

Ali A. A. Daw

A FORMULA FOR THE NUMBER OF RETRACTS
OF FINITE BOOLEAN ALGEBRAS

In this paper we will construct and count the retracts of a finite Boolean algebra. The construction is based on some of the already known facts from the theory of Boolean algebras. We denote a Boolean algebra by \underline{A} .

1. Let Δ be the (principal) ideal of \underline{A} generated by an element $-E \in \underline{A}$. Then

$$\underline{A} \mid E \cong \underline{A} / \Delta .$$

The isomorphism is given by

$$h(A) = [A] \quad \text{for } A \in \underline{A} \mid E$$

(Sikorski, [1] pp. 30-31).

2. Let $h : \underline{A} \longrightarrow \underline{A}$ be an endomorphism, h is a retract if $h|h(\underline{A}) = \text{identity}$, i.e.

$$h(x) = x \quad \text{for all } x \in h(\underline{A}).$$

Since, $h(\underline{A}) \cong \underline{A} / \Delta$, we can find retracts as follows.

We take Δ (generated by $-E \in \underline{A}$). We find \underline{A} / Δ and the isomorphism $h : \underline{A} \longrightarrow \underline{A} / \Delta$. We have

$$\underline{A} \mid E \cong \underline{A} / \Delta \quad \text{where } h(A_{-1}) = h(A) .$$

Now let A_1 be a subalgebra of \underline{A} with k elements such that,

$h(A_1) = \underline{A} / \Delta$. Then $\underline{A}_1 \cong \underline{A} / \Delta$ (both subalgebras have the same number of elements, so they are isomorphic).

Let $i : \underline{A} / \Delta \longrightarrow \underline{A}_1$ be this isomorphism. Then $i[x] = x$, $h_1 = i \circ h$ is a retract.

P r o o f. $h_1 : \underline{A} \longrightarrow \underline{A}_1 \subseteq \underline{A}$ is an endomorphism
 $h_1(\underline{A}) = \underline{A}_1$. For $x \in \underline{A}_1$ we have

$$h_1(x) = i \circ h(x) = i([x]) = x .$$

3. Theorem. Let \underline{A} be a finite Boolean algebra $\underline{A} = 2^n$, $n < \omega$. There are exactly n retractions onto two elements subalgebra $\underline{A}_0 = \{\emptyset, 1\}$.

P r o o f. Take $k = 1$ and let $E = \{a_1\}$, $-E = \{a_2, \dots, a_n\}$.
 Then $\underline{A} | E = \{\emptyset, \{a_1\}\}$ and $\Delta = 2^{\{a_1, \dots, a_n\}}$. Then $\underline{A} | E \cong \underline{A} / \Delta$ where the isomorphism is given by $h(A) = [A]$ for $A \in \underline{A} | E$ (Sikorski [1], pp. 30-31). We have

$$[\emptyset] = \{\emptyset, \{a_2\}, \dots, \{a_n\}, \dots, \{a_2, \dots, a_n\}\}$$

$$[a_1] = \{\{a_1\}, \{a_1, a_2\}, \dots, \{a_1, a_2, \dots, a_n\}\}$$

$\underline{A}_1 = \{\emptyset, \{a_1, \dots, a_n\}\}$, we find only one possibility. Hence the number of possible four selections of E is $\binom{n}{1}$. Hence, the number of possibilities is $\binom{n}{1} \cdot 1 = n$.

4. Theorem. Let \underline{A} be a finite Boolean algebra $|\underline{A}| = 2^n$, $n \geq 2$. There are exactly $\binom{n}{2} 2^{n-2}$ retractions onto four elements subalgebras.

P r o o f. Let $\underline{A} \cong 2^n$, $\underline{A} = 2^X$, where $X = \{a_1, \dots, a_n\}$ are atoms. Take an element $E \in \underline{A}$ and $-E$ complement of $E \in \underline{A}$. $E = \{a_1, a_2, \dots, a_k\}$, $-E = \{a_{k+1}, \dots, a_n\}$. Take $k = 2$. We have $E = \{a_1, a_2\}$, $-E = \{a_3, a_4, \dots, a_n\}$,

A | E = $\{\emptyset, \{a_1\}, \{a_2\}, \{a_1, a_2\}\}$ and the principle ideals

$\Delta = \{\emptyset, \{a_3\}, \dots, \{a_3, a_4, \dots, a_n\}\}$

$\Delta = 2^{\{a_3, \dots, a_n\}}$ and $\underline{A} | E \cong \underline{A} / \Delta$

$[\emptyset] = \{\emptyset, \{a_3\}, \dots, \{a_n\}, \{a_3, \dots, a_n\}\}$

$[a_1] = \{\{a_1\}, \{a_1, a_3\}, \{a_1, a_4\}, \dots, \{a_1, a_3, \dots, a_n\}\}$

$[a_2] = \{\{a_2\}, \{a_2, a_3\}, \dots, \{a_2, a_3, \dots, a_n\}\}$

$[a_1, a_2] = \{\{a_1, a_2\}, \{a_1, a_2, a_3\}, \dots, \{a_1, a_2, a_3, \dots, a_n\}\}$

$\underline{A}_1 = \{\emptyset, \{a_1, a_3\}, \{a_2, a_4, \dots, a_n\}, \{a_1, a_2, \dots, a_n\}\}.$

In general, we have

$\underline{A} = \{\emptyset, A, -A, \{a_1, \dots, a_n\}\}$

where $A \in [a_1], -A \in [a_2] .$

The number of elements in the class equals the number of all elements of Δ i.e. the number of all subsets of $\{a_3, \dots, a_n\}$, that is 2^{n-2} . The number of possibilities for selection of E is $\binom{n}{2}$. Hence, the number of possibilities $\binom{n}{2} \cdot 2^{n-2}$.

5. Definition. Let $P(n, k)$, $n = 1, 2, \dots$, $1 \leq k \leq n$ denote the number of partitions of $\{1, 2, \dots, n\}$ into k non-empty disjoint subsets (blocks) such that no member of these partitions is a subset of $\{k+1, \dots, n\}$.

6. Theorem. Let \underline{A} be a finite Boolean algebra. $|\underline{A}| = 2^n$. The number of retracts of \underline{A} onto the 2^k - elements subalgebras of \underline{A} ($1 \leq k \leq n$) is exactly $\binom{n}{k} P(n, k)$. Consequently, the number of all retracts of \underline{A} is

$$\sum_{k=1}^n \binom{n}{k} P(n, k) .$$

P r o o f. For $k = 1$ we have $P(n, 1) = 1$. Hence the number of retracts of \underline{A} onto two elements subalgebras is $\binom{n}{1} \cdot 1 = n$, is agreement with Theorem 3.

($P(n, 1) = 1$ because there is only one partition of $\{1, 2, \dots, n\}$ into 1 block - namely $\{1, 2, \dots, n\}$; and this set is not a subset of $\{2, 3, \dots, n\}$. For $k=2$ we have $P(n, 2) = 2^{n-2}$ (in fact, there are 2^{n-2} partitions of $\{1, 2, \dots, n\}$ into two blocks in such a way that no member of this partition in a subset of $\{3, 4, \dots, n\}$). One member of such a partition is of the form $\{1\} \cup A$, where A is a subset of $\{3, 4, \dots, n\}$, the other member of this partition is $\{2\} \cup B$, where $B = \{3, 4, \dots, n\} - A$). Since there are 2^{n-2} subsets of $\{3, 4, \dots, n\}$, we obtain $P(n, 2) = 2^{n-2}$ as above.

Hence the number of retracts of $\underline{A} \cong 2^n$ onto the four elements subalgebras is $\binom{n}{2} 2^{n-2}$ as proved in Theorem 4. Hence Theorem 3 and 4 are special cases of Theorem 6.

We now prove Theorem 6 in general case for arbitrary $1 \leq k \leq n$. We may assume that $\underline{A} = 2^X$ where $X = \{a_1, a_2, \dots, a_n\}$. To obtain retracts onto 2^k elements subalgebras we take e.g. $E = \{a_1, a_2, \dots, a_k\}$. We have $\binom{n}{k}$ such selections for possible E with k elements.

By the procedure explained previously we take

$$-E = \{a_{k+1}, \dots, a_n\} ,$$

$$\Delta = 2^{-E} = \{\emptyset, \{a_{k+1}\}, \dots, \{a_n\}, \dots, \{a_{k+1}, \dots, a_n\}\} .$$

Since $\underline{A} | E \cong \underline{A} / \Delta$ we have

Formula for the number of retracts

$$[\emptyset] = \{\emptyset, \{a_{k+1}\}, \dots, \{a_n\}, \dots, \{a_{k+1}, \dots, a_n\}\}$$

$$[a_1] = \{\{a_1\}, \{a_1 a_{k+1}\}, \dots, \{a_1 a_{k+1}, \dots, a_n\}\}$$

$$[a_2] = \{\{a_2\}, \{a_2 a_{k+1}\}, \dots, \{a_2 a_{k+1}, \dots, a_n\}\}$$

⋮

$$[a_i] = \{\{a_i\}, \{a_i a_{k+1}\}, \dots, \{a_i a_{k+1}, \dots, a_n\}\}$$

⋮

$$[a_k] = \{\{a_k\}, \{a_k a_{k+1}\}, \dots, \{a_k a_{k+1}, \dots, a_n\}\}$$

$$[a_1 a_2] = \{\{a_1 a_2\}, \{a_1 a_2 a_{k+1}\}, \dots, \{a_1 a_2 a_{k+1}, \dots, a_n\}\}$$

⋮

$$[a_1 a_2, \dots, a_k] = \{\{a_1 a_2, \dots, a_k\}, \dots, \{a_1 a_2, \dots, a_k a_{k+1}, \dots, a_n\}\}.$$

Now we have to select for each class

$$[\emptyset], [a_1], \dots, [a_k], \dots, [a_1, \dots, a_k]$$

exactly one element in such a way that the selected element form a 2^k element subalgebra of \underline{A} (in this way we obtain an isomorphism

$i : \underline{A} / \Delta \longrightarrow \underline{A}$). Clearly we must have

$$i([\emptyset]) = \emptyset = 0 \in \underline{A}$$

$$i([a_1, \dots, a_k]) = \{a_1, \dots, a_k, a_{k+1}, \dots, a_n\} = 1 \in \underline{A}.$$

First we make a selection from the k abstraction classes $[a_1], \dots, [a_k]$.

Let A_i be selected from $[a_i]$, $i = 1, 2, \dots, k$. We show that all A_i are pairwise disjoint, $A_i \cap A_j = \emptyset$ for $i \neq j$. From the construction of $[a_i]$, $i = 1, 2, \dots, n$ it is clear that no inclusion $A_i \subseteq A_j$ or $A_j \subseteq A_i$ is possible (no member of the class $[a_i]$ may be contained in a member of the classes $[a_j]$).

- so we have $a_i \in A_i - A_j$ and $a_j \in A_j - A_i$.

Assume that we have

$$A_i \cap A_j \neq \emptyset.$$

Since $A_i - A_j \neq \emptyset$, $A_j - A_i \neq \emptyset$ we see that the subalgebra generated by the two elements A_i, A_j would contain at least three atoms (contained in $A_i - A_j \neq \emptyset$, $A_j - A_i \neq \emptyset$ and $A_i \cap A_j \neq \emptyset$).

Hence every pair of integer elements would give at least 3 atoms and one atom would belong to Δ . This means that the subalgebra generated by the elements A_1, \dots, A_k would contain more than 2^k elements - a contradiction. Hence only selections A_1, \dots, A_n with disjoint elements are possible.

(*) $\left\{ \begin{array}{l} \text{Let now } \{a_1, a_2, \dots, a_n\} = A_1 \cup A_2 \cup \dots \cup A_k \text{ be a partition of} \\ \{a_1, \dots, a_n\} \text{ into } k \text{ disjoint subsets such that no subset} \\ A_i \text{ is contained in } \{k+1, \dots, n\}. \end{array} \right.$

We show that every A_i belongs exactly to one class $[a_j]$. It suffices to show that for each A_i there is a_j such that $A_i \in [a_j]$ (the elements A_1, \dots, A_n are disjoint, no two of them can belong to the same class $[a_i]$). If A_i is a one-element set, this is clear because A_i must be then one of the set $\{a_1\}, \dots, \{a_k\}$. If A_i contains more than one element it must be the form

$$\{a_j\} \cup B \quad \text{where } B \subseteq \{a_{k+1}, \dots, a_n\} \\ 1 \leq j \leq k \quad B \neq \emptyset$$

i.e. A_i must contain no more than one element from $\{a_1, \dots, a_k\}$.

In fact, if some A_i would be of the form e.g.

$$A_1 = \{a_1, a_2\} \cup B \quad B \subseteq \{a_{k+1}, \dots, a_n\}$$

then A_1 could not be a member of partitions satisfying the condition (*). In fact taking

$$\begin{aligned} \{a_1, \dots, a_k, a_{k+1}, \dots, a_n\} &= (\{a_1, a_2\} \cup B) \cup (\{a_3\} \cup B_3) \cup \\ &\cup (\{a_4\} \cup B_4) \cup \dots \cup (\{a_k\} \cup B_k) \end{aligned}$$

as possible partitions with $B_3, B_4, \dots, B_k \subseteq \{a_{k+1}, \dots, a_n\}$ we would obtain a partition into at most $k-1$ blocks, not into k blocks as required.

Hence A_1 is of the form $\{a_i\} \cup B$

$$B \subseteq \{a_{k+1}, \dots, a_n\} \text{ and consequently } A_1 \in [a_i].$$

Hence for every partition $X = A_1 \cup \dots \cup A_k$ satisfying the condition (*) we have (after suitable remembering)

$$A_1 = \{a_1\} \cup B_1$$

$$A_2 = \{a_2\} \cup B_2$$

⋮

$$A_k = \{a_k\} \cup B_k$$

where $B_i \in \Delta$, $i = 1, 2, \dots, k$.

Since A_1, A_2, \dots, A_k are disjoint, the subalgebra generated by them has exactly 2^k elements. We have exactly 2^k abstractions classes \underline{A} / Δ . Every element of this subalgebra is of the form $A \cup B$ where $A \subseteq \{a_1, \dots, a_k\}$, $B \subseteq \{a_{k+1}, \dots, a_n\}$. Every element belongs to some abstraction class \underline{A} / Δ , and no two elements may belong to the same class. In fact, if $A_1 \cup B_1$ and $A_2 \cup B_2$ are two different elements, then $A_1 \neq A_2$

because this subalgebra isomorphic to $2^{\{a_1, \dots, a_k\}}$ and $A_1 \cup B_1 \in [A_1], A_2 \cup B_2 \in [A_2]$ belong to a different classes.

Thus we have shown that for every partition of $\{1, \dots, n\}$ into k blocks such that no block is subset of $\{k+1, \dots, n\}$ we can have a subalgebra of \underline{A} formed from elements selected from the abstraction classes \underline{A} / Δ , and for different partition we obtain different subalgebras. Since every subalgebra defines a retract of \underline{A} onto this subalgebra for a fixed E , we obtain $P(n, k)$ retracts onto 2^k -elements subalgebras. This ends the proof of Theorem 6.

7. L e m m a. We have

$$P(n, k) = k^{n-k}.$$

P r o o f. We prove first the recurrence formula

$$P(n+1, k) = P(n, k) \cdot k.$$

In fact, from each partition T of the set

$$\{1, 2, \dots, k, k+1, \dots, n\}$$

into k non-empty disjoint subsets (satisfying the condition of Def. 5) we can obtain a partition of the set $\{1, 2, \dots, n+1\}$ into k non-empty subsets by adding to a member of T the element $n+1$.

Of course, no member of this new partition is a subset of

$$\{k+1, \dots, n, n+1\}.$$

From each partition of $\{1, 2, \dots, n\}$ (satisfying Def. 5) we obtain in this way k new partitions of

$$\{1, 2, \dots, n+1\}.$$

Formula for the number of retracts

Conversely, for partition T_1 of $\{1, \dots, n+1\}$ into k disjoint non-empty blocks such that no block is a subset of $\{k+1, \dots, n, n+1\}$ there is partition of $\{1, 2, \dots, n\}$ (such that one block differs by $\{n+1\}$ from a block of T_1 (no block of T_1 contains only $\{n+1\}$).

Hence we obtain exactly

$$P(n+1, k) = P(n, k) \cdot k ,$$

$$P(n, k) = P(n-1, k) \cdot k .$$

Since $P(k, k) = 1$, we have by induction

$$P(n, k) = k^{n-k}.$$

8. Corollary. The number of all retracts of $\underline{A} \cong 2^n$ onto its subalgebras is equal to

$$\sum_{k=1}^n \binom{n}{k} k^{n-k}.$$

This corollary follows directly from Theorem 6 and Lemma 7.

REFERENCES

[1] R. Sikorski : Boolean algebras, 2nd ed. Springer Verlag, Berlin-Göttingen-Heidelberg-New York, 1964.

INSTITUTE OF MATHEMATICS, TECHNICAL UNIVERSITY OF WARSAW,
00-661 WARSZAWA

Received December 6, 1988.

