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Introduction

Boolean algebras with operators and their relational
counterparts were investigated by Jonsson and Tarski in [4].
They pointed out that many substantial algebraic properiiss
oan be interprsted in terms of relational systems, They showed
among others that topological Boolean algebras (TBA's) are
related to quasi-ordered sets and that oylindric algebras are
connected with relational systems involving two equivalence
relations., The Jonsson and Tarski ideas have been pursued
later for studylng of many other sorts of algebras. A one~to-
-one correspondence betiween well-founded algsbras and well-
=-founded binary relational systems has been proved by Gold-
blatt in [2]. The class of diagonalisable algebras and its
oconneotions with finite well-founded transitive rslational sy~
steme was investigated by Bernardli in [1]. Pseudo-Boolean al-
gebras and their conneotions with some partially ordered setis
were considered by Grzegorozyk in [3].

The aim of this papsr is to describe main relationships
of totally complete atomic quasi~topological Boolean algebras
(TCA-QTBA’8s) and some of their subclasses with total quasi-to-
pological spaces (TQTS?s} and reflexive relational systems
{called hers reflexive spaces for short), The motivation for
studying of these classes of algebras are their applications
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2 B. Tembrowski

to the semantios of the sentential oalculus with identity
(sCI, [4]) and to the semantios of some Lewls modal systems
(of. (6] ana [8]).

The work consists of two seotions. At the beginning of the
first one basic definitions and propsrties concerning quasi-
~topological Boolean algebras (QTBA’s), quasi-topologiocal
fields (QTF's) and quasi-topologioal spaces (QTS’s) are given,
Then we formulate representation theorems perteining to QTBA’s,
QTF's and quotient QTBA’s8. The further part of the section
deals with relationships between TCA-QTBA's; TQTS’S and re-
flexive spaces. In the second seotion we conaider relation-
ships between normal TCa~QTBA®s, totally complste atomio self-
-oonjugate quasi-topological Boolean algebras {TCA~self-con=-
jugate QTBA’s), totally complete atomic self-dual algebras
(TCA-self-dual algebras), totally complete atomio H-~algebras
(TCA~H-algebras) and their quasi-topologloal end relational
counterparis., The section presents also an algsbrsic! construc=-
etion of normal TCA~QTBA’s, a quasi-topological construction
of strongly compaot TQTS’s and a relational construction of
IP-reflexive spaces.

The author wishes to thank to Prof. C. Rauszer for many
valuable remarks that were very helpful during preparation
of this paper.

1. Quasi~topological Boolean algebras and their quasi-to=-
pological and reflexive spaces

The first part of the section is devoted to basioc proper-
ties concerning QTS*s, QTF*s and QTBA’s, The main results ars
reprasentation theorems for QTBA'*s, QTF*s, quotient QTBA’s as
well as theorems stating that TCA-QTBA’s, TQTS's and reflesxive
spaces are in a one-to-ons correspondence,

Let X be a non-empty set and let P(X) be the powerset
of X, A unary operation C: P(X)—» P(X) is said to be a quasi-
~closurs (Q-closure) if C(YuZz) = C(Y)uC(2), YcC(Y) and
C(¢#) = ¢ for every subset Y, Z of X. A palr <X,C> is referred
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Quasi-topological Boolean algebras 3

to as a quasi-topologiocal space (QTS) if X is a non-smpty
set and C is a Q-olosure operation on P(X), It is olear that
every topologlocal space is a QTS but not conversely. Any
QTS<X,C> i8 topological iff the operation C is idempotent,
A subset Y of X is called quasi-clomed (Q-oclosed) provided
that C(Y) = Y. With the help of standard arguments one shows
that the class C(X) of all Q~closed subsets of X with respedt
to the set-theoretical union and intersection forms s distri-
butive n-oomplete lattice., The smallest element in C(X) is ¢
and the greatest one is X. Let us denote by g*(x) the olass
of all elements of the form C(Y) for Yc X, Obviously elements
of C,(X) are not Q-closed in general. The clase C,(X) with
respect to the set-theoretical union is a u-semilattice. Note
that a QTS<X,C> becomes a topological space iff c(x) = ¢ (X},
Just as in topological spaces is any QTS <X,C> ons may coh-
sider a dual operation to C, Namely a unary operation
I: P(X)—» P(X) such that I(Y) = -C(~Y) for every YcX will
be called a quasi-interior (Q~interior)., Making use a siraight-~
forward calculation one proves that I(YnZ) = I(Y)nI(Z),
I(Y) €Y and I(X) = X for svery Y,Z cX. A subset Y of X is
called quasi-open (Q-open) if I(Y) = Y. A subset Y of X is
sald to be guasi-clopen (Q-clopen) if it is Q-olosed and
Q-open. The class I(X) of all Q-open subsets of X with respeet
to the set-theoretical union and intersection is a distribu-
tive u-complete lattice, while the class I,(X) of all subsets
I(Y) in X for Y cX with respact to the set-theoretical inter-
section is a n-gemilattice, The complement of a Q-oclosed
(Q-open) set is a Q-open (Q=-closed) set, It is clear that
every QTS can be described by a Q~closure, or squivalently,
by a Q-interior operation., Observe that lattices C(X) and.
I(X) related to the same QTS (X,C)> are dually isomorphic. In
fact, the function f: C(X) —» I(X) defined by f£(Y) = -Y for
every Yc X is a bijection such that £(Yu2) = £(Y) nf(2),
f(Yn2) = £(Y) v£(2), £(@#) = X and £{X) = ¢ for every Y,Z cX,
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4 B. Tembrowski

In our investigations an important role will play QTS s
supplied with an additional property imposed upon closure
opsrations. & QTS<X,C> is said to be total (TQTS) if C(Y) =

= U C({y}) for any subset Y of X, In the subclass of
yeY

QTS “s Q~-clossd, Q-open and Q-clopen subsets can bs interpre=
ted equivalently by means of C-decreasing, C-inereasing and
C-stabla subsets, respectively. Let T = <X,C> be a TQTS., Then
a subset Y in T is called C~decreasing provided that xe¥Y

and ye C({x}) imply y ¢ Y for every x,y e X. 4 subset Z in T

is called C-increasing if xeZ and x ¢C({y}) imply ye 2 for
every x,y € X, Flnally a subset W in T is called C-stable if
xeW and XAy imply yeW for every x,y ¢ X, where 4 18 a binary
relation on X such that xAy iff xe C({y}) or ye c({z}) for
every x,y e X,

The relationships between C-decreasing, C-increasing,
C-gztable subsets and, respectively, Q-open, Q-closed and
Q-clopen subsets in TQTS ‘s are described in the following lemma,

Lemmea 1ol Let T = <X,C> be & TQTS and let Y be
a subset of X, Then the following conditions holds
(1) Y is C-decreasing iff it is Q-olosed,

(i1) Y is C~inoreasing iff it is Q-open,
(111) Y is C-stable iff it is Q-clopen,

Proof of (i), If Y is a C-decreasing subset in T,
then y e C(Y) implies y ¢ Y for svery y ¢ X, which means that
c(Y) < Y. But YeC(Y), we get C(Y) = Y. Conversely, let Y be
Q-closed and let xe¥Y, ye C({x}) for every x,y ¢ X. Then,
yeC(Y) = Y. Thus Y is a C-decreasing subset in T,

Proof of (ii), ILet Y be a C-increasing subset
in T, Then x eY and x ¢ C({y}) imply ye¢ Y for every x,ye X.
Sinoe x ¢ I(Y) iff for every y ¢X if x ¢ C({y}), then yeY, we
obtain Y ¢I(Y). But I(Y)<cY, it follows that I(Y) = Y. The
proof of the second part of (ii) is easy.

Proof of (iii), If Y is a C-stable subset in T,
then xeY and xAy imply yeY for every x,y ¢ X. From this,
xeY and ye C({x}) imply ye Y as well as xeY and xe C({y})
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Quasi=topological Boolsan algebras 5

imply ye¢ Y for svery x,y ¢ X, Using (i) and (i1), Y is &
Q-clopen subset in T, Conversely, let Y be a Q-clopen subset
in T, Then by (1), x €Y and ye C({x}) imply y € Y for every
%,y € X. By (1i) we get in turn that xe¢Y and x ¢ C({y}) imply
YeY for every x,ye X, Consequently Y 1s a C-stable subset
in T.

For an illustration let us consider now two simple exam~
ples of TQTS ‘s.

Example 1e1. Let G = (G,0> be a non~abelian
group. Then N_ = {yecs [x,5] = e} is a normalizer of an ele-
ment x € G, where e 1s the unit in G and [x,y] is the commu~
tator of elements x,y € Go On the powerset P(G) we define a
unary operation C by the formula C(Y) = L,J N_ for every YcG.

3
yeY
It is easy to check that C is a Q-0losure. Hence TG = {(G,C>
is a QTS conneoted with the group G. Simce C(Y) = | c({y}),

TG is a TQTS. Note that T is not a topological apzce because
for any element x eG»suoh that x # e we have C{C({x})) #

# ¢({x}). Therefore C is a Q-closure which is not a topolo-
gical closure,.

Example 1.2, Let Z be the set of all integers.
On P(Z) we define a unary operation C as follows: C(Y) =
={xeZ: xeY or {(x+n) €Y} for every YcZ, where m is some
fixed positive integer. It is a routine matter to verify that
Tp = <Z2,C> is a TQTS. Observe that T is not a topological
space sinoce for any one-element subset {y} c2, we get C({y}) =
= {y,y-u} # ctc{y})) = {3, y-m, y-2m}.

It is easy to check that subsets in Tm of the form
{ysy-m,y-2m,...} for ye Z are C-decreasing ones., Hence, by
Lemma 1.1, these sets are examples of (-closed subsets in TG.
The only C-stable subsets in this space are ¢ and G, According
to Lemms 1.1, # and G are at the same time the only C-clopen
subsets in TG'

An algebra F(X)} = <F(X),=-,u,n,C> is called a quasi-topo~-
logioal field (QTF) over a non-empty set X provided that
(P(X),-,uyn>is a Boolean field over X and C is a Q-closurs
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operation on F(X)., From this definition it follows that any
topological field is a QTF but not conversely. QTF's are clo-
sely related to QTS’s. In fact, if T = <X,C> is a QTS, then
Fp = <P(X),-yu,n,C> is obviously a QTF. Also the converse
statement holds. If F(X) = <F(X),~,u,n,C> i8 a QTF, then

Ty = <X,C> is a QTS determined by F(X). The QTF Fy will be
ocalled a standerd QTF of T and the QTS TF will be called a
standard QTS of F, Let T, and T be QTS’s considered in Exam-
ples 1.1 and 1.2. Then ETG = (P(G),=,u,n,C> 18 the standard

QTF of T; and Fy = <P(2),=,u,n,C> i the standard QTF of Tpye
m
Neither Fp nor Fp, is a topological field sinas the closure
G n

opsrators in these fields do not possess the idempotent pro-
perty. Any QTF P(X) = <P(X),-,n,u,C> over a non-empty set X
is sald to be a totally complete atomic QTF (TCA-QTPF) if the
reduct <F{X),-,u,n> 18 a ocomplete atomic Boolean field and C
is a total Q-closure. Clearly QTF'e F, and Fp are examples
of TCA-QTF’s. G m

Let us recall (cf, [9]) that an algebra 4 = (A,~,u,n,C>
is a quasi-topological Boolean algebra (QTB.) if <4,=-,u,n>
is a Boolean algebra and C: A —» A i8 a Q-closure operation
on A satisfying the following properties: C{aubd) = C(a)u C(b),
a <C(a) and C(0) = 0 for every a,be A, Any QTBA A= <A,=,u,n, 0>
will be called a totally complete atomic QTBA (TCA~QTBA) if
its Boolean reduct <A,~,u,n> 18 complete atomic and C is
a total Q-closure, i.e. C(a) = lJA{C(x)z x <a, xcAt{a)},
where At(A) denotes the set of all atoms in A, For any TCA-QTBA
there exists a TCA~QTF that is isomorphic to A. Indeed, let
4 = <A,=,u,n,C> be a TCA-QTBA. Then the Boolean reduct of 4
is isomorphic to the fileld <P(4t{4)),~-,u,n>. This isomorphism
yields the funotion h: A —» P{At(4A)) such that h(a) =
« {xcAt(4):s xga} for every a cA. Defining on P(At(4)) an
additional operation C*: P(At(A)) —» P(At(4)) by the formula
(1.0) ¢*(1) = h(c(n~1(¥))) for every Yc At(4), we get a
TCA-QTF P(At(4)) = <P(At(4)),-,u,n,C*> whioh is isomorphioc
to A, Thus TCA~QTBA s are represented by means of TCA-QTF s.
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Quasi-topologiocal Boolean algebras 7

Passing to the whole class of QTBA s we may also formulate
the analogous representation for QTBA s by means of QTF s.
This expresses the following lemma,

Lemma 1.2 Every QTBA is isomorphic to some QTF.

Proof., Let A= <4,-,u,n,C> be any WTBA and let h(a)
be the set of all ultrafilters in A containing an element
ach, Moreover let h(a) = {h{a): aca}. As it is known (cf,
[7]), h(4) with respect to the sst-theoretical opsrations
-,uy,n 18 the Stons field of the Boolean reduct of A. The funo-
tion a ~» h(a) is the Stone isomorphism from <A,-,u,n) onto
<h(4),-,u,n>. Next let us define on h(4) an additional unary
operation C* such that C*(h(a)) = h(C(a)) for every a ¢ A.

Then we obtain a QTF <h(4),-,u,n,C*> which is isomorphic to A.

From the above lemma it is seen that the subclass of QTF's
in the class of QTBA s plays a similar role to that of topo-
logical fields play in the class of TBA s.

The following lemma presents the extensiocn property for
QTBA s.

Lenmnma /1.3, Let B = <B,~-,u,n,Cy> ba a QTBA whose
Boolean reduct gB = (B,~,u,n> ie a Boolean subalgebra of =
complete Boolsan algebre AB = (A,-,u,n>, Then there exiats
a Q-closure operation CA on & suoh that 4 = <A,-,u,n,CA> is
a complete QTBA and CA(b) = CB(b) for svery eleumant beB,

Proof. Let us define on A a unary operation Cy
as follows CA(x) = rl{CB(y): x'sy} for every x ¢ A. Then we
get a complete QTBA A = <A,-,u,n,C,> such that CA(b) = CB(b)
for all b ¢ B.

The basic relationship between QTBA s, TCA-QTF's and
TQTS ‘s yields the following representation theorem.

Theorem 1.1 For any QTBA A there exists =
TQTS T, such that A ie isomorphlc to some subalgebra of the
standard TCA-QTF ATA of TA'

Proof. Let 4= <B,-,uyn,C,> be any QTBA and let
X(A) be the set of all ultrafilters in A. Then by Lemma 1.2,
A is isomorphic to the GTF h(4) = {h(g),-,u,n,CZ}, where
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8 B. Tembrowski

h(a) = {xeX(A)s acx} and CX(h(a)) = h(C,(a)) for every ac 4.
The Boolean reduct of h(A) is a subfield of the complete and
atomic field <P(X(4)),-,u,n> of all subsets of X(A). According
to Lemma 1.3, the operation C on P(X(A)) such that

(1.0 o(@) = U U n(c,(a)) for every ¥ eP(x(4))
YeY aey

is & Q-closure satisfying C(Y) = Cj(Y) for all Ye h(A). It is
easy to see that C is also a total Q-closure., Hence, P(X(4)) =
= <P(X(4)),-,u,n,C> 18 the standard TCA-QTF of the TQTS
T, = <X(A),C>., Since h is a monomorphism from A into P(X(4)),
the image h(A) is a subalgebra of P(X(A)). Thus A is isomor-
phic to h(A) which is a subalgebra of the TCA-QTF P(X(4)).

Now we will present a quasi-topological version of the to~-
pological MoKinsey-Tarski theorem given in [5] (Theorem 2.5).

Theoren 1.2, For every ocomplete atomic QTF 21
there exists some infinite complete atomic QTF E, such that‘
§1 is i1somorphic to a subfield of 32.

Proof. LetF, = <P(X),—,u,n,cx> be a complete ato-
mic QTF over a non-empity set X and let £ be a funotion on X
with infinite values f{x), x e X such that £(x)n f(y) = ¢
whenever {x}n{y} = ¥ for every x,y e X. Denote by Y =
= U{f(x): xeX}e Then £f1 X —» P(Y) can be extented to a
Boolean homomorphism f£3: P(X) — P(Y) such that £f(X') =
= U{f(x): x €X'} for every X'c X. Now let us consider the
function g: P(Y) —» P(X) induced by f and defined by the
formula g(Y’) =2~ 1(y’) for every Y’'c Y. Then g(Y) = X and
g(F) = ¢ whenever F is a finite subset of Y. Note that
(gof)(X’) = g(£(X")) = 15(X’) = X’ for all X'e P(X). Sincs
the unary operation Cy: P(Y) —» P(Y) such that Cy(Y’) =
=Y'vu f(Cx(g(Y'))) for aevery Y’'e P(Y) is a Q-closure, By, =
= <P(Y),-,u,n,CY> is a complste atomic QTF., It is easy to
verify that the function f preserves all Boolesan operations
and fulfils the condition f(Cx(X’)) = f(X')LJf(CX(g(f(X')))) =
= CY(f(X’)) for every X’'e P(X)., Hence f 1is a homomorphism
from F, to F,. Since ker(f) = {¢#}, f is a monomorphism.
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Quasi-topologloal Boolean algsbras 9

Therefore the image f(E1) is a quasi-topological subfield
of F,. Consequently, F; is isomorphic to f(g1) which is a
guasi-topological subfield of the infinite complete atomie
QTF F,.

The next theorem shows that quotient QTBA’s (modulo I-fil-
ters) can be represented by means of QTF s constructed on
closed subsets of the Stone topological spaces.

Theorem 1,3, Any quotlient QTBA A1V, where V
is an I-filter in a QTBA A 1is lsomorphle to a quasi-topologi~-
0al subfield of some TCA-QTF built up on a clossed subspace
of the Stone space of the Boolean reduct of 4.

Proof. Let A =<A,~u,n,C,> be aQTBA and lst v
be‘an I-filter in A, Then the relation V defined by the for-
mula:

(1.2) a Vb iff I(a = b)eV for all a,beca

is a congruende of 4, where a = b is the symmetric cP-diffe-
rence of elements a,be4 (cf, [9]), Hencs, 4 IV is the quot~-
ient QTBA of A modulo V. Let us assign to V the subset F =

= N{h(a) 1 acV} in the Stone space X(4) of the Boolean
reduct of A. As it is known, F is a olosed subset in X(4)

and forms the topological subspace of X(4) with the induced
topology. The set X(A) together with a Q-closure defined by
(141) is a TQTS. Also the olosed subset F with the operation
Cp such that CF(erF) = C{(Y) nF for svery subset Y of X(4)

is a TQTS. Obviously P(F) = <P(¥),-,u,n,Cp> is a TCA-QTF.

Let us take into account the mapping hp: 4 — P(F) defined

by hF(a) = h{a) nF for every a ¢ A, Clearly hp is a homomor=
phism from A to BP(F). Since [a], = [b], implies hp(a) = hy(b)
for every a,bed, hp induces a homomorphism f: 414 —» P(F)
such that f£({a]¢) = hy(a) for every ae A. But sinos ker(f) =
= {v}, f is a monomorphism, Then the imags f(A!A) is a guasi-
~topological subfisld of P(F). Henoce AV is isomorphioc to
£(AIV) = QF(A). Thus we have shown that a1v is isomorphic to
hp(4) which is a quasi-topological subfield of the TCA-QTF
P(F) constructed on the closed subapace F of the Stone space

X(a).
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Before we pass to examine relationships of TQTS s to
TCA~QTBA s, let us make the following definition. If T1 =
= <X;,C,> and T, = <X,,C,> are two TQTS ‘s, then any function
£ X1 — X, is called an isomorphism from T1 onto T2 (T1‘='T2)
provided that f 1s a bijection and for every Yc X,, f(C1(I))=
= cz(f(Y))o

Lemma 1.4, Let T be a TQTS and let Ap be its etan-
dard TCA-QTF, Then there exists a TQIS TQT oorresponding to An
such that T= Tﬂ’l‘.

Proof., If T = <X,C> is a TQTS, then§T=
¢P(X),=pusn,C> 18 the standard TCA-QTF of T, Denote by
= {{x}: x ¢ X} the set of all atoms in Ap. Next let us de-
fine on X the Q-olosure operation C* by the formula

IR

(1.3) c™I) = U C*({y}) for every Y c X, where
{y}e?
c*({y}) = {{x}eX: xecl{zy}i}.

Then T, =<X,C"> is a 7QTS. It is not hard to verify that

the funotion f: X -» X such that f(x) = {x} for every‘x eX
is an isomorphism from T onto TA .
=7

Lemma 1¢54 Let 4 = <A,-,u,n,CA> be a TCA=-QTBA.
Then there exists a TQTS T, determined by A such that the
standard TCA-QTF Ap of T, is isomorphic to 4.

A 2

Proof. &4 TCA-QTBA A = <Ay=yuyn,C,> determines
a TQTS T, = <At(A),C>, where At(4) denotes as usual the set
of all aetoms in A, C(Y) = U {C({3}): ye Y} for every Y cat{a)
and C{{y}) = {xeat(a): x <C,(3)} for every y e at(a). The
apace TA determines in turn the standard TCA-QTF Ap =

A
= <P(At{A)),=,uyn,C>s A8 it i8 well known (of. [7]) the func-
tion a+» h{a) = {xec 4t(A): x <a} 18 & Boolean isomorphiem
from A onto Ap . Furthermors, h satisfies tha condition
A

h(c,(v}) = c(h{b)) for every b e A, Indsed, h(c,(bv)} =
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Quasi-topologiocal Boolean algebras 11

A
=h ;ZL_C“(y)) - ;Z{ {xecat(a)s x <0, (31} = ;Z{ c({y}) =

= U cln(y)) = c(a(b)). Thus & = 4, .
yeh(n) A

Immediately from Lemmas 1.4 and 1.5 one derives the
following result establishing conneoctions between oclasses
of TCA-QTBA s and TQTS ‘s.

Theorem 1.4, There exists a one-to-one corres~
pondence between TCA-QTBA s and TQTS s,

Applying the Joisson~-Tarski ldeas of interpreting alge-
braio notions by means of concepts of relational system
(of. [4]), we will donsider now connections of this sort for
the class of TCA-QTBA s. Any pair X = <X,R> will be called
a reflexive space if R is a blnary reflexive relation on
a non-empty set X, Reflexive spaces are closely related to
TCA=QTBA ‘s. In faot, If X = <X,R> is a given reflexive space,
then the unary operation Cp: P(X) — P(X) defined by the for-
mula

(1.4) Cr(Y) = L“J R(y) for any Y <X,
yeY

where R(y) = {xeXs xRy} 1s a total Q-closure operation,
Hence, Ay = (P(X),-,n,u,cR> is a TCA=QTF and Ty = <X,Cp> is

a TQTS. Any TCA~QTF Ay as well as any TQTS T; obtalned in
this manner will be called, respectively, a standard TCA=QTF
and standard TQTS determined by X. Let TG = {G,C> be a TQTS
considered in Example 1.1. Then it is determined by the re-~
flexive space X; = {G,R> in which R is defined by the formula

X Ry iff Xxo3 = y ox for every x,y e G, Indeed, ¢(Y) = U N
yeY
= U R(y) = CP(Y) for every Y < G, Likewise one shows that the
yeY ’

QTS T, <2,C> from Exampls 1,2 is also determined by some
reflexive space. To see that, let us define a binary relation
R on 2 by the formula x Ry iff x =y or y = x + m for every
Xx,y€e 2. A straightforward caslculation shows that R is refle-~

xive and such that C(Y) = U R(y) = Cx(Y) for every Y<c1Z,
JeY
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12 B, Tembrowski

that is, C = Cge So, Tm is determined by the reflexive space

In = <Z,R.
m
Recall now the well known definition of an isomorphism

between two relational systems. If §1 = <X1,R1> and 32 =

= <X2,R2> are any reflexive spaces, then s funotion fzx1-—¥ X,
is said to be an isomorphism from X, onto X, provided that

f 1is a bijection and it satisfies the condition: x R, x’ iff
f(x) R, f(x’) for every elements x,x’ ¢ X1. Two reflexive spa-
ces g1 and X, are isomorphic if there exists an isomorphism
from X, onto X, {in symbols ;1:=g2).

The next two lemmas describe main connections between
TCA~QTBA ‘s and reflexive spaces.

Lemma 1.6, Let X = <X,R> be a reflexive space.
Then the standard TCA-QTF Ay determines some reflexive space
Xﬂx which is isomorphic to X.

Proof., On the set of atoms At(éx) of the slgebra
Ag we define a binary relation RCR by the formula:

(1.5) {x}RCR{y} if {x} ccp({y}) for every {x},{y} eAt(AZ).

Then X, = <At(A,),R. > is a reflexive space such that X=X, .
Ax 2.4 CR - 'Ax

Lemma 1.7, Let A = CA,~,u,n,C,> be a TCAQTBA.
Then it determines a reflexive spacse X, such thet the standard
TCA-QTF Ay of X, is isomorphic to 4.

_A =2

Proof. Onthe set of all atoms At(4) of A we define

a binary relation RA as follows:

(1.6) x R, 3y 1iff x<C,(y) for every x,yec At(4).

Then zA = <At(g),RA> is a reflexive space. This space deter-

mines in turn the standard TCA~QTF Ay = <P(At(4)),=,u,n,Cp >,
=4 A

where Cp 1s defined by (1.4). On the other hand, using Lem~
A
ma 1.2, 4 is isomorphic to the TCA-QTF h(4) = Ch(A),~,u,n,C}>s
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Quasi-topologiocal Boolean algebras 13

But since C,(Y) = Cp (Y) for all YcAt(A), we get finally
a A
that A = Ao -
_EA =

By virtue of Lemmas 1.6, 1,7 and Theorem 1.4 we obtain
the following theorem deseribing fundamental relationships
between TCA-QTBA s, TQTS s and reflexive spaces.

Theorem 1.5 The olasses of TCA-QTBA s, TQTS s
and reflexive spaces are in a one-to-one correspondence,

2. Some subclasses of TCA-QTBA s and thelr quasi-topolo-
g8ioal and relational counnterparts

This section deals with normal TCA-QTBA s, self-conjugate
TCA-QTBA ‘8, TCA-self-dual algebras, TCA-H-algebras and their
relations to dual quasi~topologicael end reflexive spaces,
Let us recall (of. [10]) that a QTBA & = <4,-,u,n,C> is said
to be normal if it contains a normal ultrafilter V(C(a)¢ v
iff a = 0 for all acd), Obviously not every TCA-QTBA is nor-
mal. Por instance the standard algebra Ap. of the 115 Tg

from Example 1.1 i®s a normal TCA-QTBA, whereas the standard
algebra Ap of the TQTS Tln from Example 1.2 18 a non~normal
m

TCA-QTBA since it does not possess any normal ultrafilter.

It is worth to emphasize here that the suboclass of normal
QTBA ‘s has important applications to the semantics of the
SClQ (the quasi-topological etrengthening of the SCI). The
olass of H-algebras presents a special subeclass of QTBA s and
consists of all those QTBA s in which every ultrafilter is
normal. A QTBA A = <A,~-,u,n,C> i8 referred to as self-conju-
gate if its Q-closure operation satisfies the following con-
dition:

{2.1) C{a) ¢<~b iff C(b) <~a for every a,bcd,

The concept of a self-conjugate operetion was introduced by
Jonsson and Tarski in [4]. We apply it here to the class of
QTBA “s. Any TBA & = <A,-,u,n,C> i8 called a self-dual algebra
if
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14 B, Tembrowski

(2.2) Cla) nC(=C{a}) = 0 for every acA.

The class of self-duasl algebras finds applications to the se~-
manties of the SCI and it relates both to the WH-theory as
well as to the modal system 85 (cfe [8])s It is not difficult
to verify that any QTBA 4 is a self-dual algebra iff the set
c(4) = {C(a): acA} with respeot to the opsrations -,u,n in 4
restrioted to C(A) is a Boolesan subalgebra of the Boolsan
reduct of A.

Let T = <(X,C> be a QTS. Then T is said to be strongly
compact if (“} (Y;) # ¢ for any indexed family (Y4)5.7 of
non-ampty stgsets of X. From this definition it is seen that
the property of a strong compactness for QTS’s is a quasi-
~topological gensralization of the well-known concepi of the
strong compactness for topological spaces., It turns out that
the subclass of strongly compact TQTS s presents the quasi-
~topological counterpart of the subolass of normal TCA-QTBA “8.
This 18 shown in the next two lemmas and theorem.

Lemma 2.1, If T = <X,C> i8 a strongly compact
IQTS, then the standard TCA-QTF Ap 1s normal and 1t determines
a strongly compact TQTS TAT which is isomorphic to T.

Proof, Let T = <X,C> be a strongly compact TQTS.
Then its standard TCA-QTF Ap = (P(X}),-,u,n,C> i normal, Teo
see that let us consider the set D = {C{Y): Y # #§, YcX}. Note
that this set has the interseetion property (i.e. intersea-~
tions of elements belonging to D are non-empty}. Henoe D ga-
nerates a proper filter which ocan be extended to an ultrafil-
ter UD. A simpls caloulation shows that UD is a normal ultra-
filter. Therefors Ap is a normal TCA-QTF. This algebra deter-

mines in turn a TQTS T, = <X,c¥*>, whers C* is a total Q-alo-
ap

sure defined by (1.3). By virtue of Lemma 1.4, T, 1is iso-
Ly

morphic to T, Sinoe T is a strongly compasot TQTS and isomor-

phisms preserve the property of a sirong compactness for

TQTS ‘s, it follows that T is strongly compact such that

T, *T,

A

p
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Lemma 2.2, Let 4 = <A,-,u,n,CA> be any normal
TCA-QTBA, Then ths standard TQTS TA is strongly compaot and
it determines a normal TCA-QTF Ap ~that is isomorphic to 4.

A

Proof. If A-= <A,-,u,n:CA> is a normal TCA~QTBA,
then there exists a normal ultrafilter Vv in A. This implies
that the set D = {CA(a): a# o0, a eA} possesses the inter-
seotion property, i.e. {:} CA(ai) # 0 for every indexed set

(ai)ieI of non-zero elements of A, Henoce the standard TQTS

T, = <at(4),C>, where C is defined by (1.0) is strongly com=-

pact. Indeed, from the intersection property of the set D it

follows that [ ) ¢({y4}) # ¢ for any indexed set ({yj})ieI
iel

of singletons in At%(A). Consequently, M c(yy) =
iel

= U cyh = kj (‘] c({x(1)}) # ¢ for any indexed
el eri

family (Yi je1 Of non-empty subsets of At(A), where Y= [ Yy
ieI

So, TA is strongly compact. By Lemma 1.5, 4 is isomorphic to
the TCA-QTF Ap = <P(at(a)),-,u,n,C>s Since A is normal and
A

isomorphisms preserve the normality of QTBA’s, it follows
that Ay 1s a normal TCA-QTF that is isomorphic to A.
a

Theorem 2.1 There exists a one-to-one corres-
pondence between normal TCA-QTBA ‘s and strongly compact TQTS “s.

Proof, By Lemmas 2.1 and 2.2.

To establish relational counterparts of normal TCA-QTBA’s
we introduce the concept of an IP-reflexive space., If X =
= (X,R> is & reflexive space, then X will bs called an IP-re-~
flexive space (a space with the interseetion property) pro-

vided that (ﬂ] R(x ) # ¢ for every indexed family (R(xi))iel.
iel
Observe that the standard TCA-QTF 4y = <P(X),-,u,n,Cp> of any

IP-reflexive space X = <X,;R> is normal. In fact, note that the
set D(Ay) = {c(¥): Y # ¥, Y<X} possesses the interseotion

prOperty because [ ) c(yy) = M U R(y) = U m R(ox(1))#¢
jel ieI Jely oeY iel
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16 B, Tembrowskil

for any indexed set (G(Yy))y p in D(4y), where Y =.{:} 1.

This means that‘D(Ax) gensrates a proper filter in A; extend-
able to an ultrafilfer U(D(4y)). A straightforward computa-
tion proves that U(D(Ax)) is a normal ultrafilter in Age Thus
Ay is a normal TCA-QTF. By virtuse of these observations, by
the fact that isomorphisms of reflexive spaces prsserve the
IP-property of reflexive spaces and by Lemma 1.6 we obtain
the following lemma.

Lemnma 263, For every 1FP-reflexive space X the
standard TCA-QTF Ay i1s normal and it determines an IP-refle-
xive spads X, that is isomorphiec to X. '

The next lemma shows that every normal TCA-QTBA is de=
termined by some IP-reflexive spacae.

Lemma 2.4, If A = (A,-,u,n,CA> is a normal
TCA-QTBA, then its standard IP-reflaxive space zA determines

a normal TCA-QTF Ay such that A=Ay . -
T=A I

Proof. Since A is normal, the set D(4) = {C,(e):
a # 0, ach} has the intersection property. Hence, in the
standard reflexive space X, = <At(a), R, > we have,
{:} Ré(yi) = {x eAt(4): x s{Z} CA(yi)} # ¢ for any family
(RA(yi))ieI‘ Therefore X, is an IP-reflexive space. Since an
isomorphic image of any normal QTBA also belongs to the class
of QTBA s, by Lemma 1.7, 4 is isomorphic to the standard nor-

mal TCA-QTF Ay = <P(At(g)),-,u,n,CR > determined by X,.
L A &

The main relationships between normal TCA-QTBA ‘s, strongly
compaot TQTS ‘s and IP-reflexive spaces establishes the follow-
ing theorem.

Theorem 2.2, The classes of normal TCA-QTBA s,
strongly compact TQTS ‘s and IP-reflexive gpaces are in a
ons=to-~-one corrsespondencs,

Proof., By Lemmas 2.3, 2.4 and by Theorem 2.1.

Dual relational counterparts of self-conjugate TCA-QTBA s
are reflexive spaces supplied additionaly with the symmetric
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Quasi-topological Boolean algebra 17

property, The spaces of this sort will be called toleranae
spaces. Ohe can easily show that for every tolerance space
X = (X,R> its standard TCAQTF Ay = <P(X),-,u,n,CR> is self-
-conjugate and it determines in turn a tolerance spage gA

=X

such that §5=ZA « Also one proves that starting with any -
=X

self-conjugate ECA-QTBA 4 = <A,-,u,n,CA> we obtain the tole~
ranoe space gA = <At(§),RA> determining a self-conjugate

TCA-QTF A, = <P(At(A)),=,u,n,Cy, > such that A= 4, . Therefore
X - Ry = TXy

the classes of self-conjugate TCA-QTBA s and tolerance spaces
are in a one~to-one correspondence,

In order to get a quasi-topological reprssentation of
self-conjugate TCA-QTBA s we will distinguish in the class
of TQTS s a new subolsss. Namely any TQTS T = <X,C> will be
called C-symmetric if for every ¥,Z cX the following condi~

tion holds:
(2.3) C(Y)nZ =¢ iff ¢C(2) nY = ¥,

Let T = <X,C> be any C-symmetric TQTS. Then Ap = <P(X),=-,u,n,C>

is a self-conjugate TCA-QTF and its standard TQTS TAT = <X,c™

(see Lemma 1.4) is a C-symmetric TQTS which is isomerphic to
the space T. Moreover to any self-conjugate TCA-QTBA 4 =

= <A,=yuyn,C,> is assigned T, = <at{4),C> which is a C-sym=-
metric TQTS (see Lemma 1.,5) determining the standard self-

-conjugate TCA-QTF Ap = <P{At(A)),=4usn,C> such that A~An .
A A

Putting all these facts together we get the followlng theorem
characterizing self-conjugate TCA-QTBA s in terms of quasi-
~topological and rslationgl spaces,
Theoren 2.3 The classes of self-conjugate
TCA-3TBA ‘s ,tolarance spaces and C~symmetric TQTS s are in
a ohs~{n-pne correspondencea,
Qbserve that TCA-self-dual algebras form a subclass in
he class of all self-conjugate TCA-QTBA s. In faat, lst
4y=,u,n,C> be a TCA-gelf-dual algebra, Then C(sg) < -b

et

>
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18 B, Tembrowslki

implies b <I(=a) for all a,be A, From this C(b) <I(-a) < -a
for every a,b €A, Similarly one proves the second part of
(241). But since every TCA-TBA is a TCA-QTBA, A is a self-
~conjugate TCA-QTBA.

The class of TCA-self-dual algebras is related to total
partitional topologloal spaces. Any total topologlcal space
T = <X,C> is said to be partitional if I(C(Y)) = C(Y) for
every Y cX, One can verify that any total topological space
<{X,C> is partitional iff C(X) = I(X)., Furthermore in every
total partitional topological space T = <X,C> the following
conditions: x e C({y}) 1ff y e C({x}) and C({x}) nC({y}) # ¢
implies C({x}) = C({y}) are satisfied for all x,y ¢ X. Conse~-
quently the family (C({y}))yex is a partition of T. Clearly
every total partitional topological space is a C-symmetrie
TQTS but not conversely. A straightforward caloulation shows
that the standard TCA-QTF Ap = <P(X),=,uyn,C> of a total par-
titional topological space T = <X,C> is a TCA-self-dual alge-
bra, Also every TCA-self-dual algebra 4 = <A,-,u,n,CA> deter-
mines T, = <At(4),C> which is a total partitional topological
gpace, With the help of sasy arguments one shows finally that
the class of TCA-self-dual algebras and total partitional to-
pological spaces are in a one-to~ons correspondenca,.

It turns out that relationgl binary systems oconnected
with TCA-self-dual algebras are equivalantial ones. To see
that, let us suppose that 4 = <A,-,u,n,CA> is any TCA-self-
~-dual algebra. Then X, = <At(§),RA> is a quasi-ordersd set
because C, is idempotent. Prom the faet that x < C{y) iff
y <C(x) holds for all atoms x,y ¢ 45{A) it follows that RA is
symmetric. So, X, is an equivalential relational system, Con-
versely, if X = ZX,R) is any equivalential relational system,
then by the reflsxivity and transitivity of R, Ay =
= <P(X),=yuyn,Cp> 15 a TCA-TBA., In view of the symmetry of R,

CR(IR(Y)) = U{R(y): R(y) _c_Y} = Ip(Y) for every Y ¢ X, Hence
Ay i3 a TCA-self-dumsl algebra, In the light of these results
we may derive the following topological and relational repre-
sentation theorem for TCA-self-dual algebras,
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Theorem 2.3 There exists a one-to-one corres-
pondence bstween TCA~self-dual algebras, total partitional
topological spaces and equivalential relational systems.

Now we proceed to consider the subclass of TCA~H~algebras
and their relational and topological counterparis. Any
TQTS T = <X,C> is called a total H=-topological space if
C{Y) = X whenever Y # ¢ and C(Y) = ¢ otherwise for every Yc X.
For any TCA-H-algebra A = <A,-,u,n,CA) the standard topolo~-
gical spaocs TA = <At(4),C> 1s a total H-topological spaoce,
while fthe standard algebra éT corresponding to a total H=to~-
pological space T = <X,C> is a TCA-H-algebra. On the other
hand, relational objects corresponding to TCA-H-algebras are
universal relational systems, i.e., the systems in which binary
reldtions are universal ones. Using similar reasoning to that
in considered above classes of algebras one may show the
following theorem,

Theorem 2.4. The classes of TCA-H-algebras, to-
tal H=-topological spaces and universal binary relational sy~
stems are in @ one~to-~one correspondsnce,

The class of TCA~-self~-dual algebras is not a subclass of
normal TCA-QTBA “s. The next theorem presents a characteriza-
tion of TCA-fi-algebras by means of relational systems as well
as points out that normal TCA-self-dual algebras coincide with
the subolass of TCA~H~algebras,

Theorem 2,50 Let X =<X,R> be a reflexive space
and let Ay = <P(X),=yuyn,Cp> be its standard TCA-QTF., Then
tha following conditions are equivalent:

(1) X is an universal relational system,
(ii) AX is a normal TCA-sslf-dual algebra,
(1ii) Ay is a TCA-H-algebra,

Proof. In view of Theorems 2.2 and 2.4, the con-
dition (i) implies (1i). If (ii) is satisfied, then there
exists a normal ultrafilter V in Ay. Hence, C(Y)ev iff
I(C(Y)) eV iff C(Y) = X whensver Y is any nonempty subset
of X, In the case that Y = ¢, we get obviously C(Y) = #.

X
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20 B, Tembrowski

Thersfore Ay is a TCA-H-algebra. The implication (iii) = (1)
is true by Theorem 2,4.

Applying Theorems 2.2, 2.4 once again and performing easy
calculations one obtains the dual topological characteriza-
tion of the subclass of normal TCA-self-dual algebras. This
is shown in the following theorem,

Theorenmnmn 2.5 Let T = <X,C> be a TQTS and let
Ap = {P(X),~4uyn,C> be its standard algebra, Then the follow-
ing conditions are equivalent:

(1) T is a total H-topological spacs,
(ii) Ap 1s a normal TCA-self-dual algebra,
(1i1) Ap is a TCA-H-~algebra.

Observe that TCA-self-dual algebras are those TCA-self-
-oconjugate QTBA s in which Q-closure operators become usual
topological ones, In fact, if A = <A,-,u,n,CA> is a TCA=-self-
-conjugate QTBA in which C, is idempotent, then CA(CA(a))n -
- CA(a) = 0 for all ae 4, Using formula (2.1), we get CA(a)n
n CA(-CA(a)) = 0 for every ae A. Therefore 4 is a TCA-self~-
~dual algebra, From this result and from Theorem 2.3 we infer
that any C-gsymmetric TQTS T = <X,C> is a total partitional
topological space iff the opsrator C is idempotent,

A reflexive space X = <X,R> is said to be trivial if R
is the identity relation on X, i.e, x Ry iff x = y for every
X,y € Xe Any TQTS T = <X,C> 18 reterred to as disorete provided
that C(Y) = Y for all subsets Y cX. Any QTBA in which all ele-
ments are Q-cleosed will be regarded as a Boolean algebra,

Easy observations show that any TCA-QTBA A is a complete ato-
mio Boolsan algebra iff X, is trivial iff T, is disorete.

Now we will show that normal TCA-QTBA'B: strongly compaot
TQTS ‘s and IP-reflexive spaces can be obtained construotively
in a simple way from TCA-QTBA s, TQTS’s and reflexive spaces,
respectively.

Let A = <4,~,u,n;C> be any TCA-QTBA and let 2 =
=‘({O,1},-,u,r\> be a two-element Boolean algebra, Defining
on the Cartesian product 4* = 4 x {0,1} the Boolean operations
componentwise and a unary operation C¥* by the formula:
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(C(a)y1) 1if (a,x) # (0,0)
c*(a,x) =
(0,0) if (a,x) = (0,0)

for all (a,x) ¢ A®, we get a TCA-QTBA A* =<4 ,-,u,n,C™>. One
mey verify that A* is a normal TCA-QTBA. This algebra will
be called an algebraic normal product of the algebra A.

To construot a strongly compaect TQTS, let us take any
TQTS T = <X,C>. Furthermore, let Xx(1) = Xu{x,}, where x, ¢ X.

Next let us define on X(1) a Q-closure opsration 0(1) by the
formula 0(1)(Y) = C(Y)L){x1} for every non-empty subset Y
of X1 and 0(1)(¢) = ¢. Then (1) (x(1),c(1)> is a strongly
compaot TQTS. In fact, if (Yi)ieI‘is any indexed family of
non-empty subsets of X(1), then M C(1)(Yi) =M c(x;)v
eI iel

U {x1} # ¥, The spaca pl1) will be called a ohe~point compac-
tification of the TQTS T.

Finally let X = <X,R> be a given reflexive space, On the
set X(1) = XlJ{X1}, where X4 ¢ X we define a new relation R(1)

such that R(1) = RxJ{(x1.y): y e X(1)}. Clearly R(1) is re~

flexive. Henos, £(1) = <X(1),R(1)> is a reflexive space.

Since M R(1)(zv) = {P\ R(z;)u{x,} # ¢# for any indexed fa~-
ieI S PS S 1

mily (R(1)(zi))i€1, 1t follows that X'1) is an IP-reflexive

space. This gpace will bs called a one-pcint IP-closure of X,

With each TQTS T = <X,C> we may assoclate two normal
TCA-QTBA s of the form Ay and Ap(1). The first one is the
algebralc normal product of the standard algebrs Ap of T,
while the second onhe is obtalned as the standard algebra of
the one-point compactification T(1) of the space T. Both these
algebras are normal and have besn constructed from the same
TQTS T. The connections betwesen them establishes the follow=-
ing theorem.

Theorem 2,6, Let T = <X,C> be a TQTS. Then

* o~
éT - AT(“).
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Proof. IfT=<(XC>is a given TQTS, then Ay =
= ¢(P(X)*,~,u,n,C*> 18 the algebraic normal product of the
standard algebra Ay of T, where

(C(Y)11) if (I") “ (¢g0)

c*(ng) ={
(¢,0) ir (1,w) = (¢,0)

for all (Y,w)e P(X)*. On the other hand, for T one can con-
struct a strongly compact TQTE T(1) which is a one-point
strong compactification of T, By Theorem 2.1, Ap(1) =

= <p(x{1)),=,0,n,6(1)> 15 a normal TcaqTF, where c{1)(y) =
= C(Y)u {11} for svery non-empty subset Y of X 1) and

0(1)((6) = . It 1s easy to check that the funotion g: P(X)*»
—- P(x(”) defined by g(Y,w) = Yu £(w) for every (Y,w)e P(X)*
is an isomorphism from 4; onto An(1), where f 1is a Boolean
isomorphism from 2 onto the two-element field P({x,}) such
that £(0) = ¢ and £(1) = {x,}.

Now let us start with a given reflexive space X = <X,Rr>.
Then we can also constrnet two normal TCA~QTBA s of the form
A; and 51(1) by applying the algebraic normal produoct and
one-point IP-closure of X, respectively. Indeed, Ay =
= <P(X)*,-,u,n,C§> is the normal algebralec product of the

standard algebra Ay of X, where CE(Y,W) = (CR(Y),1) whenever
(Y,w) # (¢#,0) and CE(Y,w) = (¢#,0) whenever (Y,w) = (#,0) for
every (Y,w) ¢ P(X)¥. Clearly, az(1) = <P(X(1)),-.U,O.CR(1)> is

the standard algebra of the one-point IP-closurs J_I(” of X,

whers CR(1) (Y) = UY R(”(y) for every st(”. A similar
€

calculation to that in the above thesorem shows that 5;=AX(1).
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