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3-STRUCTURE GENERATED ON M x R
BY A MANIFOLD WITH THE 3-STRUCTURE

Introduction
This paper deals with the problem reverse to that one
discussed in [1].
The Riemannian manifold M*®~! with the 3-€¢ almost contact
structure {g, z, q} satisfying certain conditions 1is con=
x

sidered. Using this 3-structure, we are able to define on the
manifold M*P = M42~L R three tensor fields ¥, whioh satisfy
the conditions introduced in [1]. Morsover, there is given
an sxample of 3-structures and conditions of integrability
and complsteness of adequate structures,.

1. The fundemental notations

Let M4? ve 4n-dimensional differential manifold on which
the 3 tensor-fields g (x = 1,2,3) of the type (1,1) are de=-
fined satisfying the conditions

(1)

o =

2wy,
Qg2
Q=2

2 - €7, FoF = ¢F,
o « B By

where g = 11, qeg =+1, of P# g £, I -~ means the identity

mapping on TM4n and the coefficients ¢, 63 satisfy the follow~
ing identities & af
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2 M. Maksym, A. Z2murek

(2) €E € =& E, & € = E € =¢
opyr apy apayr fPaFe o
for c # P # T # e

The three~tensor fields g, o= 1,2,3 satisfying the
conditions (1) are called the generalized 3~structure or
briefly 3-structure on the manifold M4n and designated {2}.

We denote by P(M4n) the modul of vector fields on a diffe~
rentiable maniftold M4n.

On M4n there exists the metric g satisfying the condi-
tion:

(3) B(F X, Py 2(X%,¥) for o=1,2,3

and for any vector fields X, Y on M*%, i,e. X,¥c I (m*?)
(Theorem 1, [1]).

Lot M40V pe o smooth, oriented hypersurface immersed in
M4n. We apsume that there exists a smooth vector field N nor-
mal to M4 with respect to the metric g and g(N,N) = 1,
Then for an arbitrary vector field iel’(M4n) we have the de~-
composition

(4) FX = FX +ew(3)N, o = 1,2,3,
[+ 3 [o 4 [« §
where F denotes the tensor field of the type (1,1},

o
<1;:xer“(1u‘“‘"1), w-tensor field of the type (0,1), ([1]).
We introduce the notations

(5) n = PNe (M%), 4 = (W) eR.
& [ 1 [} [o

In particular we have

(6) PN = n+eAl.
[e [« 3 aa

With respect to (4) we get

(n FX = FX +ew(X)F for Xel(ui-1),
o o a o
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3-structure generated on MxR 3

In this way the 3-structurs {g} on the manifold y4n
induces on an oriented hypersurface M4n'1 the tensor fields
Py wy ny, = 1,2,3 satisfying the following conditions (Theo-
x O o

rem 2, [1]):

~

N

F€ = g{I =
o g( g@g)t
U°F=-€AU,
X O [o We ¥ed
:Frz= -EZ.Q,
[« W) [» ¥~ ¥4
_ - 2
I AR
8 FoPF = F =
(8) B opr S
WoF = € w=-¢ A w,
a B PTYT Paob
Fp=¢ - A
af opgd BB
= g A~ 4
| &8 TperT bag’

o #P #94 # o and where I denotes the identity mapping on
4n-1
TM .
This tensor fields are called the 3~g almost contact
structure on the manifold M*® and denoted {F,u,q}.
o X O

On the hypersurface u4n=1

induced by g as follows

we introduce the metric g

(9) g(X,Y) = 8(X,Y) for X,Ye(u42"1),

For the metric g and the tensor fields F, w,n we have
A A «x

(10) g(X,n) = w(X), g(FX, FY) = g(X,Y) - o(X)w(Y)
(o] [0 o e (o4 [= 4

for arbitrary X,Ye(M4"1) (Theorem 3, [1]).
With respect to (1), (3) and (7) we obtain

1) If € = =1, than & = 0 and g(N,g(N)) = 0.

2) If € =1, then g(N,g(N)) = §°
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2. The 3-structure on - y4r-l.g

Let M*?1 pg g smooth Riemannian manifold with the 3-struc~-
ture {g"&”g} and metric g, where g, W R are the tensor fields

on M48~1 of the types (1,1}, (0,1), (1,0) respectively, sa-
tisfying the conditione (8) and a Riemannian metric g on
M1 satisfies the conditions (10),

Let us consider a vector field Xe(M*?~1) and a vector

fiold a $zeM(R). Then X = x & a S M(U*®) and we put

(11) F(X) = FX + an + ¢ (w(X) +Za)-g—t .
(e o x X [o 4

We know, that T(p 1;)M‘m = TDM ® T,R and for any vector
9
w eT(p 1;)MArn there exists the vector field X + a g—;;e I_'(M4n)
y

such that X(p) + a(t) g—t = Ww. So the formula (11) defines the
tensor field of the type (1,1) on n48,

Theorenmn 1e The 3~€ almost contact structure
{F,u, q}on M- generates the 3-structure {ﬁ} on M*P satys-
X X X

fying

(1) Fo = eI, FoF=¢F, oaéBigfa,
x B

o

where T denotes the identity mapping on (a4,

Proof. For Xe F'(M4n) we have

F(X) = F(PX + an+e(wlX +2a) &) =
x o X o X O (=3
= F°X + aF n+ ¢ (w(X) + 2a) n+
(o XOx O o [+ [~}
d
+g[(g°2)(X) + at&)(g) +g$&(g(X) +&a)] 3t °

Then according to (8) we have

§2(i‘) = Ei‘o
o &
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Similarly for o § A we obtain
~ ~ ~ ~ Q_ -
(gog)(x) - g(gx +ap +B[cg(x) + éa] 3!
- (gog)(x) +...ag'.(g,) + S(gorp, T) +¢ rsa:;z‘+
+€ [(UoF)(I) + w(rz) +§A[w(x) + Za]] % .
Then according to (8) we have
(g‘g)(x) - o(eﬂ%;(x) for ofPFYFoa.
We define the Riemannian metric § on ¥4R as follows
g(x,Y) = g(x,Y)
(12) éx, &) -0

) =1

n.ln.
b

i,

for X,Ye P(u42=1),

Theorem 2, If the metric g on M48-1 satisfies
the conditions (10), then the metric § on MR gerined by
conditions (12) is oompatible with the 3-structure {g“} on
4P, 1.e. satisfies the condition

* ~ ~ ~ ~
(37) s(gx. g!) = g(X,Y)

for each i.iel“(m4°).
Proof. From (12) it follows that

g(X,¥) = g(x,Y) + av

torf=x+ads,¥-v+0 g, yer@ttt),
Then according to (10) end (8) we have

g(FX,F¥) = g(FX, FY) + bg(FX, n) + ag(n, FY) +
X & x [« x x X o
+ abg(n,n) + (w(X) + ad)(w(Y) + b2) = g(X,Y) - w(X)w(Y) +
X & [0 4 o O (o9 (e ot

- 1035 -



6 M. Maksym, A. 2murek

-€ baw(X) - eafw(Y) + ab(1 - eal
A AO a o

) + w(X)w(Y) +
[« Sv e x o

~

+ adw(Y) + baw(X) + aba2 = g(X,Y) +
o ax ol x

+ (1 - €)a [bw(x) + aw(Y) + abn].
[o S e ] X [+

Then if € = 1 or € = =1 (then 4 = 0) we obtain (3%),
X [+ 3 x

Example. Let us take the following matrices

4th degree:
2, V2 V3
3 3 3
0 1 0 0
AL = ,
Ve o, 1 %
3 303
V3 V8
L R
[ 2 % V¥ A3
3 "6 6 3
P N )
. 6 3 2
27 v V3 2 v6 |’
¥ -3 -3 -¥
vi V2 V8
¥ ¥ - o
o ¥ ¥ _V3
6 =2 ]
Vo Vi Wz
A R S R
A3 = .
2 ¥ A3
2 3 6
V3 _ V2 _ & o
T -2 T |
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These matrices satisfy the conditions

1 ’
Aghy = I, aoh5 = I, ALAL = -I

I3 ] I [ ]
(13) A1A2 -A2A1 = 4

I; [
A2A3

1]

-A3A2 = =4

where I is the identity matrix of 4th degres. Crossing out
the first line and the first column in each matrix we obtain
the matrices:

1o 0 o - %? Jgi
A"O _.1_ _VE Ag__-\/_s‘ _2_ _.\/g‘
1= 3 3 |0 2 3 3 6 |

V6 V2 V6
° 3 0 2 "% O |

o .V ¥Z

3 2

_ V3 V6
b3=1 3 °© & I

vz o_Ye

-2 "6
L_ =
Let

A, 0
B, = for o = 1,2,3.
0 '

7
ox
can define three tensor fields g of the type (1,1) having

1f - susey —j%-denotes a natural basis of P(R7), then we
ax

matrices g as matrices representations in this basis, If

x = x' 2. + oee + x7 —g—-, then we define the forms:

3x1 3x7
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Ve 6 1.7

w1(X)=-Tx -31,

v2 5 V6 _6
w2(X) =g X -3g % -

wy(X) - ¥ - %?216 -

W= Wi
L
-

and let
= (09 0, 0’ o, 0, -

=3
I

(0, 0, 0, O, }gi ) - %?i » =1),
V2 V6
(01 0' 0’ O, T 2_

W [\ )
]

=1, e€=-1, £ =-¢ =1,

- >
winy
-
»
1]
wiry
-
W
1
c
L]

Then conditions {8) ars satisfied.
Let the metric g in RY be introduced by

s(iii » 25 ) 0O for L 43, 1,3 = 1,2,0e0,7,
e R o Tbe ) R e KPR o e S
= ? = 1
ax! "’ ox] ix2) Bt a0 ax% * oxt
2 ] < ) ) ) ( 9 2\ 1
— _\:g =g - ) = .
( ’ 3x-/ axb ’ axb 8x7 ’ ax7) 3
Lat R8 = R7xa. Then we can defins the (1,1) tensors E
havirg as aatrices representations in the basis T 2000 _@g
matricesn , ox ox
A 0
~ [e 4
5= N
° 3
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where

Hence, we have

Loho
o

aljen
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L v 0 ¥, 0 o o
i Jgi SR (R 0 0 o 0
PN o 6 e o ¥ ¥ ¥

o o 0 0 R E ¥ 1%

o o 0 o ¥ ¥, L

0 0 0 0 lgz - %?Z -3 o ]
Then

BB=-1, BB=-1, BB=-1, BB--BB -3,
11 22 33 12 21 3

BB = -BB =38, BB--BB--B
13 31 2 23 32 1

Hence, the tensors ﬁx satisfy conditions (1).

The metric g defined by the equalities

~/ 3 ) 9 9
= i = e e
g axi ’ axj ) 8('6::1 ’ axj)’ ) 1, o 7

~/ 3 9 ~/9 3
8(—§ —)=1 5(7 —)go
ax® 7 ax® ’ ax® * axt

satisfies conditions (3).
Generalization of this example to the space rén-1 can be
made replacing the matrices é' of the fourth degree by the

)th

matrices of 4(n-1 degree written in a cage form as follows
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3=-structure gensrated on MxR 11

.
i |

A/n-1
(o4

where g/i are the matrices of the fourth degree and satisfying

the conditions (13) for each i = 1,2,...,0~1. Further con=-
struction is made as above.

3. The integrabllity conditions

Let us consider the integrability conditions for 3-struc-
hme{i}

Definition. The 3-structurel{§} on M4n is

x-integrable if the Nijenhuis tensor fields N disappears,

X
where
MZ,Y) = §(X,¥) = 2{[%,%.5?] - ﬁ[ii,?] - ﬁ[i.ﬁi] + P o F[%,¥]
x [o o [+ [ [ QK~1 [+ o X X

for X,YeM(ut?),
Definition., The 3~-strucfure {g} on M4n is

integrable if all Nijenhuis tensor fields ﬁ3 disappears where
x

+ | FX,FY | + (FF + #F)[X,Y] - F|7%,Y]| -
] [ﬁ’a] LA e a[ﬂ’]

for E,?e!“(M4n).

Let ¥ and N dencte the Nijenhuls tensors corresponding
X s ¢

to the 2~¢ almest contact gftructure {F,w,ql on M4n_1. However,
A o0 &

< o
let W and ?ﬁ are components of ths corresponding Fijenhuls

& o

. e jad 4ne1
tensors § erd I on M . Hsnca

© o
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N(X,Y) = N{X,Y) + a(X,Y)
[+ 4 [0 x

¥ (X,Y) = ¥ (X,Y) + a(X,¥)
ofd op xf
for X,Ye M(u48-1), .
Theorem 3. Between the tensor filelds g, g and

]

N, ¥ on u47=1 we have the following relations:
ap ofp 0
N(X,Y) = N(X,Y) ~ 2edw(X,Y)q,

x [> S 4 [s 4

(14) :(
0‘1?3 (x,7) =O(I}I5 (%,Y) - gd:(XpY)g - gdg(xtY)gv
where

Proof. We have
% - a _ d_
N(x,Y) = 2{ gx,zy] +§apxg(1') 9% gawg(x) 3Tt

¢ (2o 2)[x,7] +e0([x,¥])g - F[Fx,¥] - cwl[FE,Y]) &

(o §o ¢ x
* e (ge i) IR - g & -
(2 *S(é%)}: N(X,Y) - 22{312(1) - oya(X) -
2¢ {gxu(Y) - aFYu(x) -w( [FX Y]) -
- ol [x,r]) + €49 u(X)-e}laxw(Y)} S -

Henoe

N(X,Y) = N(X,Y) - 2¢dw(X,Y)
(o9 X a X

and
X,Y) =2 Y) - X) - ol([FX,Y]) -w([X,
2T = 2P - ogr®) - elEmr]) - pl[np]) .
a
+EAdpu(E) - eAdpulmlfy

- 1042 =



3=-structure generated on MxR

ﬁ(x,y) = [Fx,lgy] +|%8qu(1) % -€9

+E€
B
- 9

= N
of

x

+e’agxu(Y) 3% - Eanu(x) ge e+ e )

ap P (w

) - E(grr] - goyum &) - ([X'EY] *
- E(=
(

X,Y) 'g{ax{;’(” - ayg(x) -

FX, Y] - anu(x)dt) - F( x,gy] +

{ XE(Y) - ayg(x) - E)([X.Y])}g +

gY&’(X’ "&’([Ex'y]’ - ol [LE])) +

+ g(agxg(lr) - 2§Y(§(X) -g([gx.Y]) —E)([X.EY])) +

+ (aep+ &, );;3( [x,¥]) +gg(§ayg(x) -éaxg(r) +

d
+ Adyu(x) - %ax(&»(r))} .

Hence we obtain

of
and
o5 (X1) = {g(agxg”’

N {x,Y) = ¥ (X,Y) - sdu(X Y)Q-edu(X Y) q,

- ang(X) -:([gx,y]) -

- wf [X.{I;‘Y])) " (el ) - agY‘(g’(X’ - 9{[FXY]) -

tr«;( [X,g“f]

}) + (e + elewlx,Y]) +e€(Adyw(X) -
Bo gz . afp « If

of’

d
- éax‘f’s(” + %ayg(x) - %SX:(Y))} A

X =

Tahaeoren

nTagrable,

+1h

-y
P

4.

If the induced 3=-structure {

- 1043 -
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N(X.I) = ZCGU(X,Y)Qo
[+ 3 [« B~ [

Thus 1t results in the case of 3-structure ocompleteness
of F,u,q} on M4%~1 with regard to each operator:
axoa
N = 2Ed(n) @2.
o [« T o 1

Here completensss means that the value of Nijenhuis tensors
for each operator are collinear to the corresponding g flelds

independent of the choice of the vector fields X,Ye F‘(M4n"1).
Theorem 5. If induced 3-structure {g} 18 a-in-
tegrable then

Jﬂﬂ (X,Y) = gdg(x.Y) g + ;dg(X.Y) LK

Henos, in the case of the completensss of the 3-structure
{P,w,q} on n40-1
c a x

N = 2¢dw® N = gdw + edwen.
o o g’ O(B-cxan fs[bg
That is to say that Nijenhuls tensor values are included in
the space spanned by n, g, n independent of the choice of
1 3

the fields X,Ye M(u40~1),
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