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ON SOME APPLICATIONS OF LIMIT ELEMENTS OF MAPPINGS 

In the a r t i o l a , the notion of l imit elements of mappings 
i s applied to studying closed mappings, those having closed 
graphs and w-Darboux mappings ( o f . [2]—[6 ])0 Moreover, the 
purpose of the paper i s to inves t i ga te the notion of points 
of c losedness of mappings which was introduced by R. Pawlak 
in [6 ] , To begin with, l e t us e s t a b l i s h some notation and 
r e c a l l the most important d e f i n i t i o n s . 

All mappings to be considered here are defined on Haus-
dorf f spaces and take values in Hausdorff spaces . All spaces 
are assumed to be Hausdorff . The space of r e a l numbers with 
the natural topology i s denoted by R. As usual , N denotes the 
set of pos i t ive in teger s . The derived set of A i s denoted 
by A^. The f a c t that f i s a mapping of a space X to a 
space Y i s writ ten in symbols as f : X -+> Y (we do not require 
the continuity of f ) . The graph of f : X Y i s denoted by 
G ( f ) . All other symbols are s tandard. Generally, the notat ion 
here conforms to that of [ l ] . 

D e f i n i t i o n s ( c f . [ 6 ] ) . Let f : X -*• Y. 
(1) A point y e Y i s ca l l ed a l imit element of f at 

a point x e X i f there e x i s t s a net { x g ; s e s } c X \ { x } such 
that x = lim xa and y = lim f ( x _ J . Denote by L ( f , x ) the set 

seS 8 seS 8 

of a l l l imi t elements of f at x . 
(2) A point y e L ( f , x ) i s ca l led a ( * ) - l imi t element of f 

at x i f , f o r any net fx : s e S ) c X such that x = lim x„ and 
1 s 1 seS 8 
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2 E. Wajoh 

y = lim f ( x «J , there exists s„e S for which f ( x _ ) » y when-
e 8 O 0 

se o ^ 
ever s > sQ . Denote by L ( f , x ) the set of a l l ( * ) - l imi t e l e -
ments of f at x. 

(3) I f L ( f , x ) \ { f ( x ) } c L * ( f , x ) , then we say that x i s 
a point of closedness of f or, equivalently, that f i s closed 
at Xo 

(4) I f L ( f , x ) c { f ( x ) } , then we say that the graph of f 
i s closed at x. 

T h e o r e m 1. For e\jery mapping f : X —* Y, any 
point x e X and any base U(x) of neighbourhoods of x, we have: 

( i ) L ( f , x ) = f l { f ( U \ { x } ) s UeU (x ) } , so L ( f , x ) i s a closed 
subset of Y ( o f . [3j pp.51-52]). 

( i i ) L * ( f , x ) = L ( f , x ) n U { f ( U ) \ f (U ) d : UeU (x ) } . 

( i i i ) L * ( f , x ) n L ( f , x ) d = 0, so L * ( f , x ) is a discrete 
subspaoe of Y. 

( i v ) I f x i s a point of closedness of f , then 
L ( f , x ) \ { f ( x ) } is a disorete subspace of Y. 

P r o o f . ( i i ) For a point y e Y, let T ( y ) be a base 
of neighbourhoods of y . Suppose f i r s t that y e f (U) d whenever 
Ue l l (x ) . To each UeU-(x) and VeV (y ) we can assign some 
X(U V) 6 U s110*1 ^ a t f U ( u v j ) e V N l { y } « us define, for 
Une\i(x) and V Q e r ( y ) (n=i ,2 ) , that (U^V^ $ (U2,V2) i f 
U1 3U2 and V1 sVg. The set S = U(x) * T ( y ) is direoted by the 
relation ^ . The net (U,V) e s } converges to x and 
the net { f ( x ( y (U,V) e s } converges to y j therefore 
y fc, L * ( f , x ) . 

Conversely, i f y e L ( f , x ) \ L * ( f , x ) , then there exists 
a net { x i } t e t } c X such that f ( x t ) 4 y for any t e T, 
lim x+ = x and lim f ( x t ) = y, so y e f (U) d whenever UelL(x). 
teT x teT 
This completes the proof of ( i i ) . 

Property ( i i i ) follows from ( i ) and ( i i ) . Property ( i v ) 
is a consequenoe of ( i i i ) . 
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Limit alomante of mappings 3 

Let us r e c a l l that a mapping f : X —> Y i s c a l l e d c lo sed 
provided f t rans forms each c lo sed subset of X onto a o losad 
subse t of Y. 

R. Pawlak proved in [ S ; Theorem 1 ( b ) ] tha t i f eaoh point 
of a compact spaoe X i s a point of c l o s e d n e s s of f : X —> Y, 
than f i s c l o s e d . We s h a l l show that the converse of the 
above-mentioned theorem does not ho ld . 

E x a m p l e 1. Let us cons ider the one-point compac-
t i f i c a t i o n uR of R and the space Y obtained from R by i d e n t i -
f y i n g the s e t N with a point y Q . Denote by xQ the point of 
wR \R and de f ine 

f (x) = 

x f o r x e R \ N, 

yQ f o r x e N, 

-1 f o r x = x „ . o 
Of c o u r s e , the mapping f : cjR —* Y i s c l o s e d . I f U i s an open 
neighbourhood of xQ in cjR and V i s an open neighbourhood of 
y 0 in Y, then (V\ { y j ) n f(U \ { x 0 } ) 4 0 because R \ U i s com-
pact in R ; hence, by Theorem 1 ( i ) - ( i i ) , y Q e L ( f t x ) \ [ { f ( x ) }u 
u L * ( f , x 0 ) ] , so f i s not c losed at xQ. As L ( f , x Q ) = { y Q } , 
t h i s example a l s o points out that the converse of Theorem l ( i v ) 
does not hold . 

I t i s e a s i l y seen that the assumption of the compactness 
of X i s need le s s in the second part of P r o p o s i t i o n 3 of [ 6 ] ; 
a c c o r d i n g l y , we have 

T h e o r e m 2. Let f be a mapping of a space X to 
a space Y. Then G( f ) i s a c losed subset of X<Y i f and only i f 
G( f ) i s c losed at each point x e X. 

Let us present the fo l lowing l o c a l v e r s i o n of a well-known 
r e s u l t concerning mappings which take va lue s in compact s p a -
c e s : 

T h e o r e m 3. Suppose that f i s a mapping of 
a space X to a compact; spac-3 Y. Then x e X i s a point of con-
t i n u i t y of f i f and only i f i s c losed at x ( c f . [ l ; 
Kxarc i se 3 . 1 . D ] ) , 
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4 E. Wajoh 

T h e o r e m 4« Let f be a closed mapping of a r e -
gular space X to a space Y. For any x e X , the following con-
ditions are equivalents 

( i ) G( f ) i s closed at x j 
( i i ) f ~ 1 ( y ) is closed whenever y c L ( f , x ) \ { f ( x ) } . 
P r o o f » Assume ( i i ) and suppose that y e L( f ,x)\{f(x)}. 

There exist disjoint open subsets U and W of X suoh that 
xeU and f " 1 ( y ) c W . Sinoe f i s closed, the set V = Y\f(X\ff) 
i s an open neighbourhood of y and, moreover, Yn f (U ) = 0. 
Henoe y ^ f ( U ) , which is impossible by Theorem l ( i ) . 

The assumption of the regularity of X is essential in 
Theorem 4* 

E x a m p l e 2. Let Y be the space desoribed in 
Example 1. In the set X = uR consider the topology generated 
by a l l the sets that either are open in CJH or are of the form 
U \N where U is open in uR. Then X is a non-regular Hausdorff 
spaoe. Let f defined in Example 1 be considered as a mapping 
of X to' Yo Then f i s closed and, moreover, a l l f ibers of f 
are closed in X. However, the graph of f i s not closed at xQ. 

Prom our Theorems 3 and 4 we immediately obtain the 
following local version of Theorem 4.9 of [ 2 ] i 

T h e o r e m 5. A closed mapping f of a regular spa-
ce X to a compact spaoe Y is continuous at a point xe X i f 
and only i f f " (y) is closed whenever ye L ( f , x ) \ { f ( x ) } . 

T h e o r e m 6, Let f be a closed mapping of a f i r s t -
-countable space X to a first-countable space Y. For any x eX, 
the following conditions are equivalent« 

( i ) G( f ) is closed at x j 
( i i ) f " 1 ( y ) is closed whenever ye L ( f , x ) \ { f ( x ) } . 
P r o o f . In view of [6; Theorem 1 (a ) ] , x i s a point 

of closedness of f , so x e f " 1 ( y ) whenever y t L ( f , x ) . 
Theorems 3 and 6 imply 
T h e o r e m 7. A closed mapping f of a f i rst-count-

able space X to a first-countable compact spaoe Y is conti-
nuous at a point x eX i f and only i f f (y) i s closed when-
ever y e L ( f , x ) \ { f ( x ) } . 
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Limit elements of mappings 5 

For a mapping fs X — Y and a point y e T , denote 

T ( f , y ) = { x e X: y e L ( f , x ) } 

( c f . [3 ; p.63] and [4 j Def in i t ion 3 .3 ] ) . 
Let us observe that i f x e T ( f , y ) d , then, f o r any neigh-

bourhoods U and V of x and y , resp . , we have f (U \ { x } ) nV 4 0, 
so, by Theorem l ( i ) , x e T ( f , y ) } therefore the set T ( f , y ) i s 
closed ( c f . [4j Theorem 3 .3 ] ) . 

T h e o r e m 8„ Let f be a closed mapping of a l oca l l y 
sequentially compact spaoe X to a Freohet space Y and l e t 
x e X. I f x * T ( f , y ) d f o r any y e L ( f , x ) \ ( f ( x ) } , than x i s 
a point of closedness of f . 

P r o o f . Suppose that y e L ( f , x ) \ [ { f ( x ) } u L * ( f , x ) ] . 
There ex ists a neighbourhood W of x such that W n T ( f , y ) = {x } „ 
We can find a neighbourhood U of x such that U i s sequentially j 

compact and Uc W. According to Theorem l ( i i ) , y e f (U ) , so 
there ex is ts a sequence n e N } of elements of U such that 
lim f(x„") = y and f ( x „ ) i y f o r any neN . As U i s sequentially 
neN n n 

compact, the sequenae n e N } contains a subsequenoe 
(x_ | k e n } whish converges to some point z e U. Then z = x 
L nk J 

because y e L ( f , z ) and U n T ( f , y ) = { x } „ The set A = 

= ( x ) u t j (x_ } i s closed; however, y e f ( A ) \ f ( A ) . The oon-
1 1 keN k 

t radict ion obtained concludes the proof. 
T h e o r e m 9. Let f be a mapping of a sequentially 

compact regular space X to a Freohet space Y. Assume that, 
f o r any x e X, we have x fc ,T ( f ,y ) d whenever y e L ( f , x ) \ { f ( x ) } . 
Then f i s closed i f and only i f each point of X i s a point 
of closedness of f . 

P r o o f . I f each point of X i s a point of closed-
ness of f , then arguing similarly as in the proof of Theo-
rem 1(b) in [6 ] , we deduce that f i s closed. Sinoe every se-
quentially compact regular space i s loca l ly sequentially 
compact, Theorem 8 completes the proof. 
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6 E. Wajoh 

Without any d i f f i c u l t i e s ona can oheok that the space Y 
def ined in Example 1 i s a Frechet space ( c f . [ l ; Example 
1 . 6 « 1 8 ] } . There fore , in view of Example 1, the requirement 
that x e T ( f , y ) d whenever j e L ( f , x ) \ { f ( x ) } cannot be omitted 
i n Theorems 8 and 9. 

T h e o r e m 10. Let f be a mapping of a s e q u e n t i a l l y 
compact space X to a Prechet spaoe Y. Assume t h a t , f o r any 
x e X, the s e t T ( f , y ) \ { x } i s compact whenever y e 
Then f i s c lo sed i f and only i f each point of X i s a point 
of c l o s e d n e s s of f . 

P r o o f . Suppose that y e L ( f , x ) \ [ { f ( a c ) } u L * ( f , x ) ] 
f o r some x e X . By [ i j Theorem 3 . 1 . 6 ] , there e x i s t s a neigh-
bourhood U of x such that U n T ( f , y ) = { * } . S ince U i s s e -
q u e n t i a l l y compaot, according to the proof of Theorem 8 , 
we obtain that f i s not c l o s e d . 

C o r o l l a r y 1„ Let f be a mapping of a sequen-
t i a l l y compact space X to a Frechet space Y. Assume t h a t , 
f o r any x e X, the se t T ( f , y ) i s countable and x * T ( f , y ) d 

whenever y e L ( f , x ) \ { f ( x ) } . Then f i s c losed i f and only i f 
each point of X i s a point of c lo sednes s of f . 

P r o o f . We have observed that T ( f , y ) i s c lo sed f o r 
any y e Y. I f T ( f , y ) i s countab le , then Theorem 3 .10 .30 of 
[ l ], together with the theorem given in [ l j Exerc i s e 3 . 1 0 . A ] , 
impl i e s that T ( f , y ) i s compact. To complete the proof , i t 
s u f f i o e s to use Theorem 10„ 

D e f i n i t i o n 5. Let f s X Y. We s h a l l say 
that x e X i s a d-point of f i f there e x i s t s a base U ( x ) 
of neighbourhoods of x such t h a t , f o r any U e t l ( x ) , e i t h e r 
f (U) i s dense in i t s e l f or f(U) = { f ( x j } . I f eaoh point 
of X i s a d-point of f , then f w i l l be c a l l e d a d-mapping. 

T h e o r e m 11. Let f : X — Y and suppose that 
x eX i s a d-point of f „ I f L * ( f , x ) 4 0 , then there e x i s t s 
a neighbourhood U of x such that f (U) = { f ( x ) } , so f i s con-
t inuous at x 0 
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Limit elements of mappings 7 

P r o o f . Take a base t l ( x ) of neighbourhoods of x 
suoh that, f o r any W e l l ( x ) , e i ther f(W) i s dense in i t s e l f 
or f(W) = { f ( x ) } . I f y e L * ( f , x ) , then, by Theorem l ( i i ) , we 
oan find U e U(x) such that y e f (U ) \ f ( U ) d j hence f (U ) = 
= { f ( x ) } beoause f (U) i s not dense in i t s e l f . 

Let us note a few consequences of Theorem 11. 
T h e o r e m 12. Let f be a d-mapping of a connec-

ted space X to a apace Y. I f L * ( f , x ) ^ 0 f o r any x e X then 
f i s constant. 

P r o o f . Consider any x 0 e X. By Theorem 11, the set 
A = f " 1 [ f ( x 0 ) ] i s clopen in X, so A = X. 

T h e o r e m 13. Let fs X —• Y and suppose that x e X 
i s a d-point of f . Then x i s a point of closedness of f i f 
and only i f the graph of f i s closed at x. 

Theorems 2, 8 and 13 imply 
T h e o r e m 14. Let f be a closed d-mapping of a l o -

oally sequentially compact space X to a Freohet space Y. Then 
G ( f ) i s a closed subset of X *Y i f and only i f , f o r any xe X, 
we have x ^ T ( f , y } d whenever y e L ( f ,x ) \ { f ( x ) } . 

T h e o r e m 15. Let f be a closed mapping of a l o -
cal ly sequentially compaot space X to a compact Frechet 
space y . A d-point x eX of f i s a point of continuity of f 
i f and only i f x « T ( f , y ) d whenever y e L ( f , x ) \ { f ( x ) } . 

P r o o f . I t su f f i ces to apply Theorems 3, 8 and 13. 
Theorems 2, 10 and 13 y i e ld 
T h e o r e m 16. Let f be a d-mapping of a sequen-

t i a l l y compaot space X to a Frechet space Y. Then ( i ( f ) i s 
a closed subset of X * Y i f and only i f f i s closed and, f o r 
any x e X, the set T( f ,y ) \ { x }• i s compaot whenever y e L( f ,x ) \ 
\ { f ( x ) } . 

T h e o r e m 17. A d-mapping f of a sequentially 
compaot space X to a compact Freohet space Y i s continuous 
i f and only i f f i s closed and, for any xe X, the set 
T ( f , y ) \ { x } i s compact whenever y e L ( f , x ) \ { f ( x ) } . 

P r o o f . The proposition fol lows from Theorems 3 
and 16 ( c f . [ l j Exercise 3 .1 .D ] ) . 
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8 E. Wajoh. 

D e f i n i t i o n 6. Let f : X Y. We shall say 
that x e X is a w-Darboux point of f i f there exists a base 
U(x) of neighbourhoods of x such that f (U) i s oonnected for 
any U e U (x ) . I f each point of X i s a w-Darboux point of f , 
then f w i l l be called a-w-Darboux mapping ( c f . [5» Def ini-
tion 1 ] ) 0 

Clearly, every w-Darboux mapping is a d-mapping. 
Let us reca l l that a rimoompaot space i s a Hausdorff space 

having a base of open sets with compact boundaries. 
Now, we are in a position to extend and generalize both 

Theorems 2 and 4 of [ 6 ] ( c f . also [5| Theorem l ] ) . 
T h e o r e m 18. Suppose that f is a mapping of 

a space X to a rimcompact space Y. I f xe X i s a w-Darboux 
point of f , then the following conditions are equivalent» 

( i ) x i s a point of continuity of f ; 
( i i ) x i s a point of closedness of f$ 
( i i i ) the graph of f i s closed at x j 
( i v ) |L(f ,x)| $ 1> 
(v ) L ( f , x ) is f i n i t e » 
( v i ) L ( f , x ) is a disorete subspace of Y j 
( v i i ) L ( f , x ) is either empty or not dense in i t s e l f } 
(viii) f ( x ) i s not an accumulation point of L ( f , x ) . 
P r o o f . The implications ( i ) =J> ( i i ) and ( i i i ) 

( i v ) (v ) ( v i ) ( v i i ) are obvious. That ( i i ) =5. ( i i i ) 
follows from Theorem 13» Hence i t suf f ices to show that 
( v i i ) ( v i i i ) ( i ) . 

.first of a l l , let us f i x any base IL(x) of neighbourhoods 
of x such that f (U) is connected for each U e U(x ) . Suppose 
that ( v i i i ) does not hold. Take an arbitrary y c L ( f , x ) \ { f ( x ) } 
and consider any neighbourhood V of y . Since Y is rimoompaot, 
there exists an open neighbourhood W of y such that f ( x ) te; 

WcV and K = Pr W is compact. For each U e U(x ) , we have 
f (U) \ W 4 0 ana f(U) n W ̂  0; hence, the connectedness of 
f (U) implies that f (U) n K t 0. As f ( x ) *,K, then f (U\{x} )nK ^ 0 
for any U e U(x) and, consequently, fl { f (U \ { x } ) : U e U(x)}nK^0 
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Limit elemente of mappings 9 

because K is oompact. I t follows from Theorem 1(1) that 
KnL ( f , x ) 4 0} therefore y is an accumulation point of L ( f , x ) , 
so ( v i i ) ( v i i i ) . 

Assume ( v i i i ) and suppose that ( i ) does not hold. There 
exists a neighbourhood V of f ( x ) such that ( V \ { f ( x ) } ) n 
n L ( f , x ) = 0 and, moreover, f (U) \ V 4 0 for any U e U(x ) . 
l e t us take an open neighbourhood W of f ( x ) such that WcV 
and Fr W i s compact. Then f (U) n Pr W ji 0 for any U e U(x ) . 
Using the same arguments as in the proof of the implication 
( v i i ) ( v i i i ) , we obtain that L ( f , x ) nPr W / 0. This con-
tradicts the fact that (V \ ( f ( x ) } ) nL ( f , x ) = 0. Hence 
( v i i i ) ( i ) . 
' The example of [5, p» 772] points out that the assumption 

of rimaompaotness is needed in the above theorem. 
Theorem 18, along with Theorem 2, implies 
C o r o l l a r y 2. A w-Darboux mapping of a space X 

to a rimcompact space Y i s continuous i f and only i f G( f ) is 
a closed subset of X »Y. 

The following two corol laries can be regarded as genera-
l izat ions of Theorem 4 of [3| p.63]: 

C o r o l l a r y 3. Let f be a mapping of a space X 
to a rimcompact space Y. I f x Q eX is a w-Darboux point of f , 
the set A = { x e X: xQe T ( f , f ( x ) ) } is f in i t e and, moreover, 
f ( x Q ) i s not an accumulation point of L ( f , x 0 ) \ f ( ^ ) , then f 
is continuous at x 0 .. 

P r o o f . Let us observe that A = f [ L ( f , x 0 ) ] t so 
L ( f , x 0 ) = f (A ) u [L ( f ,x Q ) \ f ( X ) ] . Theorem 18 completes the 
proof. 

C o r o l l a r y 4. Suppose that f i s a mapping of 
a space X to a rimcompact space Y. I f f (X ) is a closed subset 
of Y, x Q eX is a w-Darboux point of f and, moreover, the set 
f x e l ! x, s T ( f , f ( x ) ) } is f i n i t e , then f i s continuous at x„ . 

P r o o f . In the case where f (X) is closed in Y, we 
have L ( f ( x ;• c f ( x ) ; hence the proposition follows from Co-
rollary 3. 
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10 E. Wajch 

Our next theorem i s a general izat ion of Theorem 2„3(c) 
of [ 2 ] . 

T h e o r e m 19. Let Y be a Tychonoff space which 
has a compactif ication with the remainder of cardinal ity < 

Wo 
<2 o Let f be a mapping of a space X to Y and suppose that 
x e X i s a w-Darboux point of f . Then f i s continuous at x i f 
and only i f |L ( f ,x )| < 2 . 

P r o o f . Let us take an arbitrary compactif ication 

otY of Y such that |«Y\Y| <2 Suppose that |L(f ,x)| < 2^° 
but f i s not continuous at x. Let f a = f be considered as 
a mapping of X to cxY. Of course, x i s a w~Darboux point of f ^ . 
Denote by U(x ) any base of neighbourhood of x such that the 
closure f a ( U ) of f a ( U ) in cxY i s connected f o r each U e U (x ) 
(unt i l the end of the proof, the bar denotes the closure in 
cxY). Sinoe f a i s not continuous at x , by virtue of Theorem 18, 
f ^ i x ) i s an accumulation point of L ( f Q , x ) . I t fo l lows from 
Theorem 1 that f w (U \ { x } ) = f^ fU) f o r any U e U ( x ) . There-
f o re , by [ l j Theorem 6.1.18 and Example 2 .5 .4 ] , the set 
L ( f ^ , x ) = n { f a ( U ) : U e U (x ) } i s connected, llenoe, by [l { Co-
ro l lary 6 .1 .3 ] , |L( f f t ,x ) | £ 2**°. On the other hand, L f f ^ . x ) c 

c L ( f ,x) u (oY \ Y ) , so |L ( f a , x )| <2^° . The contradiction ob-
tained completes the proof. 

F ina l ly , l e t us note without proofs a few coro l la r i es 
to Theorem 19. 

C o r o l l a r y 5. Let f be a mapping of a space X 
to a loca l ly compact space Y. Suppose that x eX i s a w-Dar-
boux point of f . Then f i s continuous at x i f and only i f 

|L( f ,x )| <2 * ° . 
C o r o l l a r y 6. Let Y be a T-vciionoff space which 

has a compactificatj.on with the remainder cf cardinality <2 . 
Let f be a mapping of a space X to Y and {suppose that x e X 

is a w-Darboux point of f . I f | L( f ,x ) \ f (X) j <2 0 and 

¡ { x e X : xQ G T ( f , f ( x ) ) } | < 2 then f i s continuous at xQ . 
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Liait elemente of mappings 11 

C o r o l l a r y 7. Let f be a mapping of a space X 
to a local ly compaot space T and suppose that i e l i s a w-Dar-

u 0 

boux point of f . I f |L(f,x ) \ f (X )| < 2 0 and |{xe X: xn e 
u 0 

e T ( f , f ( x ) ) } | < 2 then f is oontinaoos at xQ . 
C o r o l l a r y 8. Let Y be a Tychonoff spaoe whioh 

has a compactification with the remainder of cardinality 

<2 Suppose that f is a mapping of a space X to Y such that 
f (X ) i s a closed subfeet of Y. I f x e X i s a w-Darboux point 

of f and |{x e X: x 0 e T ( f , f ( x ) ) } | <2 then f i s continuous 
at x 0 . 

C o r o l l a r y 9. Let f be a mapping of a space X 
to a local ly compact space Y. I f f (X ) i s a closed subset of Y, 

x 0 e X i s a w-Darboux point of f and | {xeXi x 0 e T ( f , f ( x ) )}| < 2 
then f is continuous at o 

C o r o l l a r y 10. Let Y be a Tychonoff space whioh 
has a compactification with the remainder of cardinality < 2^°. 
Then a w-Darboux mapping f of a space X to Y i s continuous i f 
and only i f G ( f ) i s a olosed subset of Z » I , 
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