

Ryszard Deszcz

ON RICCI-PSEUDO-SYMMETRIC WARPED PRODUCTS

1. Introduction

Let (M, g) be a connected n -dimensional ($n \geq 3$) Riemannian manifold of class C^∞ with not necessarily definite metric g . We denote by ∇ , \tilde{R} , κ , S and K the Levi-Civita connection, the curvature tensor, the Riemann-Christoffel curvature tensor, the Ricci tensor and the scalar curvature of (M, g) , respectively.

A manifold (M, g) is said to be pseudo-symmetric [6] if the following condition is satisfied:

(*) at every point of M the tensors $\tilde{R} \cdot \kappa$ and $Q(g, \kappa)$ are linearly dependent.

This condition is trivially satisfied at points at which $R = R(1)$ (we note that the tensor $Q(g, R)$ vanishes at a point $x \in M$ if and only if $R(x) = R(1)(x)$). Thus the condition (*) is equivalent to the following relation

$$(1) \quad \tilde{R} \cdot R = L Q(g, R)$$

on the set $W = \{x \in M: R \neq R(1) \text{ at } x\}$, where L is a function on W . Recently, pseudo-symmetric manifolds were studied by various authors. It is easy to see that if the condition (*) holds on a Riemannian manifold (M, g) then also

(**) at every point of M the tensors $\tilde{R} \cdot S$ and $Q(g, S)$ are linearly dependent.

The condition (**) is equivalent to the following relation

$$(2) \quad \tilde{R} \cdot S = L Q(g, S)$$

on the set $U = \{x \in M : S \neq \frac{K}{n}g \text{ at } x\}$. Manifolds satisfying the condition $(**)$ are called Ricci-pseudo-symmetric [8]. Obviously, any Ricci-semi-symmetric manifold ($\tilde{R} \cdot S = 0$, cf. [11]) is Ricci pseudo-symmetric. The conditions $(*)$ and $(**)$ are equivalent at all points of a manifold (M, g) at which the Weyl conformal curvature tensor C vanishes [3, Lemma 1.2] (cf. also [7, Lemma 3]).

Let I be an open interval of \mathbb{R} considered with its standard metric g , and F a positive smooth function on I . If (M_2, g_2) , $\dim M_2 \geq 2$, is an Einstein manifold, then the warped product $(I \times M_2, g_1 \oplus F g_2)$ is Ricci-pseudo-symmetric [8]. Moreover, all such Ricci-pseudo-symmetric warped products for which the manifold (M_2, g_2) is not necessarily Einstein manifold are determined in [8]. The Ricci-pseudo-symmetric warped products $(I \times M_2, g_1 \oplus F g_2)$, $\dim M_2 \geq 3$, are non pseudo-symmetric and non Ricci-semi-symmetric in general.

This paper contains some results on Ricci-pseudo-symmetric warped products $(M_1 \times M_2, g_1 \oplus F g_2)$ for which $\dim M_1 \geq 1$. We give necessary and sufficient conditions for a warped product to be Ricci-pseudo-symmetric. In particular, we obtain necessary and sufficient conditions for a warped product of two Einstein manifolds to be Ricci-pseudo-symmetric. With the help of the above results, we construct various examples of manifolds of this type.

2. Ricci-pseudo-symmetric warped products

Let (M, g) be a Riemannian manifold. For a tensor field A of type $(0, p)$, $p \geq 1$, on M we define the tensor fields $\tilde{R} \cdot A$ and $Q(g, A)$ by the formulas

$$\begin{aligned} (\tilde{R} \cdot A)(X_1, \dots, X_p; X, Y) &= (\tilde{R}(X, Y) \cdot A)(X_1, \dots, X_p) = \\ &= -A(\tilde{R}(X, Y)X_1, X_2, \dots, X_p) - \dots - A(X_1, \dots, X_{p-1}, \tilde{R}(X, Y)X_p) \end{aligned}$$

and

$$Q(g, A)(X_1, \dots, X_p; X, Y) = -((X \wedge Y) \cdot A)(X_1, \dots, X_p) =$$

$$= A((X \wedge Y)X_1, X_2, \dots, X_p) + \dots + A(X_1, \dots, X_{p-1}, (X \wedge Y)X_p)$$

respectively, where $\tilde{R}(X, Y)$ and $X \wedge Y$ are derivations of the algebra of the tensor fields on M and $X_1, \dots, X_p, X, Y \in \mathfrak{X}(M)$, $\mathfrak{X}(M)$ being the Lie algebra of vector fields on M . These derivations are the extensions of the endomorphisms $\tilde{R}(X, Y)$ and $X \wedge Y$ of $\mathfrak{X}(M)$ defined by

$$\tilde{R}(X, Y)Z = \nabla_X \nabla_Y Z - \nabla_Y \nabla_X Z - \nabla_{[X, Y]} Z$$

and

$$(X \wedge Y)Z = g(Z, Y)X - g(Z, X)Y$$

respectively, where $X, Y, Z \in \mathfrak{X}(M)$.

For the Riemann-Christoffel curvature tensor R we define the tensor $R(1)$ by $R(1) = \frac{K}{n(n-1)} G$, where G is given by

$$G(X_1, X_2, X_3, X_4) = g((X_1 \wedge X_2)X_3, X_4),$$

$X_k \in \mathfrak{X}(M)$, $k = 1, \dots, 4$.

Let $(M_1, g_{(1)})$ ($i = 1, 2$, $\dim M_1 = p$, $\dim M_2 = n-p$, $1 < p < n$) are Riemannian manifolds covered by systems of charts $\{V'; x^a\}$ and $\{V'; y^\alpha\}$, respectively. Let F be a positive smooth function on M_1 . The warped product of $(M_1, g_{(1)})$ and $(M_2, g_{(2)})$ ([9], [2]) is the Cartesian product $M_1 \times M_2$ with the metric $g_{(1)} \oplus F g_{(2)}$ (more precisely, $g = \pi_1^* g_{(1)} + (f \circ \pi_1) \pi_2^* g_{(2)}$, $\pi_1 : M_1 \times M_2 \rightarrow M_1$ being the natural projections). Let $\{V' \times V''; u^1 = x^1, \dots, u^p = x^p, u^{p+1} = y^1, \dots, u^n = y^{n-p}\}$ be a product chart for $M_1 \times M_2$. The components of g with respect to this chart are following

$$(3) \quad g_{rs} = \begin{cases} g_{ab} & \text{if } r = a, s = b \\ F g_{\alpha\beta} & \text{if } r = \alpha, s = \beta, \\ 0 & \text{otherwise} \end{cases}$$

where $a, b, c, d \in \{1, \dots, p\}$, $\alpha, \beta, \gamma, \delta \in \{p+1, \dots, n\}$ and $r, s, t, u, w \in \{1, \dots, n\}$. The local components Γ_{st}^r of the Levi-Civita connection ∇ of $g \oplus Fg$ are the following

$$(4) \quad \left\{ \begin{array}{l} \Gamma_{bc}^a = \Gamma_{bc}^a, \quad \Gamma_{\gamma\beta}^\alpha = \Gamma_{\gamma\beta}^\alpha, \quad \Gamma_{\alpha\beta}^a = \frac{1}{2} g^{ab} F_b g_{\alpha\beta}, \\ (1) \quad (2) \quad (1) \quad (2) \\ \Gamma_{ab}^\alpha = \frac{1}{2F} F_a \delta_{\beta}^{\alpha}, \quad \Gamma_{ab}^\alpha = \Gamma_{ab}^a = 0, \quad F_a = \frac{\partial}{\partial x^a} (F). \end{array} \right.$$

We shall indicate each object formed from g by (i). The local components

$$R_{rstu} = g_{rw} \tilde{R}^w_{stu} = g_{rw} (\partial_u \Gamma_{st}^w - \partial_t \Gamma_{su}^w + \Gamma_{st}^v \Gamma_{vu}^w - \Gamma_{su}^v \Gamma_{vt}^w),$$

$$\partial_u = \frac{\partial}{\partial x^u},$$

of the tensor R and the local components S_{ts} of the tensor S of $g \oplus Fg$ which may not vanish identically are the following

$$(5) \quad R_{abcd} = R_{abcd},$$

$$(6) \quad R_{\alpha ab\beta} = -\frac{1}{2} T_{ab} g_{\alpha\beta},$$

$$(7) \quad R_{\alpha\beta\gamma\delta} = F R_{\alpha\beta\gamma\delta} - \frac{1}{4} \Delta_1 F G_{\alpha\beta\gamma\delta},$$

$$(8) \quad S_{ab} = S_{ab} - \frac{n-p}{2F} T_{ab},$$

$$(9) \quad S_{\alpha\beta} = S_{\alpha\beta} - \frac{1}{2} (\text{tr}(T) + \frac{n-p-1}{2F} \Delta_1 F) g_{\alpha\beta},$$

where

$$(10) \quad T_{ab} = \nabla_b F_a - \frac{1}{2F} F_a F_b, \quad \text{tr}(T) = g_{(1)}^{ab} T_{ab}, \quad \Delta_1 F = g_{(1)}^{ab} F_a F_b.$$

The scalar curvature K of $g \oplus Fg$ satisfies the equation

$$(11) \quad K = \frac{K}{(1)} + \frac{1}{F} \frac{K}{(2)} - \frac{n-p}{F} (\text{tr}(T) + \frac{n-p-1}{4F} \Delta_1 F).$$

The only components of $\tilde{R} \cdot S$ which may not vanish are those related to

$$(12) \quad (\tilde{R} \cdot S)_{abcd} = (\tilde{R} \cdot S)_{(1)(1)abcd} - \frac{n-p}{2F} (\tilde{R} \cdot T)_{(1)abcd}.$$

$$(13) \quad (\tilde{R} \cdot S)_{\alpha\beta\gamma\delta} = \frac{1}{2F} \left(S_{\alpha\gamma} - \frac{n-p}{2F} T_{\alpha\gamma} + \frac{1}{2F} (\text{tr}(T) + \frac{n-p-1}{2F} \Delta_1 F) g_{\alpha\gamma} \right) T^{\alpha}_{\beta} g_{\alpha\beta} \\ - \frac{1}{2F} T_{\alpha\beta} S_{\alpha\beta}, \quad T^{\alpha}_{\beta} = g^{\alpha\gamma} T_{\gamma\beta},$$

$$(14) \quad (\tilde{R} \cdot S)_{\alpha\beta\gamma\delta} = (\tilde{R} \cdot S)_{(2)(2)\alpha\beta\gamma\delta} - \frac{1}{4F} \Delta_1 F Q(g, S)_{\alpha\beta\gamma\delta}.$$

Further, in virtue of (3), (8) and (9), we can easily show that the only components of $Q(g, S)$ not identically zero are those related to

$$(15) \quad Q(g, S)_{abcd} = Q(g, S)_{(1)(1)abcd} - \frac{n-p}{2F} Q(g, T)_{(1)abcd},$$

$$(16) \quad Q(g, S)_{\alpha\beta\gamma\delta} = g_{\alpha\beta} S_{\gamma\delta} - \left(\frac{1}{2F} (\text{tr}(T) + \frac{n-p-1}{2F} \Delta_1 F) g_{\alpha\beta} + \right. \\ \left. + S_{\alpha\beta} - \frac{n-p}{2F} T_{\alpha\beta} \right) g_{\alpha\beta},$$

$$(17) \quad Q(g, S)_{\alpha\beta\gamma\delta} = F Q(g, S)_{(2)(2)\alpha\beta\gamma\delta}.$$

Theorem 1. Let (M_i, g_i) , $i = 1, 2$, be Riemannian manifolds and F a smooth positive function on M_1 . For the manifold $(M_1 \times M_2, g_1 \oplus Fg_2)$ the condition $\tilde{R} \cdot S = L Q(g, S)$ holds if and only if the following relations are satisfied

$$(18) \quad (\tilde{R} \cdot S)_{(1)(1)abcd} - L Q(g, S)_{(1)(1)abcd} = \frac{n-p}{F} ((R \cdot H)_{(1)abcd} - L Q(g, H)_{(1)abcd}),$$

$$(19) \quad H_{ab} \left(S_{\alpha\beta} - \frac{1}{2F} (tr(T) + \frac{n-p-1}{2F} \Delta_1 F) g_{\alpha\beta} \right) = \\ = H_{cb} \left(S_{\alpha}^c - \frac{n-p}{2F} T_{\alpha}^c \right) g_{\alpha\beta},$$

$$(20) \quad (\tilde{R} \cdot S)_{\alpha\beta\gamma\delta} = (LF + \frac{1}{4F} \Delta_1 F) Q(g, S)_{\alpha\beta\gamma\delta},$$

where H is the tensor field of type $(0,2)$ with local components

$$(21) \quad H_{ab} = \frac{1}{2} T_{ab} + FL g_{ab}.$$

P r o o f. Combining the relations (12)-(14) with the relations (15)-(17) and (21) we obtain our assertion.

As an immediate consequence of Theorem 1 we get

C o r o l l a r y 1. Let (M_i, g) ($\dim M_i \geq 2$, $i = 1, 2$) be Einstein manifolds and F a smooth positive function on M_1 . For the manifold $(M_1 \times M_2, g_{(1)} \oplus Fg_{(2)})$ the condition $\tilde{R} \cdot S = LQ(g, S)$ holds if and only if the following relations are satisfied

$$(22) \quad (\tilde{R} \cdot H)_{abcd} = LQ(g, H)_{abcd}$$

and

$$(23) \quad \frac{F}{n-p} \left(\frac{1}{p} K_{(1)} - \frac{1}{(n-p)F} K_{(2)} + (n-p)L + \frac{1}{2F} (tr(T) + \frac{n-p-1}{2F} \Delta_1 F) \right) H_{ab} = \\ = H_{ac} H^c_b.$$

R e m a r k 1. It is clear that if in the relation (20) $S \neq \frac{1}{n-p} K g$ on some subset $V'' \subset M_2$ then $LF + \frac{1}{4F} \Delta_1 F \Big|_{M_1 \times \{u\}} = \text{const}$ for any $u \in V''$.

3. Examples

We denote by $S^p(\varrho) = \{x \in E^{p+1} : \langle x, x \rangle = \varrho^2, \varrho > 0\}$ the p -dimensional ($p \geq 2$) sphere of radius ϱ centered at the origin

of an Euclidean space E^{p+1} with usual scalar product $\langle \cdot, \cdot \rangle$. Let $e = (e^1, \dots, e^{p+1})$ be a fixed unit vector in E^{p+1} . Define a function Φ in E^{p+1} by

$$\Phi(x) = \langle x, e \rangle = \sum_{k=1}^{k=p+1} x^k e^k,$$

where $x = (x^1, \dots, x^{p+1})$ and denote by

$$(24) \quad f = \Phi \Big|_{S^p(\rho)}$$

the restriction of Φ to $S^p(\rho)$. Further, denote by $g_{(1)}$ the standard metric tensor of $S^p(\rho)$ induced from $\langle \cdot, \cdot \rangle$.

Lemma 1. ([5, Lemma 3]). (i) Let $\{U; u^a\}$ be a chart of $(S^p(\rho), g)$ such that the function f is different from zero at each point of U . Then the function $F = f^2$ satisfies on U the following equalities

$$(25) \quad (a) \quad T_{ab} = -\frac{2F}{\rho^2} g_{ab}, \quad (b) \quad \frac{1}{4F} \Delta_1 F = 1 - \frac{F}{\rho^2}.$$

(ii) Let $F = (f + k)^2$, where $k > \rho$ is a constant. If $\{U; u^a\}$ is a chart of $(S^p(\rho), g)$, then the function F satisfies on U the following equalities

$$(26) \quad (a) \quad T_{ab} = -\frac{2}{\rho^2} f(f + k) g_{ab}, \quad (b) \quad \frac{1}{4F} \Delta_1 F = 1 - \frac{f^2}{\rho^2}.$$

Theorem 2. Let $\{U; u^a\}$ be a chart of $(S^p(\rho), g)$ such that the function F defined in Lemma 1(i) is different from zero at each point of U and let $(M_2, g_{(2)})$ be an $(n-p)$ -dimensional, $n-p \geq 2$, Riemannian manifold.

(i) The manifold $(U \times M_2, g_{(1)} \oplus g_{(2)})$ is Ricci-pseudo-symmetric if and only if the condition

$$(27) \quad \tilde{R} \cdot S = Q(g, S) \quad (2)(2) \quad (2)(2)$$

holds on (M_2, g) .

(ii) Let (M_2, g) be additionally of constant curvature and assume that

$$(28) \quad A = K - (n-p)(n-p-1).$$

If $A \neq 0$ then $(U \times M_2, g_{(1)} \oplus Fg_{(2)})$ is non Ricci-semi-symmetric Ricci-pseudo-symmetric manifold. If $A = 0$ then $(U \times M_2, g_{(1)} \oplus Fg_{(2)})$ is an Einstein manifold.

P r o o f. The assertion (i) is an immediate consequence of Lemma 1(i) and Theorem 1, where we suppose $L = \frac{1}{\varphi^2}$.

The manifold $(U \times M_2, g_{(1)} \oplus Fg_{(2)})$ defined in (ii), in view of (i), is Ricci-pseudo-symmetric. The equality (13), by (25) and (28), turns into

$$(\tilde{R} \cdot S)_{\alpha\beta\beta\alpha} = \frac{AL}{n-p} g_{\alpha\beta} g_{\alpha\beta}.$$

So, if $A \neq 0$, the manifold $(U \times M_2, g_{(1)} \oplus Fg_{(2)})$ is non Ricci-semi-symmetric. Further, applying the relations (25) and $A = 0$ in (8), (9) and (11) we get $S = \frac{K}{n} g$, which completes the proof.

In Examples 1 and 2 we state manifolds fulfilling the condition (27).

E x a m p l e 1. Let I be an open interval of the real line with the metric g , $g_{11} = -1$, and $F(t) = \exp(2t)$, $t \in I$. If $(M_3, g_{(3)})$, $\dim M_3 \geq 3$, is an Einstein manifold then the manifold $(M_2, g_{(2)}) = (I \times M_3, g_{(1)} \oplus Fg_{(3)})$ satisfies (27) (cf. [8, Example 2]). If $(M_3, g_{(3)})$, $\dim M_3 \geq 3$, is a non Einstein Ricci-semi-symmetric manifold, then the manifold $(M_2, g_{(2)}) = (I \times M_3, g_{(1)} \oplus Fg_{(3)})$ satisfies also (27) (cf. [8, Example 3]).

E x a m p l e 2. The manifold $(U \times M_2, g_{(1)} \oplus Fg_{(2)})$ defined in Theorem 1 (ii) with $A \neq 0$ and $\varrho = 1$ satisfies (27).

T h e o r e m 2. Let $(M_2, g_{(2)})$, $\dim M_2 \geq 2$, be an Einstein manifold and let F be the function defined in Lemma 1 (ii) on a sphere $(S^p(\varrho), g_{(1)})$, $p \geq 2$. Then the manifold $(S^p(\varrho) \times M_2, g_{(1)} \oplus Fg_{(2)})$ is Ricci-pseudo-symmetric and non Ricci-semi-symmetric.

P r o o f. The Ricci-pseudo-symmetry follows immediately from Lemma 1 (ii) and Corollary 1, where we suppose $L = \frac{f}{f+k} \frac{1}{\varrho^2}$. Applying the formulas (26) and (28) into (13) we obtain

$$(\tilde{R} \cdot S)_{\alpha\beta\gamma\delta} = \frac{1}{\varrho^2} \frac{f}{f+k} \left(\frac{A}{n-p} - \frac{k}{\varrho^2} ((n-2)f + k(p-1)) \right) g_{\alpha\beta} g_{\gamma\delta},$$

which completes the proof.

C o r o l l a r y 2. Let $(M_2, g_{(2)})$, $\dim M_2 \geq 2$, be a compact Einstein manifold and let F be the function defined in Lemma 1 (ii) on a sphere $(S^p(\varrho), g_{(1)})$, $p \geq 2$. The manifold $(S^p(\varrho) \times M_2, g_{(1)} \oplus Fg_{(2)})$ is a compact non Ricci-semi-symmetric Ricci-pseudo-symmetric manifold.

An example of a compact Ricci-pseudo-symmetric manifold is given also in [8, Remark 3.4].

T h e o r e m 3. Let $(M_2, g_{(2)})$, $\dim M_2 \geq 2$, be an Einstein manifold and let F be a function on an Euclidean space E^p , $p \geq 2$, defined by the formula $F(x) = \frac{1}{4} \left(\sum_{a=1}^{a=p} (x^a)^2 + k \right)^2$, where $x = (x^1, \dots, x^p) \in E^p$, $g_{(1)}$ is the standard metric of E^p and k is a positive constant. Then the manifold $(E^p \times M_2, g_{(1)} \oplus Fg_{(2)})$ is Ricci-pseudo-symmetric and non Ricci-semi-symmetric.

P r o o f. It is easy to verify that the following equations

$$(29) \quad (a) \quad T_{ab} = 2(F)^{\frac{1}{2}} g_{ab}, \quad (b) \quad \frac{1}{4F} \Delta_1 F = 2F^{\frac{1}{2}} - k,$$

hold on E^p (see [5, Theorem 8]). Corollary 1 (take $L = -F(-\frac{1}{2})$) implies that the manifold $(E^p \times M_2, g_{(1)} \oplus Fg_{(2)})$ is Ricci-pseudo-symmetric. Applying the formula (29) into (13) we obtain

$$(\tilde{R} \cdot S)_{\alpha\beta b} = \frac{1}{2} F^{-\frac{1}{2}} \left((n-2)(2(F)^{\frac{1}{2}} - k) - (n-2p)k - \frac{2}{n-p} K_{(2)(1)} g_{ab} g_{\alpha\beta} \right),$$

which completes the proof.

In the above described examples of warped product Ricci-pseudo-symmetric manifolds $(M_1 \times M_2, g_{(1)} \oplus Fg_{(2)})$ the manifold $(M_1, g_{(1)})$ is a manifold of constant curvature. We give now an example of a warped product Ricci-pseudo-symmetric manifold for which the manifold $(M_1, g_{(1)})$ is Ricci-pseudo-symmetric and not of constant curvature.

Example 3. Let I be an open interval of the real line considered with its standard metric \tilde{g} , $\tilde{g}_{11} = \epsilon$, $\epsilon \in \{-1, 1\}$, \tilde{F} a function on I defined by $\tilde{F}(x^1) = \exp(b x^1)$, $x^1 \in I$, $b \in \mathbb{R} - \{0\}$ and $(M_3, g_{(3)})$, $\dim M_3 = p-1 \geq 3$, a not of constant curvature Einstein manifold with non zero scalar curvature. Then the manifold $(M_1, g_{(1)}) = (I \times M_3, \tilde{g}_{(1)} \oplus Fg_{(3)})$ satisfies the conditions $S_{(1)} \neq \frac{1}{p} K_{(1)(1)} g_{(1)}$ and

$$(30) \quad \tilde{R} \cdot S_{(1)(1)} = LQ(g_{(1)}, S_{(1)(1)})$$

with

$$(31) \quad L = -\frac{\epsilon}{4} b^2$$

[8, Corollary 3.2]. Further, let $f = \varepsilon \partial_1 F^{\frac{1}{2}}$ and v be a co-vector field of local components $v_1 = \frac{1}{F^2}$, $v_2 = \dots = v_p = 0$. The covector field v and the function f satisfy on $(M_1, g_{(1)})$ the equality ([10, p.145])

$$(32) \quad \nabla_{(1)} v = fg_{(1)}.$$

Moreover, the relation

$$(33) \quad df = -L v$$

holds on $(M_1, g_{(1)})$ ([8, Corollary 2.4]). From the last equation, by covariant differentiation and making use of (31) and (32) we get

$$(34) \quad \nabla_{(1)}^2 f = -L fg_{(1)}.$$

Putting $F = f^2$ and using (34), (33) and (31) we can easily verify that the following relations are satisfied on $(M_1, g_{(1)})$

$$(35) \quad \frac{1}{2} \left(\nabla_{(1)}^2 - \frac{1}{2F} dF \otimes dF \right) + L F g_{(1)} = 0$$

and

$$(36) \quad L F + \frac{1}{4F} \nabla_1 F = 0.$$

To obtain our example we consider two cases. (i) Let $(M_2, g_{(2)})$, $\dim M_2 \geq 2$, be an Einstein manifold. Then the manifold $(M_1 \times M_2, g_{(1)} \oplus Fg_{(2)})$ satisfies (2). In fact, in virtue of (35), (10), (21) and (30), the relations (18)-(20) are fulfilled. Thus, by Theorem 1, we obtain (2). (ii) Let $(M_2, g_{(2)})$, $\dim M_2 \geq 3$, be a non Einstein Ricci-semi-symmetric manifold. Then the manifold $(M_1 \times M_2, g_{(1)} \oplus Fg_{(2)})$ satisfies (2). In the same way, as

in (i), we can prove that the relations (18) and (19) are fulfilled. The relation (20) is a consequence of (36) and the equation $\tilde{R} \cdot S = 0$. Thus, by Theorem 1, (2) holds on
(2)(2)
($M_1 \times M_2, g_{(1)} \oplus g_{(2)}$).

The final remark concerns of totally umbilical submanifolds.

Remark 2. In view of [10, Theorem 1] (see also [1, Theorems 1 and 2]), examples 2 and 3 of [8] as well as examples of Ricci-pseudo-symmetric manifolds obtained in this paper, give rise to examples of Ricci-pseudo-symmetric totally umbilical submanifolds of Ricci-pseudo-symmetric manifolds.

REFERENCES

- [1] T. Adati : On a Riemannian space admitting a field of planes, *Tensor N.S.*, 14 (1963) 60-67.
- [2] R.L. Bishop, B. O'Neill : Manifolds of negative curvature, *Trans. Am. Math. Soc.*, 145 (1969) 1-49.
- [3] J. Depruz, R. Deszcz, L. Verstraelen : Examples of pseudo-symmetric conformally flat warped products, *Chinese J. Math.*, 17 (1989) 51-65.
- [4] R. Deszcz : Notes on totally umbilical submanifolds, in *Geometry and Topology of Submanifolds*, Proc. of the Congress at Luminy 1987, World Sc. Publ., Singapore 1989, 89-97.
- [5] R. Deszcz : On pseudo-symmetric warped product manifolds, to appear.
- [6] R. Deszcz, W. Grycak : On some class of warped product manifolds, *Bull. Inst. Math. Acad. Sinica*, 19 (1987) 311-322.
- [7] R. Deszcz, W. Grycak : On certain curvature conditions on Riemannian manifolds, *Colloquium Math.*, (in print).

-
- [8] R. Deszcz, M. Hotłos: Remarks on Riemannian manifolds satisfying certain curvature condition imposed on the Ricci tensor, *Prace Nauk. Politech. Szczecin.*, 11 (1989) 23-34.
 - [9] G.I. Kruckovič: On semi-reducible Riemannian spaces (in Russian), *Dokl. Akad. Nauk. SSSR*, 115 (1957), 862-865.
 - [10] G.I. Kruckovič: On some class of Riemannian spaces (in Russian), *Trudy Sem. Vektor. Tenzor. Anal.* 11 (1961) 103-128.
 - [11] J. Mikeš: On geodesic mappings of Ricci 2-symmetric Riemannian spaces (in Russian), *Mat. Zam.*, 28/2 (1980) 313-317.

DEPARTMENT OF MATHEMATICS, ACADEMY OF AGRICULTURE,
50-375 WROCŁAW, POLAND

Received March 5, 1988.

