if f'1(yj is closed whenaver ye L{f,x) \{f(x)}.

The orem 6, Let f be a closed mapping of a first-
~countable space X to a first-countable spacs Y. For any x ¢ X,
the followlng conditions are equivalent:

(1) G(f) is closed at xj

(14) £7V(3) is closed whenever ye L(f,x) \ {£(x)}.

Proof. Inview of [6; Thecrsm 1(a)], x is a point

of closedness of f, 80 X ¢ f—1(3] whenever y e L(f,x).

Theorems 3 and 6 imply

Thaorem T, 4 closed mapping f of g first~count-
able apace X to a first-countable compact space Y is conti-
nuous at a point xe X if and only if f'1(y} is closed when-
ever y ¢ L(f,x) \{f{x}}.
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Limit elements of mappings 5

For a mapping f: X —+ Y and a point y e¢Y, denote
T(f,y) = {xeXx yeL(f,x)}

(ef. [3; p.63] and [4; Definition 3.3]).

Let us observe that if x eT(f,y)d, then, for any neigh~
bourhoods U and V of x and y, resp., we have £(U\{x})nV # ¢,
so, by Theorem 1(i), x ¢ T{(f,y); therefore the set T(f,y) is
closed (cf. [4; Theorem 3.3]).

Theorem 8, Let f be a closed mapping of a locally
sequentially compact space X to a Frachet space Y and let
xeX, If x aT(f,y)d for any y e L(f,x) \ {f(x)}, then x is
a point of closedness of f,.

Proof . Suppose that y eL(f,x)\[{f(x)}iJL*(f,x)].
There exists a neighbourhood W of x such that WnT(f,y) ={x}.
We can find a neighbourhood U of x such that U is sequentially
compact and Uc W, According to Theorem 1(ii), ye £(u)4
there exists a sequsncs {xn; ne'N} of elements of U such that

lim f(xn) = y and f(xn) #73 for any neN. 48 U is sequentially
neN
compadt, the sequsehaqse {xn;txeN} contalns a subsequsnoe

{xn H ke:N} which converges to some point ze U, Then z = x
k

, 80

because y ¢ L{f,z) and UnT(f,y) = {x}o The B8t & =
= {x}LJLJ {xn } is closed; however, y ¢ £(A4) \ £{4). The con-
keN k

tradiction obtalned concludes the proof.

Theorenm 9. Let f be a mspping of & sequentially
compact regular space X to a Fréchet space Y. Assume that,
for any x ¢ X, we have X'&T(f,y)d whensver ye L(f,x)\{f(x)}.
Then f is closed if and only if each point of X is a point
of closedness of f,

Proof., If each point of X is a point of closed-
ness of f, then arguing similarly as in the proof of Thec~-
rem 1(b) in [6], we deduce that f is closed. Since every se-
quentially compact regular space is locally sequentially
compact, Theorem 8 completes the proof,

- 1085 -



6 E. Wajoh

Without any difficulties one can cheock that the space Y
defined in Example 1 is a Fréchet space (of. [1; Examplse
1.6.18]). Therefore, in view of Example 1, the regquirement
that x eT(f,y)d whenever y ¢ L(f,x) \{f(x)} cannot be omitted
in Theorems 8 and 9,

Theorem 10, Let f be a mapping of a sequentially
compact space X to a Fréchat space Y. Assumse that, for any
x e X, the set T(f,y)‘\{x} is compact whenever y cL(f,x)\{f(x)}.
Then f is closed if and only if each point of X is a point
of closedness of f,

Proof. Suppose that ye L(f,x)\ [{f(x)}tJL*(f,x)]
for some xe¢ X, By [1; Theorsm 3.1.6], there exists a neigh~-
bourhgod U of x such that UnT(f,y) = {x}. Since U is se-
qusntially compact, according to the proof of Thsorem 8,
we obtain that f is not closed.

Corollary 1. Let f be a mapping of a sequen-
tially compact space X to a Frechet space Y. Assume that,
for any xe¢ X, the set T(f,y) is countable and x‘sT(f,y)d
whenever y ¢ L(f,x) \{f(x}}. Then f is closed if and only if
each point of X is a polnt of clossdness of f,

Proof. We have observed that T(f,y) is closed for
any yeY. If T{f,y) is countable, then Theorsm 3.10.,30 of
[1], together with the theorem given in [1; Exercise 3.10.4 ],
implies that T(f,y) is compaoct, To complete the proof, it
suffices to use Theorem 10,

Definition 5, Let £+ X —» Y. We shall say
that xe X is a d-point of f if there exists a base U(x)
of neighbourhoods of x such that, for any Ue U(x), elther
f£f(U) is denss in itself or f(U) = {f(x)}. If eaoh point
of X is a d-point of f, then f will be called a d-mapping.

Theorenm 11. Let f: X —» Y and suppose that
xeX is a d-point of £, If L¥(f,x) # ¢, then there exists
a neighbourhood U of x such that f(U) = {f(x)}, so f is oon=~
tinuous at x.
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Limit elements of mappings 7

Proof. Take a base U(x) of neighbourhoods of x
suoh that, for any W ¢ u(x), either £(W) is dense in itself
or f(W) = {f(x)}. If yel*(f,x), then, by Theorem 1{1ii), we
cah find U ¢ U(x) such that je f(U)‘\f(U) ; hence £(U) =
= {f(x)} because f(U) is not dense in itsslf,

Let us note a few consequences of Theorem 11.

Theoren 12, Let f be a d-mapping of a connec~
ted space X to a space Y. If L¥(f,x) # # for any x e X then
f is constant.

Proof. Considser any x,¢e X By Theorem 11, the set
A= £7'[2(x )] is clopen in X, 80 4 = X.

Theoren 13, Let f: X —» Y and suppose that xeX
is a d~point of f, Then x is a polnt of closedness of f if
and only if the graph of f 1s closed at x.

Theorems 2, 8 and 13 imply

Theoren 14, Let f be a closed d-mapping of a lo-
oally sequentially compact space X to a Fréchet space Y, Then
G(f) is a closed subset of X xY if and only if, for any xe¢ X,
we have x kT(f,y)d whenever ye¢ L(f,x) \{f(x)}.

Theoren 15. Let f be a closed mapping of a lo-
cally sequentially compact space X to a compact Frechet
space Jo A d-point xeX of £ is a point of continuity of f
if and only if x&’f(f,y)d whenever y € L(f,x) \ {f(x)}.

Proof., It suffices to apply Theorems 3, 8 and 13.

Theorsms 2, 10 and 13 yield

Theorem 16, Let f be a d-mapping of a sequen-
tially compact space X to a Frechet space Y. Then G(f) is
a closed subset of X xY if and only if f is closed and, for
any xe¢ X, the set T(f,y)‘\{x} is compaet whenever y ¢ L(f,x) \
\{£(x)}.

Theorem 17, A d~mapping f of a sequentially
compact space X to a compact Frechet space Y is continuous
if and only if f is closed and, for any xe X, the set
T(f,y) \ {x} is compact whenever y ¢ L{f,x) \V{£(x)}.

Proof. The proposition follows from Theorems 3
and 16 (cf. [1; Bxercise 3.1.D]).
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8 E. Wajeh

Definition 6, Let f£f: X —» Y, We shall say
that xe X is a w=Darboux point of f if {there exists a base
U(x) of neighbourhoods of x such that f?ﬁj is connected for
any U ¢ U(x). If each point of X is a w-Darboux point of £,
then £ will be called a._w-Darboux mabping (ef, [5; Defini-
tion 1]).

Clearly, every w-Darboux mapping is a d-mapping,

Let us recall that a rimocompact space is a Hausdorff space
having a base of open sets with ocompact boundaries.

Now, we are in a position to extend and generalize both
Theorems 2 and 4 of [6] (¢f. also [5; Theorem 1)),

Theorem 18. Suppose that f is a mapping of
a space X to a rimcompact space Y. If xe X 18 a w-Darboux
point of f, then the following conditiones ars equivalent:

(1) x 1s a point of continuity of f;

(ii) x 1is a point of closedness of fj

(1ii)} the graph of f is olosed at x;

(iv) |L{f,x)| €13

(v) L(f,x) is finitaey

{vi} L{f,x) is a disorete subspace of Y¥;

(vii) L{f,x) is either empty or not dense in itself;

(viii) f(x) is not an accumulation point of L(f,x).

Proof., The implications (i) = (ii) and (iii) =

(iv) = (v) = (vi) = (vii) are obvious., That (ii) = (ii1i)
follows from Theorem 13, Hence it suffices to show that
(vii) = (viii) = (i),

rirgt of all, let us fix any base U(x) of neighbourhoods
of x such that £(U) is connscted for each U ¢ U(x). Supposs
that (viil) does not hold. Take an arbitrary y e L{f,x) \ {£(x)}
and consider any neighbourhood V of y, Since Y is rimoompact,
there exists an open neighbourhood W of y such that f(x) %

x WcV and XK = Fr W is compact. For each U ¢ U(x), we have
f{U)J\W # ¢ and f(U) nW # ¢¥; hence, the connectedness of

£(U) implies that £{U) nK # #. As £(x) &K, then £(UNx})nK#¢
for any U ¢ U(x) and, consequsntly, r1{f(U Ni{x ) Ue'u(x)}nK¥¢
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Limit elements of mappings 9

because K is compact. It follows from Theorem 1(i) that
KnL(f,x) # #; therefore y is an accumulation point of L(f,x),
so (vii) = (viii).

Assume (viii) and suppose that (i) does not hold. There
exists a neighbourhood V of f(x) such that (V’\{f(x)})n
n L{f,x) = ¢§ and, moreover, f(U)\V # ¢§ for any U ¢ U(x).
Let us take an open neighbourhood W of f(x) such that WcV
and Fr W is compact. Then f(U)nFr W # ¢ for any U ¢ U(=x),
Using the same argumentis as in the proof of the implication
(vii) = (viii), we obtain that L(f,x)nFr W ¥ ¢. This con-
tradicts the fact that (V\{f(x)}) nL(f,x) = ¢. Hence
(viii) = (1),

The exampls of [5; De 772] points out that the assumption
of rimeompactness is needed in the above theorem.

Theorem 18, along with Theorem 2, implies

Corollary 2. A w~Darboux mapping of a space X
to a rimcompact space Y is continuous if and only if G(f) is
a closed subset of X xY,

The following two corollaries can be regarded as gensra-
lizations of Theorem 4 of [3; p.63]:

Corollary 3. Let f be a mapping of a space X
t0o a rimoompact space Y., If X, ¢X is a w-Darboux point of f,
the set A = {X e Xt X € T(f,f(x))} is finite and, moreover,
f(xo) is not an accumulation point of L(f,x )\ f(.), then £
is contlnuous at Xge

Proof. Let us observe that 4 = f'1[L(f,xo)], 80
L(f,x,) = £{A} v [L(f,x ) \ £(X)]. Theorem 18 completes the
proof.

Coro0llary 4. Suppose that f is a mapping of
a spece X to a rimcompact space Y. If f{X) is a closed subset
of ¥, X, € X 18 g w-~Darboux point of f and, moreover, the set
{xe X1 x_s T(f,f{x))} is finite, then f is continuous at x,

Pr» s of . In the case where f(X) is closed in Y, we
heve L{f,xo; cf(X}s hence the proposition follows from Co~-
rollary 3.
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10 B, Wajch

Our next theorem is a generalization of Theorem 2.3(c¢)
of [2].

Theorem 19, Let Y be a Tychonoff space which
has a compactification with the remalnder of cardinality <

¥
<2 9% Let f be a mapplng of a space X to Y and suppose that
x ¢ X is a w-Darboux point of f., Then f is continuocus at x if

%o
and only if |L(f,x)| <2 °.
Proof. Let us take an arbitrary compactification

Y o
oY of Y such that |«Y \Y| <2 °. Suppose that |[L(f,x)| <2

but £ is not continuous at x., Let f, = £ bs considered as

a mapping of X to o¥. Of course, x is a w~Darboux point of f_.
Denote by UWU(x) any base of neighbourhood of x such that the
closure f;?ﬁj of QX(U) in «Y is connected for sach U e U(x)
(until the end of the proof, the bar denotes the closura in
«Y)o. Since f, is not continuous at x, by virtue of Theorem 18,
fa(x) ig an accumulstion point of L(ﬂa,x). I%# follows from
Theorem 1 that QJ(U \{x}) = £,(U) for any U ¢ U(x)., There-
fore, by [1; Theorem 6,1.18 and Example 2.5.4], the set
L(ﬁx,x) = f]{i;?ﬁi: U e u(x)} is connected. lisnca, by [1; Co=-
oMo

rollary 6€.1.3], |L{f, ,x}]>

c L{f,x) v (oY \Y), so [L(f,,x)] <2%°. The corniradiction ob-
tained completes the proof.

Finally, let us note without procfs & few corollaries
to Theorem 19,

Corollary Se Let f be a mapping of a space X
to a locally compact space Y. Suppose that xe¢X is a w-Dar-
boux point of f. Then f is continuous at x if and only 1if

« On the other hand, L{f,,x) c

4
|L(g,x) 1 <27,
Corollary G Let Y be a Ivciionoff space which
has a compactification with the remainder c¢f csrdinality <2 °,
Let £ be a mapping of a space X to Y and suppose that X € X

K
is a w-Darbour point of f. If |L(f,x )\ f(X)| <2 ° and
8o

{{x e Xt X, € T(f,f(x))}l <27, then f is continuous at X e
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Corollary Te Let £ be a mapping of a space X

to a locally compact space Y and suppose that xoe.x 1s a w~Dar-

&
boux point of f. If [L(£,x,) \2(X)|<2"° and |[{xeX: x ¢

e T(f,2(x))}| <2&°, then f is continuous at x,.
Corollary 8. Let Y be a Tychonoff space whioch
has & compactification with the remainder of cardinality

Y
<2'°, Suppose that £ is a mapping of a space X to Y such that
£{X) 48 a closed subbet of Y, If x,cX is a w~Darboux point

of £ and [{xeXs X, eT(£,2(x))} <2&°, then £ is continuous
at xoo
Corollary 9, Let £ be a mapping of a space X

to a locally ocompact space Y, If f(X) is a closed subset of Y,

x,¢X is a w-Darboux point of f and [{xeX: xoeT(f,f(x))}|<2%°,

then f is continuous at x .

Corollary 10. Let Y be a Tychonoff space which
has a compactification with the remainder of cardinality <270,
Then a w~Darboux mepping £ of a space X to Y is continuous if
and only if G(f) is a closed subset of X xY,
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