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Introduction
In 1929 W.A., Ambarzumian published ths followling
Theorem 4 ([1]). If the sequance of eigenvalues

of the problem

(1) =" +9y =4y, y'(0) =3'(7w) = 0, qecC{[O,xn])

is identical with the seguence of eigenvaluss of the problem
(2) ~y" = Ay, 7°(0) = y'(x) = 0,

then g(x) = 0 for xe [0,n], that is to say the problems (1)
and (2) are identioal.

This theorem originated the so~called inverse spectral
problem of +the Sturm-ILiouville type. This problem mainly con-
sists in determining the dependence of the considering prob-
lem on the set of its eigenvalues. At present, thie problem
has the extensive bibliography concerning the differential
operators,

Immediate gemeralization of Ambarzumian’s theorem have
been done by N. Kuznecov in paper [9] in 1962, In this paper
Kuznecov considered the eigenvalue problea for the following
equation

(3) -Au + qu = Au, ge C(Q)
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with boundary condition

[«

(4) dn = 0 on 39,

where Q is a bounded domain in 0 or R3, with sufficiently
smooth boundary 3Q. In paper [9] Kuznecov proved the following
00
Theorem K. If 1° 35 (A, -p,) is convergent

ne=1
where {ﬂn} denctes the sequence of eigsnvalues of problem

(3), (4) and {Pn} denotes the sequence of eigenvalues of this
problem with q = 0 in @,
2° 4, = p,, then g = 0 in Q,

The next generalizations of Ambarzumian’s theorem are con-
tained in author’s papers [2], [3], [5] and [6]. These genera-
lizations go in three direoctions. First - gensralization of
the Kuznecov’s result by reduction of the assumptions in
Theorem K, in particular the assumption 1°. In paper [6] the

-]

assumption 1° of Theorem K is replaced by ">_ % |ﬁn - Pnl is
n=1

convergent ...". Second -~ replacement ths space R2 or R3 in
Theorem K by the space R" for any meN (see [2] and [3]).
Third - replacement the Neumann boundary condition by the
third kind boundary condition [2] and the Laplace’s opera-
tor A in equation (3) by any elliptio opesrator of second order
with constant coefficlents (see [3] and [6]).

The other direction of generalization of Theorem K lies
in replacemsnt the equation of second order by the sguation

of higher order. In author’s paper [5] is considered equation
(1% 3028 L gy =23 1n (a,b), m>»1,

with boundary conditions

a1y(29)(a) _ °(23’(2%1)(&) -0, ﬁ1y(29)(b) + 523(2o+1)(b, =0,

where 7 = O,1,e00,0~1, Uy Oy ﬂ1, 62 are nonnegative con-

stants fulfilling the condition (o3+o2)(p3+p3)> 0.
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S. Postawa in paper [11] transfers author’s results tc
the following problem

5°u + qu=Au in QcR®

=0 ana 9088 _ ¢ on sq,

[2 3=
5l

The farthest generalizations of Theorem K, and thus the
author?’s results, is contained in Pielichowski’s paper [10].
The results of this paper conocern the selfadjoint elliptic
differential operator of order 2m with constant coefficients.

Quite other direction of generalizations of Ambarzumian’s
theorem is originated in author’s paper [4]. In this paper are
given some sufficient conditions concern the only first eigen-
valus of problem (3), (4) in order the funotion q = 0 in Q.

The purposs of this paper is the further generalization
of the results df paper [4].

1. Let H be a real Hilbert space and let L be & linear
self-adjoint operator defined in DL dense in H., We assume
that L is bounded bellow in DL’ such that L"‘1 exists and L-1
is a compact operator on H, Let V ¢: H —» H be a linear symme~-
tric and bounded operator. We shall consider the linear eigen-
value problem with a parameter

(5) (L =t V)u = Au,

where A eR is the eigenvalue parameter and t ¢R is a parame=-
ter,.
In the sequel we shall need the following result
Theorem 1, For eveary te¢R the problem {(5) has
the first eigenvalue 21 = 21(t) suoch that the function
t —» 11(t) is continuous for t e¢R and it is differentiable
for t ¢ R except at most countably many points and

(6) A(t) = ~(Vag,u,),

where ug, is an eigenvector of problem (5) associated with the
eigenvalue 21(t), normalized by "ut" = 1,
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The proof of Theorem 1, in reality, is identical with the
proofs of Lemmata 4 and 5 of paper [7], and is omitted.

In this paper [7], we have proved also that the function
t —» Xa(t) is a decreasing for teR (of. [7], Corollary 1).
From this follows there exists at most one point i, eR such
that

(7) A’1(t -0)20 and A3(%, + 0) <0,

8]

unless 21(t) = 0 in some interval of R, i.6. 21(t) = const,
in this inferwval.

By (7) and by continuity the function t —» 21(t), we have
the following

Corollary 1. If the funotion t —» 11(t) is
not constant in any interval of R, then it cannot attain a
minimum and it can attain his meximum at most in one point
toe Re

We shall prove the following

Theorem 2. If the funoction t —» 11(t) is con-
stant in some interval (o,B) c R, then it is constant in the
whole R, It is possible if and only if N°<:KerV, where No de~-
notes the eigenspace of the operator L corresponding to first
eigenvalue 21(0).

Proof, By assumption 11(a) = 11(6) and Z;(a) =
= Z;(B) = 0. Prom this by (6) we get (Vu,,u,) = (Vuﬁ,uﬁ) = 0.
Using the variational definition of eigenvalues of problem
(5), we have (c¢f. for ex. [8])

Ayle) = min{(Lesg) - «(Ve,e) + geDy, [lo] = 1} = (Lugeuy)
and
A4(p) = min{(Lep.¢) - B(Vesq) 3 9D,y || = 1} = (Lug,up).

Since 11(a) = 11(ﬁ) then (Lu,u ) = (Luﬂ,uﬁ). This follows
that u eNq and uquB, where ch and N, denote the eigenspaces
of the operators L - oV and L - BV corresponding to eigenva-
lues 21(q) and 1,(p), respectively. From this we get
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(L - aV)ua
(L - pViuy = A4 (x)ug,
therefore (a-[S)Vuo( = 0, Since o # B then

Ay (ex)ug,

(8) qu = 0,
From (8) we get that for every teR
(9) (L - tViug = A (adu .

The equality (9) denotes that 21(0() is an eigenvalue of prob=-
lem (5) which corresponds the eigenveotor u,. For te[o,p]

7&1 (o) is the first eigenvalus of problem (5), by definition.

We shall prove that 2.1(or) 1s the first eigenvalue of problem

(5) for every t eR.

Suppose that €> 0 is any number. Let 511(f5+e) <Aqle),
Sincse t*}l.l(t) is continuous for teR, then 21([5+e) ->711 ()
if € N0, On the other hand 21 {x) is isolated eigenvalue of
L -a«V. We arrive a contradiction. This contradiotion proves
that the first eigenvalue of problem (5) is constant and
}11(t) = ﬂ1(o() for every t ¢ R. In particular 21(0) = 7L1(a)
and every u,e No’ leee N, cl\Io and vice versa NOCNO( or N°=N°(.
From this and from (8) we have

(10) N, < KerV.,

Conversely, if (10) holds then each vector u, e N, satisfies
the equation (5) for 4 = 2.1(0) and teR, i.e. for any teR
?u1(t) = 21(0). The proof is complete,

Corollary 2, If (KerV)aN_ = {0} or, in par-
ticular, KerV = {0}, then the function t —» 2,(t) is not con-
stant in any interval of R, i.e. the assumption of Corollary 1
is gatisfied.

2+ In this section we shall formulate and prove some al-
ternatives of the Ambarzumian’s theorem.
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Theorem 3. If (KexrV)n¥ = {0} and the opera-
tors L and V satisfy the assumptions of Introduotion and if
there exist real numbers t1,t2,t3£:R, ty ¥ t, # t3 such that

(11) R-.‘(t-l) = 21(1;2) = 11(t3),

then the operator V = 0,

Proof. By Corollary 2, from assumptions of Theo-
rem 3, follows that the funotion t —» 11(t) is not constant
in any interval of R. From this, by Corollary 1, this function
oannot attain a minimum in R. Therefore this fact and conti~
nuity the function t —» 21(t), contradicts equality (11).
Theorem 3 1s proved.

Theorem 3 may be formulated in the following form

Theorem 3a. If the operators L and V satiafy
the assumptions of Introduction, (KerV) nNo = {O} and 1if {he
firset eigenvalues of the problems

Lu=24y, (L +V)u=A4an, (L ~V)u= 2Au

are equal, then ¥ is the null operator on H,

Theorenm 4. Under assumptions e¢f the Theorem 3a,
if the oparator V is non negative or non positive on H, i.s.
for every xe¢H (Vx,x) >0 or (Vx,x) <0, and if the first eigen-
values of the problems

(12) Lu=2u, (L -V)u-= 2u

are equal, then V is the null operator on H.

Proof. From the assumption that V is non positive
or non negative operator and from (6) follows that t —*»ﬂ1(t)
ie the monotonic funotion, Here Xj(t) is the first eigenvalus
of problem (5) for fixed t € R. On the cother hand the first
eigenvalues of problems (12) may be written as 21(0) and
A1(1), respectively. The monotonicity of the funotion

t —» 11(t) and the assumption A,(0) = A,(1) follow that
21(t) = const, in R, By Theorem 3, it is possible if and only
if the operator V is the null operator on H.
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Remark 1. Theorems 3 and 4 are Jjust the new ver-
sions of Kuznecov?s or Ambarzumian®s theorems and of the re-
sults of papers [2], [3], [5], [10], and [11]. The difference
lies in that the assumptiions of Theorems 3 and 4 concern the
first elgenvalues of comsiderating problems, whereas the
assumptions of previous theorems involve the whole sequences
of eigenvalues of these problems,

Remark 26 In Theorems 3 and 4 L and V are arbi-
trary operators in Hilbert space satisfying the assumptions
of Introduction, whereas in previous theorems L is a special
differentigl operator and V is a multiplication operater in-
duced by a funotion q.

Remark 3e Similar results to this papsr are
obtained in author’s paper [4] for the special differential
operator in bounded domain Q cR™ and V the multiplication
operator induced by a function qe C(Q).

Remark 4, In the case when L is a differential-
opsrator satisfying the assumptions of Introduction and V 1is
a multiplication operator induced by a function q, the assump-
tion (KerV)rwNo = {O} is satisfied automatically, unless
q = 0.

3s In this section we shall consider two following prob-
lems

(13) Iv = uv
and
(14) (L + Wu = »n,

where L is the operator defined in Introduction and W is

a linear selfadjoint and bounded operator on H., Let us denote
by p, and v, the first eigenvalues of probdlems (13) and (14),
respectively. Let us put

(15) e := inf{(Wx,x) t'XeH, x| = 1},

We have the following
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Theorem 5, The first eigenvalue 3 of problem
(14) satisfies the inequality

(16) By + 0§V < g + W,

and Vg = pg tCOF Vo=, + ||W]l 4f and only if W is the mul-
tiplication operator induced by o or [ Wi, respectively.

Proof. ' The inequality (16) immediatelly follows
from variational definition of eigenvalues of problem (5),
Suppose that V9 = Hq + 0 where o 4is defined by (15). Let
us observe that (14) may be written in the form

(17) (L =-(c =W]u=(v=-clne

Prbblem (17) is the problem (5) with V= o - W, A = v - @
and t < 1, whereas the problem (13) is it with t = 0., By de-
finition the number o, the operator V = ¢ -~ W 18 non positive
on H, On the other hand, by assumption, 9, - 0 = 4,(1) =
=Yy = 11(0). From this, by Theorem 4, we get V= 0 - W = O,
i.6 W= 0o

If 9 = pg + IWll, the proof is analogous., Theorem 5 is
proved,
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