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ON WAZEWSKI'S METHOD OF SUCCESSIVE APPROXIMATIONS
FOR CERTAIN BOUNDARY VALUE PROBLEMS

1. Introduction
We consider the boundary value problem (BVP) of the form

(1) x(n) = f(t,x,x(1),...,x(n-1)),

(2) x(q)(ai) = Ci, i = 1,.on,k’ q = 0,1,ooo,qi-1’

k
where a <@, <... <ay<b, 2<ckgn, iZ: 9y = n, fe c(IxR®,R),
=1

I = [a,b] and C; are given oonstants., For the special forms

of (1), (2), a great variety of eximtence and uniguensess theo~-
rems have been proved by many authors in diverse ways [1]-[18].
The objeot of this paper is to present a unified approach

for treating the existence, uniqueness, error estimation and
stability of the solutions of (1), (2) by reducing it into an
equivalent integral equation and by using the general method
of successive approximations based on the idea of Wazewski
[18] (see, also [7], [10]). An interesting feature of our
approach to the prodlem is that the proofs of our maln results
are muc.. simpler and can be extended to the different typss

of boundary value problems treated before by using various
methods (see [1]-[3], [12], [13], [15], [16]).
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2 B,Ge. Pachpatte

2. Statement of results
We say that x 1is a solution of (1), (2) if x ec(n)(I,R)
and satisflies (1), (2) on I, The set of all such solutions
will be denoted by C*(I). For x ¢ C*(I), the equation x(n)(t) =
= y(t) with boundary oconditions (2) is equivalent to the in-
tegral equation (ses [15], p.538)
b

(3) x(t) = w(t) + 5 G(t,s)y(s)ds,
a

where w(t) is the unique solution of the problem x(n)(t) = 0,
(2) and G(t,s8) is the Green function of this problem. By (3),
we obtain

b
(4) x(j)(t) = w(j)(t) + § 923 G(t,s)y(slds, J = 1,e00,n0~1,
a at
From (1), (3), (4) we see that the function y fulfils the
equation

b
(5) 3(e)=2(s,mix)+ [ 6(s,m03(mramw Vie)s [ & clnmipelss,...
a a

-1

b
n
...,w(n'1)(t) + j 2tn'1 G(t,s)y(s)ds) .
a

Conversely, if y e C(I,R) fulfils (5), then x e C*(I) defined
by (3) is a solution of (1), (2). By substituting in (5)

F(t,ro,r1,...,rn_1) 1=
:= f(t,w(t)+-ro,w(1)(t)+ r1,...,w(n'1)(t) + rn_1),

we get an integral squation of the form
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On Wazewski s method 3

b b
(6) gy(t) = F<?, j G(t,s)y(a)ds, j g% G(t,8)3(8)dB a0
a a

b
ph=1 ‘
seey 5 'a_tﬁ G(t.s)y(s)ds) = T‘y(t)
a

equivalent to (1), (2).
We make the following hypotheses used throughout this
paper,

(A1) There exists a continuous function gzIfo —R = [0,00)
nondecreasing with respect to the last n variables
and such that g(t,0,0,...,0) = 0.

(A2) For (t,ro,r1,...,rn_1), (t,fc,f1,...,fn_1) e IxR® there is
|F(t,r°,r1,...,rn_1) - F(t,f°,§1,...,fn_1)| <
<8ty | T || TPy seens [Ty =Fpq|)e
(AB) There exists a continuous function n:I —» R, satisfying

the inequality Mu(t¢) + h(t) su(t), whers the operator M
is given by the relation

b b
(7) Mu(t) = B(t, j lG(t,B”u(E)dS, j l% G(t,S)iu(S)dB,ooo
a a
b
n=1
cesy § ‘g;E:T G(t,s)‘u(s)ds) ,
a
and
(8) h(t) = sup |F(£,0,0,0..,0)]
asf<t

(A4) In the class of functions satisfying the condition
O<u(t) <u(t), t eI, the function u, u(t) = 0 for t=1I,
is the only measurable solution of the equation

(9) u(t) = Mu(t), tel.
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Define now the sequence {y,} by the relations
(10) yo(t) = 0, ym+1(t) = Tym(t), tGI. m=0,1,2.ooo .

To prove the convergence of the sequence {ym} to the so-
lution § of (6), we define the sequence {um} by the rela-
tions

(11) ﬁo(t) = ﬁ(t)’ um+1(t) = Mum(t), tEI, m=0.1.2,ooo.

where the funotion u(t) is from hypothesis (A3).

Theorem 1. By the hypotheses (A1)-(A4),thero
exists a solution e C(I,R) of the squation (6), The sequence
(10) oconverges uniformly to § in I, and the estimations
(ef. (11))

(12) |3(¢) = 3,(t)] suy(%), teI, m=0,1,2,0,.,

(13) [308)| cu(t), teI,

hold. Morsover, the solution § of (6) is unique in the class
of funotions satisfying (13).

The next result gives conditions under which equation (6)
has at most one solutlon; these conditions do not guarantee
the existaence of a solution of equation (6),

Theorem 2, Let hypotheses (A1), (Az) be ful=-
filled. If the function r, r(t) = O for tc¢I, ias the nonnega~-
tive, finite and measurabls solution of the inequality

(14) r(t)s Mr(t), teI,

then the equation (6) has at most one solution in I,
Jn order to establish a theorem on the stabllity of the
golution of (6), we consider the equa®tion
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On Wazewski’s méthod 5

b b
(15) =z(t) = H(t, f G(t,s)z(s)ds, f g% G{t,s)z(8)dB,ess
a a

b a1
ceny i 525:7 G(t,s)z(s)ds) ,

with He C(IxRP,R).
Theorem 3, Assume that the hypotheses (A1), (A2)
hold and

(1) 3y and 2z are solutions of equations (6) and (15), res=-
pectively;
(11) the sequence {v, (%)}, t ¢ I, defined by the relations

volt)2 15(0)] + la(e)l,

(16)

vm+1(t) = Mvm(t) + E(t), m = 0'1.2,000’
where
(17) h(t) = [T2(t) - z(t)],

has a 1imit v(t) for t ¢ I, Then
(18) [F(t) - z(t)] s¥(¢), tel.

Theorems 1-3 can be very easily extended to the more gene-
ral equation

1]
(19) x(n) = f(t,x,x(”,...,x(n"”, j K[t,s,x,x(1),...,x(n'1 )] ds),
a

with the boundary conditions (2} under some suitsble assump-
tions on the functions involved in (19). In [11] MorchaZo has
obtained some results on the existence and uniquenese of the
solutions of (19), (2) with deviating arguments by using the
Banach fixed point theorem (see also [14]). Here, our approach
to the problem is different. We note that Theorems 1-3 can
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also be extended to (1), (2) and (19), (2) with deviating
arguments as in {8], [9], [11] with suitable modifications.

3. Proofs of Theorems 1-3
First we prove the following lemma used in our further

disoussion,
Lemma 1, If the hypotheses (A1)-(A4) are satisfied,

then

(20) 0 (t) sug(t) cu(t), tel, m=0,1,2,e00,

Up 1

and u, => 0O for m —» «, where = denotes the uniform conver=
gence in I,

Proof. The relation (20) follows by induction.
Since the sequence of continuous functions w, is nonincreasing
and bounded below, it 18 convergent to a certain measurable
funoction p such that 0 <p(t) su(t) for te I, By the Lebesgue
theorem and the continuity of g, it follows that the fun-~
ction p satisfise equation {9) and, by assumption (A4), we
have p(t) = 0, t eI, The uniform convergence of {um} in I
follows from the Dini theorem. This completes the proof of
Lemma 1.

Proof of Theorem 1. We first prove that the se-

gquence (10) satisfies
(21) [7pt) sult) tel, m=0,1,2,000 &

Obviously |y, (t}| = 0< i(t), t e I, Furthermore, supposing
that (21) is true, by (A1)-(A4), we have

| e (8] < Mly ()] + B(t) s Ma(t) + h(t) < a(t),

for t e I, The relation (21) follows by induction. Next we
prove that

(22) | Ypaq(¥) = Tt} s (),  tel, mya = 0,1,2,000
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By (21), we have
19 (%) = 3o(8)] = [3(#)| < &%) = ug(¢), teI, 9=0,1,2,0.s .
Suppose that (22) is true for m,q2> O, then
|7 maga (8] = Tmgg (81 = | Ty (3) = Typlt)f <
S My (8) = Fp(%)] s Muy(t) = up (%)

Now we obtain (22) by induotion. By Lemma 1, um(t) = 01in I,
so from (22) we have y, => § in I, The continaity of § fol-
lows from the uniform convergence of the sequence {ym} and
from the continuity of all funotions y,. If 9 —» =, then (22)
gives (12) and the estimation (13) is implied by (21). It is
obvious that § 18 a solution of (6),

To prove the uniquensess of the solution § of (6), let
us suppose that there exists another solution § of (6) such
that 3(t) # 3(t) and |5(%)| < u(t) for t ¢ I, By induotion we
get |§(t)-ym(t)| sum(t), tel, m=0,1,2,s0s, and hence it
follows that (%) = §(t), t ¢ I, This contradiction proves the
uniqueness of § 1in the class of functions satisfying (13).
This completes the proof of Theorem 1.

Proof of Theorem 2, Let us suppose that there
exist two solutions § and §j of equation (6) in I,

F(t) # §(t), teI. Now, by hypotheses (A1), (A2), we have

(23) [7(t) - 5(¢)] <m|5(e) - 5(t)}], tel.
Putting r(t) = [J(t) - §(t)|, teI, in (23), we infer from
(14) that »(t) = 0 for t eI, i.0. F(t) = y(t), te I, This

contradiction completes the proof of Theorem 2,
Proof of Theorem 3, Letting

(24) v{t) = [F(t) - 2(t)], +teI,
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we have

(25) v(t) s |15(8) - 23(%)] + [T2(%) - 2(%)] €
< M|F(t) = 2(%)| + h(t) = Mv(t) + h(t).

From (24), (25) we deduce

(26) v(t)<|F()] + [2(8) < v (8), tels

Now, by induction, we get

(27) v(t)sv(t), tel, m=0,1,2,000 »

Inequality (18) is implied by (27), ae m —» =~ . This completes
the proof of Theorem 3.

4. Further applications
First we shall consider the following BVP

(28) Lx = £(%,x),
(29) Bix = Ci, i= 1,o.o,m. m2 2.

Here f e C(IxR,R), C, are given constants, the operators L, By
are defined by the relations

m
Ix = x(®(g) 4 Z py(t) x(""‘“(t).
J=1

m m
Byx 1= :E: 4 4 1(3'1)(3) + :E: Bij x(3'1)(b), i =2 1,400,m,
J=1

where o4, By are real constants and py ¢ C(I,R). We notice
that in recent papers [15], [16] V. Seda has studied the
existence and uniqueness of the solutions of (28), (29) by
using certain fixed point theorems. For a function x ¢ CT(I,R)
we define y(t) = Lx(t), then (28), (29) is squivalent to the
integral equation (ses [16], p.538)
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On Wazewski s method 9

b
{30} (%) = f(ﬁ,w(t) + j G(t,s)y(s)ds),
a

where w(t) is the unique solution of the problem Lx = 0,
(29) and G(t,s) is the Gresn function of thie problen, The

equation (30) can be considered as a speclal case of (5) and
hence Theorems 1-3 can be applied.
We next consider the following BVP

(31) x’ = Al(t)x + £,(t,x),

(32) Nx{a) + Qx(b) = O,

where f e c(1xR™,R"), a(t) is a continuous nxn matrix function
defined on I,and N, Q are constant nxn matrices, For the de-
tailed disoussion on the various speoial forms of (31), (32)
we refer the readers to the expositary paper by Conti [3] and
some of the referenceg given therein. For the funoction
xeC(I,R"), we define y(t) = x’(t) - A(t)z(t), then (31),
(32) is equivalent to (see [1], [3])

b

(33) y(t) = f°<t, § G(t,s)y(s)ds),
a

where

X(t.s)-X(t,a)[N+Qx(b,a)]"1nx(h,s), assBstgh,
G(t,s) =
-X(t,a) [N+QX(b,a)] NX(b,8) agtgssgb,

and X(t,s) is the Cauchy matrix for the linear equation
x'(t) = A(t)x(t) with X(a,a) = I, and I, is the unit matrix,
Theorems 1~3 can be extended to the equation (33) with suitable
modifications.

Finally we consider the following BVP arising in transport
processes (sea [2], [12], [13])
{ x' = f1(t.1.7), x(a) = Xas

(34) /
-y ' = fz(t,x,y)’ 3(b) = yb’
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10 B.G. Pachpatte

where f,,f, e ¢(IxR%xR®,RP) and Xgs Jp 8Te given vectors. Let
z,w e C(I,RP) and define z = x’, w = 3/, It is easy to observe
that the pair of functions {z,w) fulfils the equations

t b
[ z(t) = f1(t,xa + j z(s)de, yy + f w(s)ds),
a t

(35) 4

.

b
w(t) = f2<?,xa + § z(s)ds, yy + j w(s)ds).
a 1]

Theorems 1~3 can be extended to {35) under some appropriate
assumptions on the functions involved in (34),
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