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I n t r o d a c t i o n 
Boolean a lgebras with ope ra to r s and t h e i r r e l a t i o n a l 

c o u n t e r p a r t s were i n v e s t i g a t e d by Joneson and Tarski i n [4]« 
They pointed out t ha t many s u b s t a n t i a l a l geb ra i c p r o p e r t i e s 
oan be i n t e r p r e t e d in terms of r e l a t i o n a l systems. They showed 
among o the r s t h a t t opo log i ca l Boolean a lgebras (TBA's) are 
r e l a t e d to quas i -ordered s e t s and t h a t o y l i n d r i c a lgebras are 
connected with r e l a t i o n a l systems involving two equivalence 
r e l a t i o n s . The Jcnsson and Tar sk i ideas have been pursued 
l a t e r f o r s tudying of many o the r s o r t s of a l g e b r a s . A o n e - t o -
-one correspondence between wel l - founded a lgebras and w e l l -
-founded binary r e l a t i o n a l systems has been proved by Gold-
b l a t t i n [2 ] . The o la s s of d i agona l i s ab l e a lgebras and i t s 
connect ions wi th f i n i t e wel l - founded t r a n s i t i v e r e l a t i o n a l sy -
stems was i n v e s t i g a t e d by Bernard! i n [1]. Pseudo-Boolean a l -
gebras and t h e i r connect ions wi th some p a r t i a l l y ordered s e t s 
were considered by Grzegorczyk i n [3]« 

The aim of t h i s paper i s t o descr ibe main r e l a t i o n s h i p s 
of t o t a l l y oomplete atomic q u a s i - t o p o l o g i c a l Boolean a lgebras 
(TCA-QTBA's) and some of t h e i r subc la s ses with t o t a l q u a s i - t o -
po log ioa l spaces (TQTS's) and r e f l e x i v e r e l a t i o n a l systems 
(oa l l ed here r e f l e x i v e spaces f o r s h o r t ) . The mot ivat ion f o r 
s tudying of these c l a s s e s of a lgebras are t h e i r a p p l i c a t i o n s 
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2 B. Tembrowski 

to the semantics of the sentent ia l oaloulus with identity 
(SCI, [4]) and to the semantios of some Lewis modal systems 
( o f . [6] and [ 8 ] ) . 

The work consists of two seotions. At the beginning of the 
f i r s t one basic definit ions and properties concerning quaai-
- topological Boolean algebras (QTBA's), quasi-topologioal 
f i e l d s (QTF's) and quasi-topologioal spaces (QTS's) are given. 
Then we formulate representation theorems pertaining to QTBA's, 
QTF's and quotient QTBA's. The further part of the seotion 
deals with relat ionships between TCA-QTBA's; TQTS's and r e -
f lexive spaces. In the second seotion we consider r e l a t i o n -
ships between normal TCA-QTBA's, to ta l ly complete atomic s e l f -
-oonjugate quasi-topologioal Boolean algebras (TCA-self-aon-
jugate QTBA's), to ta l ly complete atomio sel f -dual algebras 
(TCA-self-dual algebras), to ta l ly complete atomio H-algebras 
(TCA-H-algebras) and the i r quasi-topologioal and re la t iona l 
counterparts. The section presents also an a lgebraic construc-
etion of normal TCA-QTBA's, a quasi-topological construction 
of strongly compact TQTS's and a r e l a t i o n a l construction of 
IP-ref lex ive spaces. 

The author wishes to thank to Prof. C. Rauszer for many 
valuable remarks that were very helpful during preparation 
of this paper. 

1. Quasi-topologioal Boolean algebras and the i r quasi - to-
pological and ref lexive spaoes 

The f i r s t part of the seotion i s devoted to basic proper-
t i e s concerning QTS's, QTF's and QTBA's. The main resu l t s are 
representation theorems for QTBA's, QTF's, quotient QTBA's as 
well as theorems stating that TCA-QTBA's, TQTS's and ref lex ive 
spaces are in a one-to-one correspondence. 

Let X be a non-empty set and l e t P(X) be the powerset 
of X. A unary operation Ci P(X)—* P(X) i s said to be a quasi-
-closure (Q-closure) i f C(YuZ) = C(Y)uC(Z), YcC(Y) and 
C(0) = 0 for every subset Y, Z of X. A pair <X,C> i s referred 

- 1008 -



Quasi-topological Boolean algebras 3 

to as a quasi-topologioal space (QTS) i f X i s a non-empty 
set and C i s a Q-closure operation on P(X). It i s d e a r that 
every topological spaoe i s a QTS but not oonversely. Any 
QTS<X,C> i s topological i f f the operation C i s idempotent. 
A subset Y of X i s called quasi-closed (Q-olosed) providod 
that C(Y) « Y. With the help of standard arguments one shows 
that the c lass C(X) of a l l Q-closed subsets of X with respeot 
to the set-theoretioal union and intersection forms a d i s t r i -
butive n-oomplete l a t t i oe . The smallest element in C(X) i s 0 
and the greatest one i s X. Let us denote by C^(X) the olass 
of a l l elements of the form C(Y) for YsX. Obviously elements 
of C*(X) are not Q-closed in general. The c lass C^(X) with 
respect to the set-theoretioal union i s a u-semilatt iae . Note 
that a QTS<X,C> beoomes a topological spaoe i f f C(X) = CjX), 

Just as in topological spaces i s any QTS <XtC> one may con-
sider a dual operation to C. Namely a unary operation 
It P(X)—*P(X) such that I(Y) = -C(-Y) for every Y s X w i l l 
be oalled a qussi- inter ior (Q-interior). Making use a s t ra ight -
forward calculation one proves that I(YnZ) = I (Y)nI (Z) , 
I(Y) £Y and I(X) - X for every Y,Z c x. A subset Y of X i s 
called quasi-open {Q-open) i f I(Y) - Y. A subset Y of X i s 
said to be quasi-olopen (Q-clopen) i f i t i s Q-closed and 
Q-open. The olass I(X) of a l l Q-open subsets of X with respeot 
to the set-theoretioal union and intersection i s a d is t r ibu-
tive u-complete l a t t i c e , while the c lass I*(X) of a l l subsets 
I(Y) in X for Y £X with respect to the set-theoretioal in ter -
section i s a n-semilattioe. The complement of a Q-olosed 
(Q-open) set i s a Q-open (Q-closed) set . It i s clear that 
every QTS can be described by a Q-closure, or equivalently, 
by a Q-interior operation. Observe that l a t t i c e s C(X) and 
I(X) related to the same QTS <X,C> are dually isomorphic. In 
f ac t , the function fs C(X) -*• I(X) defined by f(Y) = -Y for 
every Y £ X i s a bisection such that f(YuZ) = f(Y) nf(Z) , 
f(YnZ) = f(Y) uf(Z), f(0) = X and f(X) = 0 for every Y,Z £X. 
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4 B. Tambrowe la-

i n our i n v e s t i g a t i o n s an important r o l e w i l l play QTS's 
suppl ied wi th an a d d i t i o n a l property imposed upon c losure 
o p e r a t i o n s . A QTS<X,C> i s sa id to be t o t a l (TQTS) i f C(Y) = 

= U C({y}) f o r any subset Y of X. In the subc lass of 
yeY 

TQTS's Q-closed f Q-open and Q-clopen subse t s oan be i n t e r p r e -
ted equ iva l en t l y by means of C-decreas ing t C- inoreas ing and 
C-s tab le s u b s e t s , r e s p e c t i v e l y . Let T = <X,C> be a TQTS. Then 
a subset Y i n T i s ca l l ed C-aeareaBing provided t h a t x e Y 
and y e C({x}) imply y e Y f o r every x,y e X. A subset Z i n T 
i s c a l l ed C- increasing i f x e Z and x eC({y}) imply y e Z f o r 
every x ,y eX. F ina l ly a subset W i n T i s c a l l ed C-s tab le i f 
x e W and x Ay imply y e W f o r every x ,y eX, where A i s a binary 
r e l a t i o n on X such tha t x A y i f f x e C ( { y } ) or y e C({x}) f o r 
every x,y e X. 

The r e l a t i o n s h i p s between C-decreas ing , C-i 'ncreasing, 
C-s t ab le subse t s and, r e s p e c t i v e l y , Q-open, Q-closed and 
Q-clopen subse t s i n TQTS's are described i n the fo l lowing lemma. 

L e m m a 1 .1 . Let T = <X,C> be a TQTS and l e t Y be 
a subset of X. Then the fo l lowing cond i t ions holds 
( i ) Y i s C-decreasing i f f i t i s Q-olosed, 
( i i ) Y i s C- inoreas ing i f f i t i s Q-open, 
( i i i ) Y i s C-s tab le i f f i t i s Q-clopen. 

P r o o f of ( i ) . I f Y i s a C-decreasing subset i n T, 
then y e C(Y) impl ies y e Y f o r every y e X, which means t h a t 
C(Y) £ Y. But YeC(Y) , we get C(Y) - Y. Conversely , l e t Y be 
Q-closed and l e t x eY, y e C({x}) f o r every x,y e X. Then, 
y e C(Y) = Y. Thus Y i s a C-deoreasing subset i n T. 

P r o o f of ( i i ) . Let Y be a C- inc reas ing subset 
i n T. Then x e Y and x e C({y}) imply y e Y f o r every x ,y e X. 
Sinoe x e I (Y) i f f f o r every y e X i f x e C({y}), then y e Y , we 
ob ta in Y 9 l ( Y ) . But I ( Y ) s Y , i t fo l lows t h a t I(Y) «= Y. The 
proof of the seoond part of ( i i ) i s easy . 

P r o o f of ( i i i ) . I f Y i s a C- s t ab le subset i n T, 
then x e Y and x A y imply y e Y f o r every x ,y e X. Prom t h i s , 
x e Y and y e C({x}) imply y e Y as we l l as x e Y and x e C({y}) 
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imply j e T f o r every x,y e X. Using ( i ) and ( i i ) , T i s a 
Q-clopen subset in T. Conversely, l e t Y be a Q-clopen subset 
in T. Then by ( i ) , x eY and y e C ( { x } ) imply y e Y f o r every 
x , y e X . By ( i i ) we get in turn that x e Y and x e C ( { y } ) imply 
y e Y fo r every x,y e X. Consequently Y i s a C-stable subset 
in T. 

For an i l l us t ra t i on l e t us consider now two simple exam-
ples of TQTS's. 

S x a m p l e 1.1. Let G = <G,o> be a non-abelian 
group» Then Nx = { j e Gi [ x , y ] = e } i s a normalizer of an e l e -
ment x eG, where e i s the unit in G and [ x , y ] i s the commu-
tator of elements x,y e G. On the powerset P(G) we define a 
unary operation C by the formula C(Y) «• U n-T, f o r every Y c G. 

yeY 7 

I t i s easy to check that C i s a Q-olosure. Hence TQ • <G,C> 
i s a QTS oonneoted with the group G. Sinoe C(Y) • I J C ( { y } ) , 

yeY 
TQ i s a TQTS. Rote that TQ i s not a topological space because 
f o r any element x e G such that x 4 e we have C ( C ( { x } ) ) + 
t C ( { x } ) . Therefore C i s a Q-closure whioh i s not a topolo-
g i ca l closure. 

E x a m p l e 1.2. Let Z be the set of a l l integers. 
On P( Z) we define a unary operation C as fo l lowst C(Y) = 
= { x e Z: x e Y or (x+m) e Y } f o r every T s Z , where m i s some 
f ixed posit ive integer . I t i s a routine matter to v e r i f y that 
Tm = <Z,C> i s a TQTS. Observe that Tm i s not a topological 
space sinoe f o r any one-element subset { y } c Z t we get C ( { y } ) = 
= { y , y -n i } + C ( C ( { y } ) ) = { y , y-m, y-2m}. 

I t i s easy to check that subsets in Tm of the form 
{y ,y -m,y-2m, . . . } f o r y e Z are C-decreasing ones. Henoe, by 
Lemma 1.1« these sets are examples of Q-closed subsets in T^. 
The only C-stable subsets in this spaoe are 0 and G. According 
to Lemma 1.1, 0 and G are at the same time the only C-clopen 
subsets in TQ. 

An algebra P(X) = <F(X) ,- ,u,n,C> i s called a quasi-topo-
l og ioa l f i e l d (QTF) over a non-empty set X provided that 
<P (X ) , - ,u , n > i s a Boolean f i e l d over X and C i s a Q-closure 
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o p e r a t i o n on F(X). From t h i s d e f i n i t i o n i t f o l l o w s t h a t any 
t o p o l o g i c a l f i e l d i s a QTF but not c o n v e r s e l y . QTF's are c l o -
se ly r e l a t e d t o QTS's. I n f a c t , i f T = <X,C> i s a QTS, t hen 
PT • < P ( X ) , - , u , n , C > i s obviously a QTF. Also the converse 
s ta tement h o l d s . I f F(X) - < F ( X ) , - , u , n , C > i s a QTF, then 
T p - <X,C> i s a QTS determined by F(X). The QTP f T w i l l be 
oa l l ed a s t andard QTP of T and the QTS T p w i l l be c a l l e d a 
s t anda rd QTS of P. Let TQ and Tm be QTS's cons idered i n Exam-
p le s 1.1 and 1 . 2 . Then P™ • < P ( G ) , - , u , n , C > i s the s t andard 

G 
QTP of Tg and PT - < P ( Z ) , - , u , n , C > i s the s t andard QTP of Tm . 

ID 
n e i t h e r P^ nor P^ i s a t o p o l o g i c a l f i e l d s ince the c l o s u r e 

G ID 

o p e r a t o r s i n t he se f i e l d s do not possess the idempotent p ro -
p e r t y . Any QTP P(X) = <F(X),- ,r>,u,C> over a non-empty s e t X 
i s sa id t o be a t o t a l l y complete atomic QTP (TCA-QTF) i f the 
r eduo t <F(X) , - , u , n> i s a complete atomic Boolean f i e l d and C 
i s a t o t a l Q - c l o s u r e . C lea r ly QTP's f T and PT a re examples 
of TCA-QTF's. G m 

l e t us r e c a l l ( o f . [9]) t h a t an a lgeb ra A = < A , - , u , n , C > 
i s a q u a s i - t o p o l o g i c a l Boolean a l g e b r a (QTBA) i f < A , - , u , n > 
i s a Boolean a l g e b r a and C: A —» A i s a Q-c losu re o p e r a t i o n 
on A s a t i s f y i n g the f o l l o w i n g p r o p e r t i e s : C ( a u b ) = C ( a J u C ( b ) , 
a ^C(a) and C(0) = 0 f o r every a , b e A. Any QTBA A « <A,- ,u ,n ,C> 
w i l l be c a l l e d a t o t a l l y oomplete atomic QTBA (TCA-OTBA) i f 
i t s Boolean r educ t < A , - , u , n > i s complete atomio and C i s 
a t o t a l Q - o l o s u r e , i . e . C(a) = U " { c ( x ) : x <: a , x e A t ( A ) } , 
where At(A) denotes the s e t of a l l atoms i n A. For any TCA-QTBA 
t h e r e e x i s t s a TCA-QTF t h a t i s isomorphic t o A. Indeed , l e t 
A = <A , - ,u ,n ,C> be a TCA-QTBA. Then the Boolean r e d u c t of A 
i s isomorphic t o the f i e l d <P( At (A)) , - , u , n>. This isomorphism 
y i e l d s the f u n o t i o n h : A —*• P( At (A)) such t h a t h ( a ) = 

{x e At(A) : x $ a } f o r every a e A. Def in ing on P(At(A)) an 
a d d i t i o n a l o p e r a t i o n C*: P(At(A)) —»• P(At(A)) by the formula 
(1 .0 ) C*(Y) = h (C(h" 1 (Y) ) ) f o r every Y c At(A), we ge t a 
TCA-QTF P(At(A)) = <P(At (A) ) , - , u ,n ,C*> whioh i s isomorphio 
t o A. Thus TCA-QTBA's are r e p r e s e n t e d by means of TCA-QTF's. 
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Quael-topological Boolean algebras 7 

Passing to the whole class of QTBA's we may also formulate 
the analogous representation f o r QTBA's by means of QTF's. 
This expresses the following lemma. 

L e m m a 1.2. Every QTBA Is isomorphio to some QTF. 
P r o o f . le t A = <A,-,u,n,C> be any QTBA and let h(a) 

be the set of a l l u l t ra f l i t e rs in A containing an element 
ae A. Moreover let h(A) = {h(a)s ac a } . AS i t is known ( c f . 
[7 ] ) , h(A) with respect to the set-theoretical operations 
-,u,n is the Stone f i e ld of the Boolean reduct of A. The func-
tion a h(a) is the Stone isomorphism from <A,-,u,n> onto 
<h(A),-,u,n>. Next let us define on h(A) an additional unary 
operation C* such that C*(h(a)) = h(C(a) ) for every a e A. 
Then we obtain a QTF <h(A),- fu,n,C*> which is isomorphic to A. 

From the above lemma i t i s seen that the subclass of QTF's 
in the olass of QTBA's plays a similar role to that of topo-
logical f i e lds play in the class of TBA's, 

The following lemma presents the extension property for 
QTBA s. 

L e m m a /1.3. 1st B = <B,-,u,n,Cg> ba a QTBA whose 
Boolean reduot Bg = <B,-,u,n> is a Boolean subalgebra of a 
complete Boolean algebra Ag = <A,-,u,n>. Then there exists 
a Q-closure operation Ĉ  on A suoh that A = <A,-,u,n,C^> i s 
a complete QTBA and CA(b) = Cg(b) for every element b eB. 

P r o o f . Let ue define on A a unary operation CA 

as follows CA(x) = f l { c £ ( y ) : x s y } for every x e A. Then we 
get a complete QTBA A = <A,-,u,o,CA> such that CA(b) = CB(b) 
for a l l b t B. 

The basio relationship between Q T B A ' s , T C A - Q T F ' S and 
T Q T S ' s y ie lds the following representation theorem. 

T h e o r e m 1.1. For any QTBA A there exists a 
TQTS Ta such that A is isomorphio to some subalgebra of the 
standard TCA-QTF Am of T . . 

A -
P r o o f . Let A = <A,-,u,n,CA> be any QTBA and le t 

X(A) be the set of a l l u l t ra f i l t e rs in A. Then by Lemma 1.2, 
A is isomorphic to the QTF h(A) = {h (A ) , - , o ,n ,C A } , where 
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h(a) = { x e X(A)« a e x } and c£(h(a ) ) = h(CA (a ) } for every a e A. 
The Boolean reduct of h(A) i s a subfield of the complete and 
atomic f i e l d <P(X(A) ) , - ,u,n > of a l l sabsets of 1 (A) . According 
to Lemma 1.3, the operation C on P(X(A)) such that 

(1.1) C(Y) = U U h(C. ( a ) ) for every Y eP (X (A ) ) 
yeY aey 

i s a Q-closure sat is fy ing C(Y) - C*(Y) f o r a l l Y e h ( A ) . I t i s 
easy to see that C is also a to ta l Q-closure. Henoe, P(X(A)) -
= <P(X(A) ) ,- ,u,n,C> i s the standard TCA-QTF of the TQTS 
Ta = <X(A),C>. Sinoe h i s a monomorphism from A into P (X (A ) ) , 
the image h(A) i s a subalgebra of P (X (A ) ) . Thus A i s isomor-
phic to h(A) which is a subalgebra of the TCA-QTF P (X(A ) ) . 

Now we w i l l present a quasi-topological version of the to -
pological McKinsey-Tarski theorem given in [5 ] (Theorem 2.5) . 

T h e o r e m 1.2. For every complete atomic QTF J^ 
there exists some in f in i t e complete atomic QTF F2 such that 
F1 i s isomorphic to a subfield of Fg. 

P r o o f . Let F1 = < P ( X ) , n , C x > be a complete ato-
mic QTF over a non-empty set X and le t f be a function on X 
with in f in i t e values f ( x ) , x e X such that f ( x ) n f ( y ) = 0 
whenever { x } n { y } = 0 for every x,y e X. Denote by Y » 
= U { f ( x ) : x e x } . Then f » X P(Y) can be extented to a 
Boolean homomorphism f : P(X) — P ( Y ) such that f ( X ' ) = 
= U { f ( x ) : x e X ' } f o r every X ' s X. Now l e t us consider the 
function g: P(Y) P(X) induced by f and defined by the 
formula g (Y ' ) = f " 1 (Y ' ) for every Y'c y. Then g(Y) = X and 
g(F) = 0 whenever F is a f i n i t e subset of Y. Note that 
(g o f ) (X ' ) = g ( f ( X ' ) ) = i x ( X ' ) = X' for a l l X' e P(X). Since 
the unary operation Cyl P(Y) — P ( Y ) such that C Y (Y ' ) = 
= Y ' u f ( O x ( g ( Y ' ) ) ) f or every Y ' e P ( Y ) i s a Q-closure, f 2 = 
= <P(Y),-,u,n,Cy> i s a complete atomic QTF. I t i s easy to 
ve r i f y that the function f preserves a l l Boolean operations 
and f u l f i l s the condition f ( C x ( X ' ) ) = f ( X ' ) u f ( C x ( g ( f ( X ' ) ) ) ) = 
= C ^ i f f X ' ) ) for every X ' e P ( X ) . Hence f i s a homomorphism 
from F1 to Fp. Since ke r ( f ) = { 0 } , f i s a monomorphism. 
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Therefore the image f ( P ^ ) I s a quas i - topo log ica l sub f i e ld 
of P 2 . Consequently, i s isomorphics to f ( f 1 } whioh i s a 
quas i - topo log ica l sub f ie ld of the i n f i n i t e complete atomic 
QTP P 2 . 

The next theorem shows that quotient QTBA 's (modulo I » f i l -
t e r s ) can be represented by means of QTP 's constructed on 
closed subsets of the Stone topo log ica l spaaes. 

T h e o r e m 1.3. Any quotient QTBA A I V, where 7 
i s an I - f i l t e r in a QTBA A i s isomorphio to a quas i - t opo l og i -
ca l sub f i e ld of some TCA-QTF bu i l t up on a closed subspaae 
of the Stone spaae of the Boolean reduat of A. 

P r o o f . Let A = <A , - ,u ,n ,C A > be a QTBA and l e t 7 
be 'an I - f i l t e r in A. Then the r e l a t i o n 7 defined by the f o r -
mula: 

(1 .2 ) a 7 b i f f I ( a r b ) e 7 f o r a l l a ,b e A 

i s a congruence of A, where a r b i s the symmetric o o - d i f f e -
renoe of elements a ,b e A ( o f . [ 9 ] ) . Hence, A l 7 i s the quot-
ient QTBA of A modulo 7. Let us assign to 7 the subset P «= 
= f l { h ( a ) i a e 7 j in the Stone spaoe X(A) of the Boolean 
reduct of A. As i t i s known, P i s a closed subset in X(A) 
and forms the topolog ica l subspace of X(A) with the induced 
topology. The set X(A) together with a Q-closure defined by 
(1 .1 ) i s a TQTS. Also the closed subset F with the operation 
Cp such that C p ( Y o P ) = C(Y) nP f o r every subset Y of X(A) 
i s a TQTS. Obviously P (F ) = < P ( P ) , - , u f o , C p > i s a TCA-QTF. 
Let us take into account the mapping hpi A P(F) defined 
by h p ( a ) = h ( a ) nP f o r every a e A. Clearly h ? i s a homomor-
phism from A to P ( F ) . Since [ a ] 7 = [ b ] 7 implies h p ( a ) = h p ( b ) 
f o r every a , b e A, hp induces a homomorphism f i AIA - * P ( F ) 
such that f ( [ a ] 7 ) = h p ( a ) f o r every ae A. But sinoe k e r ( f ) • 
= { 7 } , f i s a monomorphism. Then the image f ( A I A ) i s a quas i -
- t opo log i ca l sub f ie ld of P ( F ) . Henoe A 17 i s isomorphic to 
f (A17) = h p ( A ) . Thus we have shown that A 17 i s isomorphic to 
hp(A) whioh i s a quas i - topo log ica l subf ie ld of the TCA-QTF 
P (P ) constructed on the closed subspaae F of the Stone spaa* 
X( A ) . 
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Before we pass to examine relationships of TQTS's to 
TCA-QTBA's, let us make the following def init ion. I f T1 « 
= <I1 ,C1> and Tg = <X2,C2> are two TQTS's, then any function 
f j X1 — X g i s oalled an isomorphism from T1 onto Tg (T^Tg ) 
provided that f i s a bisection and fo r every Y c l ^ f (C 1 (!))•= 
= C 2 ( f ( Y ) ) . 

L e m m a 1.4. Let T be a TQTS and let AT be i t s stan-
dard TCA-QTF. Then there exists a TQTS T^ corresponding to AT 

such that T - T, . ~T 
Afji 

P r o o f . I f T = <X,C> i s a TQTS, then AT = 
= <P (X ) , - ,u ,n ,C> is the standard TCA-QTF of T. Denote by 
X = { { x } ; x e x } the set of a l l atoms in A ,̂. Next let us de-
fine on X the Q-alosure operation C* by the formula 

(1.3) C*(Y) = ( J C * ( { y } ) fo r every Y c X, where 
{y }eY 

C * ( { y } ) - ( W e l l x e C ( { y } ) } . 

Then TA - <X,C*> i s a TQTS. I t is not hard to veri fy that 

the funotion f 1 X X such that f ( x ) «= { x } f o r every x eX 
i s an isomorphism from T onto T. . « j 

L e m m a 1.5. Let A «= <A,- ,u,n,CA> be a TCA-QTBA, 
Then there exists a TQTS TA determined by A such that the 
standard TCA-QTF Am of T . ' i s isomorphic to A. 

4 -
P r o o f . A TCA-QTBA A = <A,- ,u,n,CA> determines 

a TQTS TA = <At{A),C>, where At(A) denotes as usual the set 
of a l l atoms in A, C(Y) = U { C ( { y } ) : y e Y } f o r every Y s At(A) 
and C ( { y } ) = ( x e A t ( A)s x <C A ( y ) } fo r every y e At (A ) . The 
space determines in turn the standard TCA-QTF A^ -
= <P (At (A ) ) , - , u ,n , c> . As i t i s well known ( c f . [7])~the func-
tion a ( - » h (a ) = {x e At (A) : x ^ a } i s a Boolean isomorphism 
from A onto Am . Furthermore, h sa t i s f i e s the condition 

aA 
h (C A ( b ) ) = C(hrb)) for every b cA. Indeed, h (C A ( b ) ) = 
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- h U A C A ( y ) ) - U | x £ At (A) i x < c A ( y ) } - U Cl{y}) = 
y^b y^b y O 

- U C ( h ( y ) ) - C ( h ( b ) ) . Thus A c Am . 
y e h ( b ) ~ iA 

Immedia te ly f rom Lemmas 1*4 and 1 . 5 one d e r i v e s t h e 
f o l l o w i n g r e s u l t e s t a b l i s h i n g c o n n e c t i o n s be tween o l a s s e s 
of TCA-QTBA's and TQTS's. 

T h e o r e m 1.4* There e x i s t s a o n e - t o - o n e c o r r e s -
pondence be tween TC^-QTBA's and TQTS's. 

Applying t h e J o n s s o n - T a r s k i i d e a s of i n t e r p r e t i n g a l g e -
b r a i o n o t i o n s by means of c o n o e p t s of r e l a t i o n a l sys t em 
( o f . [ 4 ] ) , we w i l l c o n s i d e r now o o n n e o t i o n s of t h i s s o r t f o r 
t h e c l a s s of TCA-QTBA's. Any p a i r X = <X,R> w i l l be c a l l e d 
a r e f l e x i v e spaoe i f R i s a b i n a r y r e f l e x i v e r e l a t i o n on 
a non-empty s e t X. R e f l e x i v e s p a o e s a r e c l o s e l y r e l a t e d t o 
TCA-QTBA's. I n f a o t , i f I = <X,R> i s a g i v e n r e f l e x i v e s p a o e , 
t h e n t h e unary o p e r a t i o n CRa P(X) — P ( X ) d e f i n e d by t h e f o r -
mula 

( 1 . 4 ) C g d ) - ( J R(y) f o r any I E X , 
yeY 

where R(y) = {x e X» xRy} i s a t o t a l Q - o l o s u r e o p e r a t i o n . 
Henoe, Ax • <P(X) , - , n , u , C R > i s a TCA-QTF and T j « <X,-CR> i s 
a TQTS. Any TCA-QTF A^ a s w e l l a s any TQTS T^ o b t a i n e d i n 
t h i s manner w i l l be a l l i e d , r e s p e c t i v e l y , a s t a n d a r d TCA-QTF 
and s t a n d a r d TQTS de t e rmined by X. Let TQ « <G,C> be a TQTS 
c o n s i d e r e d i n Example 1 . 1 . Then i t i s de t e rmined by t h e r e -
f l e x i v e space XQ = <G,R> i n whioh R i s d e f i n e d by t h e f o r m u l a 
x R y i f f x o y e y o x f o r eve ry x , y e G. I n d e e d , C(Y) = U N = 

yeY 7 

= U R ( y ) = Cp(Y) f o r eve ry Y £ G . L ikewise one shows t h a t t h e 
yeY K 

TQTS Tm 1 <Z,C> f rom Example 1 . 2 i s a l s o d e t e r m i n e d by some 
r e f l e x i v e s p a o e . To see t h a t , l e t us d e f i n e a b i n a r y r e l a t i o n 
R on Z by t h e f o r m u l a x R y i f f x = y o r y = x + m f o r eve ry 
x , y e Z. A s t r a i g h t f o r w a r d c a l c u l a t i o n shows t h a t R i s r e f l e -
x i v e and suoh t h a t C(Y) = U R(y) - CT,(Y) f o r eve ry Y s Z , yeY 
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t h a t i s , C = CR. So, Tm i s determined by the r e f l e x i v e space 
In. = <Z,R>. 

m 
Raoal l now the wel l known d e f i n i t i o n of an isomorphism 

between two r e l a t i o n a l systems. I f X1 = <X1,R1> and Xg = 
= <X2,R2> 8 1 6 a n 7 r e f l e x i v e spaces , then a f u n c t i o n f :X1 — X 2 

i s said to be an isomorphism from ^ onto X2 provided t h a t 
f i s a b i s e c t i o n and i t s a t i s f i e s the o o n d i t i o n : x R1 x ' i f f 
f ( x ) R2 f ( x ' ) f o r every elements x , x ' c Z ^ , Two r e f l e x i v e spa -
ces X.j and £2 8176 isomorphic i f t he re e x i s t s an isomorphism 
from X.j onto X2 ( i n symbols X ^ X g ) , 

The next two lemmas descr ibe main connect ions between 
TCA-QTBA's and r e f l e x i v e spaces . 

L e m m a 1 .6 . Let X = <X,R> be a r e f l e x i v e space. 
Then the s tandard TCA-QTF Ax determines some r e f l e x i v e spaoe 
X. which i s isomorphic to X. 

-X 
P r o o f . On the se t of atoms At(Ax) of the a lgebra 

Ax we de f ine a binary r e l a t i o n R^ by the formula : 
— R 

(1 .5 ) {x}Rc {y} i f {x}cC R ({y}) f o r every {x},{y} eAt (A x ) . 
R — 

Then XA = <At(Ax) ,R c > i s a r e f l e x i v e space such t h a t X-X A . 
—X — R —X 

L e m m a 1 .7 . Let A = <A,- ,u ,n ,CA> be a TCA-QTBA. 
Then i t determines a r e f l e x i v e space XA such that the s tandard 
TCA-QTF Ax of XA i s isomorphic to A. 

P r o o f . On the se t of a l l atoms At(A) of A we de f ine 
a binary r e l a t i o n RA as f o l l o w s : 

(1 .6) x Ra y i f f x $ C A ( y ) f o r every x , y e A t ( A ) . 

Then XA = < A t ( A ) , R A > i s a r e f l e x i v e spaoe. This space d e t e r -
mines i n t u r n the s tandard TCA-QTF Ax - <P(At(A)) t - , u , n , C j j >, 

-A A 
where Cr, i s def ined by (1 .4)« On the o the r hand, using Lem-

A 
ma 1 .2 , A i s isomorphic t o the TCA-QTF h(A) = < h ( A ) , - , u , n , C A > . 
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Bat sinae C*(T) - Cg (T) for a l l Y£At (A ) , ve get f inal ly 

that A T - A . 
-A " 

By virtue of Lemmas 1.6, 1*7 and Theorem 1.4 we obtain 
the following theorem describing fundamental relationships 
between TCA-QTBA 'a, TQTS 'b and reflexive spaoea. 

T h e o r e m 1.5. The olasses of TCA-QTBA's, TQTS S 
and reflexive spaces are in a one-to-one correspondence. 

2. Some subclasses of TCA-QTBA'a and their qqasi-topolo-
gloal and relational coanterparts 

This section deals with normal TCA-OTBA's, self-oonjugate 
TCA-QTBA's, TCA-self-dual algebras, TCA-H-algebras and their 
relations to dual quasi-topological and reflexive spaoes. 
Let us recal l (of . [ l0 ] ) that a QTBA A » <A,-,u,n,C> is said 
to be normal i f it contains a normal u ltraf i l ter v (C(a ) f V 
i f f a » 0 for a l l a eA) . Obviously not every TCA-QTBA is nor-
mal. For instance the standard algebra AT- of the TQTS TQ 

from Example 1.1 is a normal TCA-QTBA, whereas the standard 
algebra AQ, of the TQTS Tm from Example 1.2 is a non-normal 

m 
TCA-QTBA since it does not possess any normal u l t ra f i l ter . 
It is worth to emphasize here that the subolass of normal 
QTBA's has important applications to the semantios of the 
SCIQ (the quasi-topological strengthening of the SCI). The 
olass of H-algebras presents a special subclass of QTBA's and 
consists of a l l those QTBA's in which every u l t ra f i l ter is 
normal. A QTBA A = <A,-,u,n,C> is referred to as sel f -conju-
gate i f i ts Q-closure operation satisf ies the following con-
ditions 

(2.1) C ( a j < - b i f f C ( b ) « - a for every a,b e A. 

The ooncept of a self-oonjugate operation was introduced by 
Jonsson and Tarski in [ 4 ] . We apply it here to the class of 
QTBA's. Any TBA A = <A,-,u,n,C> is called a self-dual algebra 
i f 
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(2.2) C(a) n C(-C(a)) = 0 for every a eA. 

The class of self-dual algebras finds applications to the se-
mantics of the SCI and i t relates both to the WH-theory as 
well as to the modal system Ŝ  ( c f . [ 8 ] ) . I t is not d i f f i cu l t 
to ver i fy that any QTBA A is a self-dual algebra i f f the set 
C( A) = (C(a ) : a eA} with respeot to the operations -,u,n in A 
restricted to C(A) is a Boolean subalgebra of the Boolean 
re duct of A. 

Let T = <X,C> be a QTS. Then T is said to be strongly 
compact i f P i ( Yj ) 4 0 for any indexed family (Yjijc-r of 

i e l 
non-empty subsets of X. Prom this def init ion i t is seen that 
the property of a strong compactness for QTS's is a quasi-
-topological generalization of the well-known concept of the 
strong compactness for topological epaces. I t turns out that 
the subclass of strongly oompact TQTS's presents the quasi-
-topological counterpart of the subolass of normal TCA-QTBA's. 
This i s shown in the next two lemmas and theorem. 

L e m m a 2.1. I f I = <X,C> is a strongly compact 
TQTS, then the standard TCA-QTF AT i s normal and i t determines 
a strongly compact TQTS T. which is isomorphic to T. «rp 

P r o o f . Let T = <X,C> be a strongly compact TQTS. 
Then i t s standard TCA-QTF Aj = <P(X),-,u,n,C> is normal. To 
see that le t us consider the set D = { c {Y ) t Y 4 0, Y c x } . Note 
that this set has the intersection property ( i . e . intersec-
tions of elements belonging to D are non-empty). Hence 0 ge-
nerates a proper f i l t e r which oan be extended to an u l t r a f i l -
ter Ujj. A simple calculation shows that U^ is a normal ultra-
f i l t e r . Therefore AT i s a normal TCA-QTF. This algebra deter-
mines in turn a TQTS T. = <X,C*>, where C* i s a total Q-olo-Arp 
sure defined by (1.3) . By virtue of Lemma 1.4, T, i s iso-

morphic to T. Since T is a strongly compaot TQTS and isomor-
phisms preserve the property of a strong compactness for 
TQTS's, i t follows that T. is strongly oompaot such that 
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L e m m a 2.2. Let A = <A,- ,u,n,CA> be any normal 
TCA-QTBA. Then the standard TQTS TA ia strongly compact and 
i t determines a normal TCA-QTF Am "that is isomorphic to A. 

A 
P r o o f . I f A = <A,- ,u,n,CA> i s a normal TCA-QTBA, 

than there exists a normal u l t r a f i l t e r \7 in A. This implies 
that the set D = { c A ( a ) : a 4 0, a e a } possesses the in te r -
section property, i . e . n CA {a^) i 0 f o r every indexed set 

i e l A X 

^ a i^ ie l o f n o n - z a r o elements of A. Henoe the standard TQTS 
Ta = <At(A),C>, where C is defined by (1.0) i s strongly com-
pact. Indeed, from the intersection property of the set D i t 
follows that O C ( { y i } ) 4 0 fo r any indexed set ( { y - j } ) l e I 

of singletons in At (A ) . Consequently, P i C (YJ = 
i e l 1 

= P i U C ( { y } ) = U H C ( { « ( i ) } ) + 0 for any indexed 
i e l yeYj^ 1 cxeY i e l 

family (Y.. )., T of non-empty subsets of At (A) , where Y = n Y4 . i iex i c I i 
So, Ta i s strongly compact. By Lemma 1.5, A is isomorphic to 
the TCA-QTF Am = <P (At (A ) ) , - ,u ,n ,C> . Since A is normal and 

A 
isomorphisms preserve the normality of QTBA's, i t fol lows 
that A™ is a normal TCA-QTF that is isomorphic to A. 

A 
T h e o r e m 2.1. There exists a one-to-one corres-

pondence between normal TCA-QTBA's and strongly compact TQTS's. 
P r o o f . By Lemmas 2.1 and 2.2. 
To establish re lat ional counterparts of normal TCA-QTBA's 

we introduce the concept of an IP - re f lex ive spaoe. I f X = 
= <X,R> is a ref lexive space, then X w i l l be called an I P - r e -
f lexive space (a space with the intersection property) pro-
vided that n R(x., ) 4 0 for every indexed family (R(x. , ) ) . T . 

i e l 1 1 1GX 

Observe that the standard TCA-QTF Ax = <P(X) , - ,u ,n,CR> of any 
IP - re f lex ive space X = <X,R> is normal. In f act , note that the 
set D(AX) = { C (Y ) : Y 4 Y s x } possesses the intersection 

property because n C(Y.,) = n U R(y) = U O R(« ( i )M0 
i e l 1 i e l yeY i oceY i e l 
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f o r any indexed set ( c ( Y i ) ) i e i i n D ( A X ) , where Y = n i 4 . 

This means that D(A^) generates a proper f i l t e r in A£ extend-
able to an u l t r a f i l t e r U (D (A X ) ) . A straightforward computa-
t i on proves that U(D(AX ) ) i s - a normal u l t r a f i l t e r in Thus 
Ax i s a normal TCA-QTF7 By v i r tue of these observat ion! , by 
tEe fac t that isomorphisms of r e f l e x i v e spaaes preserve the 
IP-property of r e f l e x i v e spaoes and by Lemma 1.6 we obtain 
the fo l l owing lemma. 

L e m m a 2.3. For every I P - r e f l e x i v e space X the 
standard TCA-QTF Ax i s normal and i t determines an I P - r e f l e -
x ive space X. that i s isomorphic to X. 

-X 
The next lemma shows that every normal TCA-QTBA i s de-

termined by some I P - r e f l e x i v e apace. 
L e m m a 2.4. I f A = <A,- ,u,n,CA> i s a normal 

TCA-QTBA, then i t s standard I P - r e f l e x i v e space XA determines 
a normal TCA-QTF Ax suoh that A - Ay . -A - A 

P r o o f . Since A i s normal, the set D(A) = { c A ( e ) : 
a 4 0, a e A } has the in tersec t ion property. Hence, in the 
standard r e f l e x i v e space XA = <At (A ) , RA> we have, 

n H (y , ) = { x e At (A) : x $ O C. (y , ) } 4 0 f o r any family 
i e l £ 1 1 i e l 
^ A ^ i ^ i e l * T i l 0 : P e f o : r a i s a n I P - r e f l e x i v e space. Sinoe an 
isomorphic image of any normal QTBA also belongs to the c lass 
of QTBA's, by Lemma 1.7, A i s isomorphic to the standard nor-
mal TCA-QTF Ax = <P (A t (A ) ) , - ,u ,n ,C R > determined by XA. 

The main re lat ionships between normal TCA-QTBA's, strongly 
compaot TQTS's and I P - r e f l e x i v e spaoes establ ishes the f o l l o w -
ing theorem. 

T h e o r e m 2.2. The classes of normal TCA-QTBA's, 
strongly compaot TQTS's and I P - r e f l e x i v e spaces are in a 
one-to-one correspondence. 

P r o o f . By Lemmas 2.3, 2.4 and by Theorem 2.1. 
Dual r e l a t i ona l counterparts of se l f -conjugate TCA-QTBA's 

are r e f l e x i v e spaoes supplied addit ionaly with the symmetric 
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property. The spaces of this sort w i l l be cal led toleranoe 
spaces. One can easi ly show that f o r every tolerance spaa« 
X = <X,H> i t s standard TCA-QTF Ax = <P (X ) , - ,u # n ,C R > i s s e l f -
-conjugate and i t determines in turn a tolerance space X. 

-X 
such that X - X . . Also one proves that start ing with any 

-X 
se l f -oonjagate TCA-QTBA A = <A, - ,u ,n ,C A > we obtain the t o l e -
ranoe space XA = <At (A ) ,R A > determining a se l f -conjugate 
TCA-QTF A t = _ <P (At (A ) ) , - 7u ,o ,C n > suoh that A - AY . Therefore 

-A *A , -A 
the classes of se l f -conjugate TCA-QTBA s and tolerance spaces 
are in a one-to-one correspondence. 

In order to get a quasi - topological representation of 
se l f -oonjugate TCA-QTBA's we w i l l distinguish in the c lass 
of TQTS's a new subolass. Namely any TQTS T = <X,C> w i l l be 
oalled C-symmetric i f f o r every Y,Z £X the fo l lowing condi-
tion holds: 

(2 .3 ) C(Y) n Z = 0 i f f C(Z) nY = 0. 

Let T = <x tC> be any C-symmetric TQTS. Then AT = <P(X), - ,u,n,C> 

i s a se l f -conjugate TCA-QTF and i t s standard TQTS T, = <X,C*> 

(see Lemma 1.4) i s a C-symmetric TQTS which i s isomorphic to 
the space T. Moreover to any se l f -conjugate TCA-QTBA A = 
= <A, - ,u ,n ,C A > i s assigned TA = <At(A),C> which i s a C-sym-
metric TQTS (see Lemma 1.5) determining the standard s e l f -
-conjugate TCA-QTF Am = <P (A t (A ) ) , - , u , n ,C> such that A - Am . 

A A 
Putting a l l these facts together we get the fo l lowing theorem 
characterizing se l f -conjugate TCA-QTBA's in terms of quas i -
- topolog ica l and re la t iona l spaces. 

T h e o r e m 2.3. The classes of se l f -conjugate 
TCA-QTBA's .tolerance spaces and C-symmetric TQTS's are in 
a ona-to-one correspondence. 

Observe that TCA-seif -dual algebras form a subclass in 
the c lass of a l l s e l f - conjugate TCA-^TBA's. In f a c t , 1st 
A = <A , - , u ,n ,C> be a TCA-sel f -dual algebra. Then C(a) $ -b 
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implies b ^ I ( - a ) for a l l a,b e A. From this C(b) ^ I ( - a ) i -a 
for every a,b eA. Similarly one proves the second part of 
(2 .1 ) . But sinoe every TCA-TBA i s a TCA-QTBA, A is a s e l f -
-conjugate TCA-QTBA. 

The olass of TCA-eelf-dual algebras i s related to tota l 
partitional topologioal spaces. Any total topological spaae 
T = <X,C> is said to be partit ional i f I (C (Y ) ) = C(Y) f o r 
every y g i . One can ver i fy that any total topologioal spaoe 
<X,C> is partitional i f f C(X) = I (X ) . Furthermore in every 
total partitional topological space T <= <X,C> the following 
conditions: x e C ( { y } ) i f f y e C ( { x } ) and C ( { x } ) n C ( { y } ) 4 0 
implies C ( { x } ) = C ( { y } ) are sat is f ied fo r a l l x,y e X. Conse-
quently the family ( c ( { 7 } ) ) y e x l s a pa r t i ' t io ' 1 Clearly 
every tota l partitional topological space is a C-symmetrio 
TQTS but not conversely. A straightforward calculation shows 
that the standard TCA-QTF AT = <P(X),-,u,n,C> of a total par-
t i t iona l topological spaoe T = <X,C> is a TCA-self-dual alge-
bra. Also every TCA-self-dual algebra A = <A,-,u,n,CA> deter-
mines Ta = <At(A),C> which i s a tota l partitional topological 
spaoe. With the help of easy arguments one shows f ina l ly that 
the class of TCA-self-dual algebras and tota l partitional to -
pological spaoes are in a one-to-one correspondence. 

I t turns out that relat ional binary systems connected 
with TCA-self-dual algebras are equivalantial ones. To see 
that, let us suppose that A = <A,-,u,n,CA> is any TCA-self-
-dual algebra. Then XA = <At(A),RA> is a quasi-ordered set 
beoause CA is idempotent. Prom thi fact that x$C (y ) i f f 
y $C(x) holds for a l l atoms x,y eAt(A) i t follows that RA i s 
symmetric. So, XA is an equivalential relat ional system.~Con-
versely, i f X = <X,R> is any equivalential relat ional system, 
then by the re f l ex i v i t y and transit iv i ty of R, Ax = 
= <P(X) ,-,u,r\,CR> is a TCA-TBA. In view of the symmetry of R, 

C R ( I R (Y ) ) = U { R ( y ) : R(y) c i } = l R ( y ) f o r every Y c x . Henoe 
At is a TCA-self-dual algebra. In the l ight of these results 
we may derive the following topological and relat ional repre-
sentation theorem for TCA-self-dual algebras. 
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T h e o r e m 2.3. There exists a one-to-one corres-
pondence between TCA-self-dual algebras, total partitional 
topological spaces and equivalential relational systems. 

How we proceed to consider the subclass of TCA-H-algebras 
and their relational and topological counterparts. Any 
TQTS T = <X,C> i s called a total H-topological space i f 
C(Y) = X whenever Y t 0 and C(Y) = 0 otherwise for every Y s X. 
For any TCA-H-algebra A = <A,-,u,n,CA> the standard topolo-
gical spaoe Ta = <At(A),C> i s a tota l H-topologioal space, 
while the standard algebra AT corresponding to a total H-to-
pological spaoe T = <X,C> is a TCA-H-algebra. On the other 
hand, relat ional objects corresponding to TCA-H-algebras are 
universal relational systems, i . e . the systems in which binary 
relations are universal ones. Using similar reasoning to that 
in considered above classes of algebras one may show the 
following theorem. 

T h e o r e m 2.4. The classes of TCA-H-algebras, to -
ta l H-topological spaces and universal binary relational sy-
stems are in a one-to-one correspondence. 

The class of TCA-self-dual algebras is not a subclass of 
normal TCA-QTBA's. The next theorem presents a characteriza-
tion of TCA-H-algebras by means of relational systems as wel l 
as points out that normal TCA-self-dual algebras coincide with 
the subolass of TCA-H-algebras. 

T h e o r e m 2.5. Let X = <X,R> be a re f lex ive spaoe 
and let Ax = <P(X),-,u,n,CR> be i t s standard TCA-QTF. Then 
the following conditions are equivalent: 
( i ) X is an universal relat ional system, 
( i i ) A^ is a normal TCA-self-dual algebra, 
( i i i ) A^ i s a TCA-H-algebra. 

P r o o f . In view of Theorems 2.2 and 2.4, the con-
dition ( i ) implies ( i i ) . I f ( i i ) i s sat is f ied, then there 
exists a normal u l t ra f i l t e r 7 in A^. Hence, C(Y)eV i f f 
I (C (Y ) ) eV i f f C(Y) = X whenever Y~is any nonempty subset 
of X. In the case that Y = 0, we get obviously C(Y) = 0. 
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Therefore Ax i s a TCA-H-algebra. The implication ( i i i ) => ( i ) 
i s true by Theorem 2.4. 

Applying Theorems 2.2, 2.4 once again and performing easy 
calculations one obtains the dual topological characteriza-
tion of the subclass of normal TCA-self-dual algebras. This 
i s shown in the following theorem. 

T h e o r e m 2.5. Let T = <X,C> be a TQTS and let 
AT = <P(X) ,-,u ,n,C > be i t s standard algebra. Then the fo l l ow-
ing conditions are equivalent« 
( i ) T is a tota l H-topologioal spaoe, 
( i i ) AT is a normal TCA-self-dual algebra, 
( i i i ) AT i s a TCA-H-algebra. 

Observe that TCA-self-dual algebras are those TCA-self-
-oonjugate QTBA's in which Q-closure operators beoome usual 
topological ones. In fac t , i f A = <A,-,u,n,CA> i s a TCA-self-
-conjugate QTBA in which CA i s idempotent, then CA (CA (a ) )n -
- CA (a) = 0 f o r a l l a e A . Using formula (2 .1 ) , we get CA (a) n 
n CA ( -CA (a ) ) = 0 for every ae A. Therefore A i s a TCA-self-
-dual algebra. Prom this result and from Theorem 2.3 we in fer 
that any C-symmetric TQTS T = <X,C> is a to ta l partit ional 
topological spaoe i f f the operator C i s idempotent. 

A re f l ex i ve space X = <X,R> i s said to be t r i v i a l i f R 
i s the identity re lat ion on X, i . e . x R y i f f x = y f o r every 
x,y eX. Any TQTS T = <X,C> i s referred to as disorete provided 
that C(Y) = Y for a l l subsets T i l . Any QTBA in which a l l e l e -
ments are Q-closed w i l l be regarded as a Boolean algebra. 
Easy observations show that any TCA-QTBA A is a complete ato-
mic Boolean algebra i f f ?A i s t r i v i a l i f f TA i s discrete. 

Now we w i l l show that normal TCA-QTBA's, strongly oompact 
TQTS's and IP-re f l ex ive spaces can be obtained constructively 
in a simple way from TCA-QTBA's, TQTS's and re f l ex i ve spaces, 
respect ively. 

Let A = < A,-,u,n^C > be any TCA-QTBA and le t 2 = 
= < { o , 1 } , - , u , n> be a two-element Boolean algebra. Defining 
on the Cartesian product A* = A x { o , l } the Boolean operations 
componentwise and a unary operation C* by the formula: 
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C*(a,x) = 
(C (a), 1) if (a,x) 4 (0,0) 

(0,0) if (a,x) = (0,0) 

for all (a,x) eA*, we get a TCA-QTBA A* = <A ,-,u,n,C*>. One 
may verify that A* is a normal TCA-QTBA. This algebra will 
be called an algebraic normal product of the algebra A. 

To construot a strongly compact TQTS, let us take any 
TQTS T = <X,C>. Furthermore, let X^1' = X u j x J , where x1 ^ I. 
Next let us define on i'1' a Q-closure operation C ^ by the 
formula C ^ ( Y ) = C(Y)u{x 1} for every non-empty subset Y 
of X^1* and C^1,(0) = 0. Then T { 1 ) = <X( 1},C^1 }> is a strongly 
compac't TQTS. In fact, if (YjJ^ej is any indexed family of 

non-empty subsets of l'1', then O C ^ ( Y 4 ) = Pi C(T* ) u 
i d 1 iel 1 

u {x^} 4 0. The spaoe T ^ will be called a one-point compao-
tification of the TQTS T. 

Finally let X = <X,R> be a given reflexive spaoe. On the 
set X^ ̂  = where x^ I X we define a new relation R ^ 
such that R*1' = Hujtx^y): y e l'1)}. Clearly R ^ is re-
flexive. Henoe, X ^ = is a reflexive space. 
Sinoe P R ( 1 , ( Z . ) = P i R(z.)u{xA 4 0 for any indexed fa-

iel 1 iel 1 1 

mily (R^1'(z±))ieI, it follows that X*1} is an IP-reflexive 
spaoe. This space will be called a one-point IP-closure of X. 

With each TQTS T = <X,C> we may associate two normal 
TCA-QTBA's of the form a£ and AT(1). The first one is the 
algebraic normal product of the standard algebra AT of T, 
while the second one is obtained as the standard algebra of (1) 
the one-point compactification Tv ' of the space T. Both these 
algebras are normal and have been constructed from the same 
TQTS T. The connections between them establishes the follow-
ing theorem. 

T h e o r e m 2.6. Let T = <X,C> be a TQTS. Then 
A^ - At (1). 

- 1027 -



22 B. Tembrowski 

P r o o f . If T - <Z,C> is a given TQTS, then A^ -
- <P(X)*,-,u,n,C*> is the algebraic normal product of the 
standard algebra A^ of T, where 

C*(Y,w) 
{C(T),1) if (T,w) 4 (0,0) 
(0,0) if (T,w) = (0,0) 

for all (T,w) e P(X)*. On the other hand, for T one can con-
struct a strongly compact TQT6 T ^ whioh is a one-point 
strong compactifioation of T. By Theorem 2.1, AT(1) = 
• <P(Z^1,),-,u,n,C^1,> is a normal TCA-QTF, where C*1,(Y) » 
= C(Y)u{x.j} for every non-empty subset T of X ^ and 
C ^ ( 0 ) - 0. It is easy to oheok that the function g: P(X)*-* 

P(X(1)) defined by g(Y,w) = Yuf(w) for every (Y,w) e P(X)* 
is an isomorphism from A^ onto AT(1), where f is a Boolean 
isomorphism from 2 onto the two-element field P({x.j}) such 
that f(0) = 0 and f(D = {*.,}. 

Now let us start with a given reflexive spaoe X = <X,K>. 
Then we can also aonstruot two normal TCA-QTBA's of the form 
Aj and kj\1) by applying the algebraio normal produot and 
one-point IP-olosure of X, respectively. Indeed, A^ = 
» <P(X)*,-,u,n,Cg> is the normal algebraio product'of the 
standard algebra Ax of X, where C^(Y,w) = (CR(Y),1) whenever 
(Y,w) 4 (0,0) and Cg(Y,w) = (0,0) whenever (Y,w) = (0,0) for 
every (Y,w) € P(X)*. Clearly, AX(1) = < P(X( 1 *),-,u, n.Cjji 1 )> is 
the standard algebra of the one-point IP-olosure X ^ of X, 
where 0,(1) (Y) = U R ^ ( y ) for every Y ^ x ^ . A similar 

yeY 
calculation to that in the above theorem shows that AX~AX(1). 
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