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SUR UNE FAMILLE DE FONCTIONS UNIVALENTES ET BORNEES

Soit S, (a) un espace des fonctions £ holomerphes et uni-
valentes dans la cerole unite U = {zz 2] < 1}, ayant le deva-
loppment £(z) = b,z + b, 22 4+ seey Bysboyene ¢C, ot telles qus
a¢ £(U), |al <1, a fixo', £(U) c U. Cet espace est évidemmant
normale et il devient compact, sl 1’on y ajoute la fonction
identiquement nulls.

Denotons par H(U) un espace de toutes les fonctions holo-
morphes dans U. Soient fe S.l(a), ¢ une fonction holomorphe et
univalente dans U, ¢(0) = 0 et ¢(U) cU; alors on a t, =
=feogeS, (a).

Nous appelons une veriation d?une fonotion f dans S (a)
toute famille = {f(z,¢) 1 ec€}, J=1,2,3, des fonc -
ions £(z,e) €5, (a) avee &, ={e:e’e K(0,0)}, €, ={e: -n<e<n},

€y ={e: 0<5<Q} n>0, el les limites 1im f(z,e) = £(2,0) =
Edse*o

= £(z), lim f(z,e)e- £(z) h{z), heH(U), existent au sens
Ejse-o

de la convergence presqus uniforme dans U,
Nous obtenons la plus simple variation de la fonotion
fes1(a), on mettant ¢(z,e) = eiez. Eec 82, ce qui donne

(1) £(z,e) = £(el€z) = £(z) + e1 2 £'(%) + ole),

ot ole)e™! —» 0, 81 €& —» 0, presque uniformément dans U.
En mettant ensulte ¢(z) = Kg(z), oUW = Kg(z) est une
telle branche de la fonction implicite
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w z
—— 35 5 = (1 - €¢) — 55— £eé
o1%)2 (1 - 6%%2)2 " 3

(4 =

qui s?annule aun point z = 0, nous obtenons la variation

0
(2) fglz,e) = £(Kg(z)) = £(2) - €z £'(3) :’:—:ief +ofe).
Notre but est de trouver une variation dans S1(a) plus
riche que (2), notamment celle du type de Schiffer. Faisons
d’abord un tel changement de la frontiere 3f(U), qu’elle de-
vient celle d’un domaine situe dans le cercle U auguel le
point a n’appartient pas. Solt w e U ot w,¢ 9f(U). Posons

-8
W =¥ 1 w

- 1 +ww
(w-a)(1-aw)(io<"+wo ia )
$(w) = = e ——————)
ou o 68t re'el, quellconque. Remarquons que la fonction J(w)
est holomorphe dans un entourage de la frontiere 3f(U) et que

(3) Re &(w) = 0 pour w ¢ 3U,

Soit ensuite

w*(w) = wexp {ed(w)} = w +ew §(w) + ofe),

ou €e¢ 82. Cette fonction est aussi holomorphe dans un entoura-
ge de 3f(U) et, en vertu de (3), |w*(w)] = 1 pour we3U. Elle
est univalente dans un entourage da 3f(U) pour € suffisamment
proche de zero (i.e. pour n suffisamment petit); en ountre,
w¥(3f(U)) cU. Puisque w*(a) = a, on a aew*(3£(U)), si
acdf(U) et a¢w*(9£(U)), 8i a ¢ £(U) pour |e| suffisamment
petit. Par conseéquent, on peut traiter w*(3f£(U)) comme une
frontiere d’un domaine simplement connexe D* tel que D¥*c U,
0eD* a¢D™

Soit £* une fonction qui transforme d’une maniere con-
forme U sur D* et vérifie la condition £*(0) = 0. La fonotion
£* appartient, bien sir, a S,(a). Cherchons sa forme., Suppo-
sons d*abord, que w_¢ f(U). D*apras le theorame de Golousin
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[2]. pe 99, on doit chercher la partis principale S(z) du de=-
veloppement en serie de Laurent de la fonction

(4) 22l a(2(2)) =

HM)-MU-aqu(iaﬂ“+w _m1+nfuw

- 6 R
2 £7{z] 2l =% 1-w, f(z)

dans la couronne {z: 0<|z|<1}. Le premier membrs de (4)
3 est holomorphe. Un saul point singulier de (4), etant un
pole du premier ordre, 6st z = O. Donc

s(z) =—£f—?('o—) (eiO( + e-iq),
et la fonction cherohée £* a la forme
f(z) +w

£(z) + e[(f(Z)' a)(1-a f(z))<°id flz) ~w, *

o 1t W T(2) Jo | -do
-8 jl-—-.—';-"—;(ﬁz*— - £ (2) f‘f’( 4+ 8 )

(5) £*(z)

+

2 £'(2) ( f7%67) (1% + e'ia)} + ole).

+

Elle correspond a la variation exteriewre de Schiffer
et nous 1’utiliserons pour obtenir une proprieté importante
des domaines extremales. Nous allons obtenir de la meme wma-
nisre une varietion interieure de Schiffer, Dans ce but,
supposons que W, ¢ f(U). Il existe donc un tel pasint s, ¢l
gue f{z ) = w . En utilisant de nouveau le théoreme de Golou~
sin {2], nous casloulons la partie princ{iale du deéveloppment
en serie de Laurent de la fonotion E_%L%zf ${r({z}} dans la

couronne {z: r<|z}{ <1}, o T est autant proche de 1 pour
gque la fonotion ®(f(2)) y soit holomorphe. C’est pourguoi
on a
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2(2(s,) - al(1 - a £(x ))f(s,) S 1

S =
(z) . f’z(zo) i -1, +
+ ;—?9r67 (eia + o'ia),
et la fonction cherchés £* a la forme
(6) £*(z) = £(z) + €[(£(z) ~ a)(1 - & £(2z)) x
f(z) + £(z) 1+ f(z.) £(2)
fo = 9 _ g-ix o -
(e t(z) - £ zo) ° 1 - f(zo) f(z))
£(z )(£{z ) - a)(1 -a flz.)) z + 2
‘ ix o 0 0 o]
-2 f -
2z £'(z) (e z§ f’2(z°) 2 -z,
T £z ){f(z,) - a)(1 - a £(z,)) 1 + 2,z )+
zg f'a(zo) 1-2,2
+2z £ (2) (eia f(z°)(f(z°; -,:)(1 - 8 #(z,) -
zZg f (zo)
f(z_)(f(z_)-a)(1-a £
- e-iO( (ZO)( (zo) a)(1 2 (50” ) - fI(Z) f'(O) (910( + O-ia) +

=2 o2
zg f (zo)

+ 22 £'(z) (fT%UT) (1% + ™% & o(e).

Supposons maintenant que Y(f) est une fonotionnslle com~-
plexs continue, definie au moins sur S1(a)u{fo},oh £, = 0.
D’apres la continuité de Y(f) et la compacité de 1l’ensemble
S1(a)u{f°},il y existe une fonction pour laguelle la fonctio-
nnelle Re ¥(f) atteint sa valeur maximale (minimala).

A préaent nous allons examiner des propriétés des fonc-
tions extrémales a l’aide des formules variationnelles (1),
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(2), (5), (6)s Soit Re ¥(f) = max Re ¥(f¥*) et soit

»*

£ es1(a)u{fo} .
b4 fo' Supposons, en outre, que la fonoctionnells ¥ possede
au point f 1la derivee complexe au sens de Gateaux, c’est-a-
-dire qu’il existe une fonctionnelle complexe L, linéaire et
continue dans l'espace H(U) telle que pour chague variation
F. et pour toute fonction f£™¢ ?j, (3 = 2 ou bien j = 3) tel
que £*(z) = £(z,e) = £(z) + €h(z) + o(e), la relation

(7) Re ¥(£*) = Re ¥(f) + ¢Re L{h) + ofe)

a8t satisfaite, Pour j = 2 il s’ensuit de (7), et du fait que
Re ¥ atteint sa valeur maximale au point f, 1’égalite

(8) Re L(h) = 0}
pour j = 3, nous n’avons que 1l’indgalite
(9) Re L(h) < 0.

Si f est une tells fonction que Re Y(f) = min Re ¥(f )
*
. ) X f eS1(a)u{f°}
at T # £,y l’egalite (8) est de meme remplie, mails au lien de
(9} nous avons

(97) Re L(h) > 0.

Il est facile & remarquer que l’application de la varia-
tion (1) et de 1'egalite (8) nous donne la condition nécessai-
re pour la fonoction f (extremale pour la fonctionnelle Re ¥),
sous la forme

{10) ' Im L(z £'(2)) = 0,

En appliquant, par contre, la variation (2) et 1’indgalite
(9) on obtient facilement 1*inégalité suivante

(11) Re L(z £'(z) }‘:—2%);0, pour tout ¢ € U,
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etant la condition nécessairs pour la fonotion f qui réalise
maximum de la fonetionnells Re V¥,

Theoreme., Si f est une fonction de la classe
5, (a) qui réalise l’extremum de la fonctionnelle Re ¥, ou ¥
ost une fonctionnelle complexe, définie aun moins sur S, (a)
et ayant au point f une derivée complexe au sens de Gatoaux,
alora

1° la fonotion w = f£($) satisfait a 1'6quation

12
(12) m e [u((t(e) - a)(1 - @ £(2)) T2,

- wiw - a)(1 - a w)

+ fT%aJ £'(z) - r’?o 22 £{z)) +

S

« (1(t2(z) - ad(1 - & £(2) :+—1{_§:_; + gia7 £ (2) -

L-IRE

-—8_ g2 f'(z)))-} =-%§-[L(z £’ (z) %{E—%—)+

(o e 2T

1 - (2

dans le ocercle QG le second membre de (12) est nonnegatif sur
39U en cas de maximum et nonpositif en cas de minimom;
2° 1a fonotion f se prolonge d’une manisre continue sur
le cercle ferme ﬁ, et meme d’une maniare holomorphe, excepte
tont au plus un nombre fini des points situds sur la ocircon-
férence 39U qui sont de points oritiques algébriques pour f£;
3° i

(13)  P(w) = L((£(z) - a)(1 - & £(z)) X025 ) +

N _ 1 +w f(z2)
+ (L((£(2) - a)(1 - & 2(s)) Tl ))
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e8t une fonotion analytiqua dans le cerole U, pas constante,
et ne possédant que de points singnliers isolés, alors l'en-
semble U \f(U) n’a pas de points intérieurs; o’est pourquoi,
en vertu de 2°. il se ocompose d?un nombre fini d?arcs analy-
tiques, dont au mois un sort de la circonference 3U;

4° si, en outre, a n'est pas un zero de la fonction entre
les orochets du premier membre de l'eéquation (12), alors a
présente un extremite "libre" d’un arc de 3f(U), (i.e. le
point a n*est pas en meme temps le commencement d’un autre
aro de 3f(U)),

Démonstration. 4d 1°% Bn appliquant (6)
avec z = § et (8) et tenant compte que o est afbitraire,
nous obtenons tout de suite l’égalite (12) satisfaite par la
fonction sxtremale pour tout { ¢ U, Nous déduisons de la re-
présentation genérals de la fonctionnelle lineéaire et continue
dans 1’espace H(U) que le second membre de {12) est une fono~
tion holomorphe dans un certain entourage de la oiroonférsnee
38U et, en vertu de (11), elle est nonnegative en cas de maxi-
mum (nonpositive en cas de minimum),

Ad 2°, Cette these résulte du fait que la fonction extre-
male satisfait a l’equation (12) qui a des proprietés presen-
tées dans 1°.

ad 3% Si 1’ensemble U\ £f(U) possédait des points intérie-
urs, il existerait un cercle K cU\f(U)., D’aprés (5) avee
w, € K et (8) et compte tenu que « est arbitraire, nous obte-
nons F(w) = const, contre l’hypothess.

4d 4°. Dans os cas a doit appartenir a 3f(U), dona, en
vertu de 2°, il existe un tel n, Inl =1, qus £(n) = a. On
peur remarqguer facilement que, si a n’est pas un zéro de la
fonction entre crochsts au premier membre de (12}, il doit
etre £'(D) = 0, ce qui justifie la thase 4°,

Remargque, Observons que la frontiere 9f(U) est
contenus dans l’ansemble des trajectoires de la differentielle
oarrée

2

P(w) aw®,

w(iw - a)(1 - a w)
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ou P(w) désigne la fonction entre crochets au premier membre
de (12). Pour examiner des proprietés de 9f(U) on peut appli~
quer dono des proprietés des trajectoires (loocales at globa-
les).

Exemple. Soity(f) =b,, Il est evident que
L(f) = b1. Prenons 0<a<1i, puisque on peut toujours transfor-
mer S,(a) sur S,(lal), ayant e~ larg a fes,(lal) pour feS,(a)
ot, inversement, o18TE 8 ¢ S,(a) pour fe S (tal). Cette trans-
formgtion ne change pas de la valeur absolue du ooeffioient b1,
done la borne superisure de Re b, reste la méme pour S,(a) st
S1(Ia|). Remarquons ensuite que la fonctionnells Re b, atteint
son maximum pour certaine fonotion fe'S1(a), parce qu'il est
avident que la fonction fo = 0 ne réalise pas ce maximum. Il
découle tout de sulte de (10) que Im by = 0 et, d*apras (11),
qus Re b, > 0. Finalement, nous &vons b,> 0. I1 est facile a
Verifler que la condition 3 est remplie, En effet, la fono-
tion F(w) = 2b1<(1 + a ) w - 28 w) est méromorphe et pas
copbstante., Dans ce cas l'équation (12} prendrs la forme

.2

2 g 2l =2
(14) wz(w - :)(1 S [(1 + a° + 2ab,;” Re bz}w-—a-aw ]-§ .

Rous démontrons d’abord que a doit 8tre llextrémiis "libre®
d*un arc de 2f(U), c’est-a-dire qu*au point de 3U correspon-
dent a & la dérivee s’annula. Supposons gue ce ne eoit pas
vral. Alors a dovrait etre racine de l’sxpression entre oro-
chets au premier membre de (14); mais dans oe cas la solution
unique w = £{¢) de (14), satisfalsant & la condition initiale
(¢} = 0, est la fonotion £{{) = o, et a doit Stre situd sur
la frontiere 3f(U) dobe lc¢] = |af <1, 4insi 1’ensemble U \ £(U}
surait de points interieurs, ce qui est impossible., Remarquons
de plus qus la frontiere 3f(U) appartisnt a 1’ensemble des tra-
jectoires de 1a différentielle carres

(1 + al + 2ab;2 Re by) w - a - aw

dwz,

w2(w - a)l1 - a w}
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d’ou il s’ensuit, et des consideratlons précédentes, que cette
frontisre se compose de la oireonférence 3U et du segment de
1’axe reel [a,1]. La fonction fy qui transforme le cercle U
sur un domaine avec une telle frontisre et verifis les ocondi-
tions £(0) = 0, £/(0)> 0,a8t définie par 1l’équation

f(z) - 4a z .
(1 + f(z))2 (1 + a)2 (1 + 2)2

(15)

Ainsl nous avons obtenu l’estimation exacte de Re b1 et, & la
méme fois, de |b,| dans S,(a), ou 0<a<1, notamment

by | s —42— .
(1 + a)
Pour a arbitraire, |al <1, en vertu de la correspondence bi-
univogque entre les fonctions des espaces S1(a) et S1(|a]),
nous constatons: pour toute fonotions fe S1(a) on a 1'inéga-

1lite

4la]

(157) bi| s ———=
I®4l (1 + [al)?

qui est relisée par la fonction

(16) f(z) - 4| a|
(1 + f(z) e-iarg 3)2 {1 + [al)2 (1 +z e

Z
~iarg a)2 b

ou bien autrement: pour toute fonction fe S,, ou S, denote

l%espacs des fonotions univalentes bornées et telles que

£(0) = 0, £(U) cU, et pour tout a¢ £(U) 1'inegalite (15’) est

verifiee, la fonction (16) etant celle qul y réalise 1’egalite.
Ce résultat a éte obtenu par Ds Temple dans [1].
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