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VARIATIONAL FORMULATION FOR A HOMOGENEOUS
DIRICHLET PROBLEM FOR A PARABOLIC EQUATION

This work deals with a variational formulation in a
closed subspace of the Sobolev-type space for the parabolic
equation with the homogeneous Dirichlet condition. A
variational principle is constructed i.e. the functional
such that its critical point corresponds to a solution of
the system of the initial and some terminal-boundary value

problem.

1. Preliminaries

The parabolic equation is considered in a bounded domain
Q :=Qx (0,T) where T > 0 and Q is an open bounded domain
of R with a Lipschitz boundary 8Q (in the sense of Necas
[S]). We denote the parts of boundary 8Q by Q :=Qx {0},

QT = Q x {T}, T := 8Q x (0,T). We define a Sobolev-type-
space
H:={velL2Q) : D,v, Dv, DDV € 12(Q) for i = 1,...,m ¥

where Dl, Dt are distributional derivatives. This space is

the Hilbert space with the scalar product given by

(1.1) (u,v) :=l[uv+DuDv+DuDv+DDuDDv] dx dt
H t t i i it it
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and the corresponding norm "-"H . Here and below we shall
use the Einstein convention for the sum
DuDyv := 1§1D1u D,v and (D1U)2 = Du Du.

For a formal description of the boundary condition on TI'
we introduce a closed linear subspace V of H.

Definition Let C (D be the set of all
functions infinitely differentiable in Q which vanish in
some neighbourhood of I. Then V is the closure of C:x(ﬁ) in
H. Under the assumption on the boundary 30 the measure ¥ on
I' and the space L?(F) are well defined and the following
lemma is true [5].

Lemma 1. There are the linear and continuous

operators of trace :
Tr: H——> H(Q) Tr: H— H(Q) Trp: H—> LAT). =

We remark that there exists Trr(Dtv) € LZ(F) the trace
of the derivative Dtv on LZ(F). From the definition of the

space V there follows

Lemma 2. Forall veV, Trov, TrTv € H;(Q) and
Trrv = TPF(DtV) = 0. n
o = taq)
Since for ¢ € COX(Q) e(x,t) = @(x,0) + I gg(x,s)ds
0
then

t
(1.2) vix,t) = Trov(x) + I Dtv(x,s)ds a.e. inQ VveV.
o

Let k =2 0 be a constant. Let a,a' " Q V —> R be bilinear

forms given by
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Homogeneous Dirichlet problem

(1.3) au,v) := l [DuDv +DuDDv + kuD v] dxdt +
t ot 1 1t t
+ I [Du, Dv, + ku, v, ] dx
1 ]o "1 o o "|o
Q
(1.4) a'(u,v) :=J[DuDv—DuDDv—kuDv] dxdt +
t ot 1 1t t

+ I [Du, Dv, + ku,_ v 1 dx
vt T It 7T
Q

where vlo, D1v|o and v D1V|T are corresponding traces.

|7’
By integrating (1.3) by parts we get that these forms

are adjoint i.e.

(1.5) VuveV a(uyv)=a (v,u)

and also that the bilinear forme : Vx V —— R given by
% [a(u,v) + a.(u,v)]

is symmetric. Its integral shape is the following

(1.8) e(u,v) :=

_ 1
(1.7) e(u,v) = lbtu Dtv dxdt + 5 I[DluloDlv|°+ kulovloldx +
Q

1
5 I D u DIVIT + kulT V|T] dx .
Q

Lemma 3. The forme : Vx V —— R is strictly
positive
VveV elv,v) 20 and e(v,v) =0 & v =0

Proof. Since k is a nonnegative constant e(v,v)z O,

Let e(v,v) = 0, then from equality I (D v)? dxdt = 0 we

have Dv =0 1in L%(Q). By Fridrich’s inequality [5]

- 9819 -



J. Wyborski

1
3C>0 YVweH(® |Juf ~sc L [pw|,

() 1=1 L7(Q)
and from I (va[o)adx =0 we get that Trov = 0.
Q
Finally by (1.2) v = 0. ]
This lemma permits us to introduce a new norm in the
space V.
Definition The function "vlv := de(v,v)! is

the norm in the space V and e(-,-) is a scalar product in V.

The space V is a completion of V in the norm I-nv and it
is a Hilbert space with this product.

By V(A) we denote the space of all functions v € V such
that DD v e L(Q).

We remark that from the continuity of the operators of
trace Tr_, Tr_ in (V,H-nﬂ) we have the following estimates
(1.8) Ivl, = clvl,
and a following lemma.

Lemma 4. The space V(A) is dense in V.

Pr oo f. From the density of C:;(G) in (V,“-HH) and
from the inequality (1.8) we obtain that C:x(ﬁ) is dense in
(V,"v“v). Since sz(ﬁ) C V(é} we get our lemma. .

The bilinear forms a,a have the following continuity
conditions in this new norm.

Lemma 5. For every v € V(A) there exist constants

C1’C2 > 0 depending on v such that for all u eV
(1.9) latu,v)| s C (v) fu],

(1.10) |a (u,v)| = Cz(V) ||u||v ;
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Proof. Integrating by parts (1.4) we obtain

[
a(u,v) = a (v,u) = J [Dtv Dtu + D1D1v Dtu - katu] dxdt +
+ I [Dv, Du,_ + kv,_u,_ ] dx
v T |t T

Y}
and from Schwartz’s inequality

|a(u,v)| = ‘[ |D,v + DD v - kv|[D u| dxdt +
+ j'[|nlvlr||nluh| * K|V ] up )] dx = C () ]u, -
Proof of the inequality (1.10) is similar. [

2. Formulation of the variational problem

For er LZ(Q) and foe H;(Q) we define a linear functional

f: V—5R by

(2.1)  <f,v> := ‘[fnvdxdt.+t[[0fnv + kf v, ] dx.
Qt 101 |o 0 |o

It is obvious that
(2.2) |<f,v>| = C ||v||v VveV.
We state our initial-boundary value problem in the

following variational formulation :

Find u € V such that :
(2.3)
a(u,v) =<f,v> VvelV.

We denote this problem by VP.
The equality : a(v,v) = e(v,v) = "v“i implies that this

problem has at least one solution. The above formulation is
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Justified by the following
Theorem 1. Let ue V. Then u is a solution of VP
iff it is a solution of the following IBV (initial-boundary

value) problem

2
(2.4a) Dtu - D!D!u + ku = fo in L°(Q) ,
_ 1
(2.4b) Trou = fo in Ho(ﬂ) ,
(2.4c) Trru =0 in L3(r) .

Proof. (=+) Let ue V be a solution of VP. Identity
(2.3) with

t/ '
vix,t) = I ¢(x,s)ds for any function ¢ € C:(Q) yields
o
(2.5) l[ [Dug+Dubg+kug] dxdt = ‘!’ £,0 dxdt .

By definition of the distributional derivative Dl we obtain
(2.4a) in the space of distribution D’(Q). Since foe L%(qQ)
the 1left side of (2.4a) 1is a regular distribution. So
DIDJJ € L2(Q) and (2.4a) is the equality in L?(Q). Now we
take v such that

. ,
vix,t)= wb(x)+ I ¢(x,s)ds for any ¥,€ C:(ﬂ) and ¢ € C:(Q).
o

Because (2.5) is still valid for all such v we get the
following weak elliptic equation in H;(n)

I [Dl(ulo- £D,9, *+ k()= £)pldx =0 Vg, e co(a)

Q
vwhich has a unique trivial solution. Hence u o= fo in H;(Q).
Finally we recall that (2.4c) is valid for all elements ve V
(cf (1.2)).
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The reverse implication (e=) 1is obvious. Indeed,

multiplying (2.4a} by Dtv for any v € V and integrating by
parts we obtain (2.5) with ¢ = Dtv. From (2.4b) we have for

all veV

I [D1u|oD1v|o + kulovlol dx = f [leOD‘v|° + kfovloldx
9] 0

and finally equality (2.3) holds.

Corollary.

DlDiu € Lz(Q) is a necessary
condition for the existence of the solution of the VP.

We assoclate the adjoint variational problem to VP
denoted by vp' using the "mirror method" (cf [1], [4]).

Find u € V such that :
(2.8)

a'(u,v) =<g,v> VYvevV.
where g : V——> R is a linear functional given by
(2.7) <g,v>:= l gthv dxdt + I [D181D1v|r+ kgTvlrldx V vev
19}
for g, € L%(Q) and g, € H;(Q). This VP is equivalent to the

following terminal-boundary value problem

_ 2
(2.8a) Du+ DDu + ku = &, in L°(Q) ,
_ 1
(2.8b) Tru =g in HO(Q) ,
(2.8c) Trou = 0 in L3(r) .

3. Existence and uniquness of a solution of the

generalized variational problem

Lemma 4 permits us to define a generalized variational

problem. For v € V(A) we define the linear functional
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PV:V—)IRby
(3.1) <Pv,u> := alu,v) YVueV.

Because it is continuous in (V.l-lv) (cf (1.9)) there exists
only one extension of Pv to V which we denote by Pv.
Similarly, there exists the extension f of the continuous
functional f (2.1-2).

Def init1l on The generalized variational
problem denoted by GVP is

Find u € V such that :
(3.2)

<P ,uw = <F,v> V v e V(A) .

We remark that if the solution u of GVP belongs to V it
is a solution of VP in the sense of (2.3).

We shall state a certain general version of the Lax-
Milgram theorem. Similar theorem can be found in [2], [3].

Lemma 8. Let X be a normed space with the scalar
product [-,-] and the Hilbert space Y be the completion of X
in the norm |-| . If F: Y —> R is a linear and continuous
functional and A : Y x X ——> R is a bilinear form

satisfying the following conditions

(3.3) VveX 3C>0 VueY |Alyv)| s C(v)]u]
(3.4) 3a>0 Vvex Alv,v) = a|v]?

then a variational problem
Find u € Y such that :

(3.5)
A(u,v) =<F,v> VveX,

has exactly one solution.
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Proof. From the above conditions and the Rlesz
theorem the identity A(u,v) = [u,Sv] defines the linear
mapping S : X ——> Y which is one to one onto D := S(X).
Indeed, 1f Sv =0 then 0 = [v,Sv] = A(v,v) = alvl2 implies
v = 0. The inequality

(3.6) a|v|2 s A(v,v) = [v,Sv] s |v]]sv|

glves that there exists the invers operator s!'!. p—x
such that VweD [s7w] =21 |w].

o
Because the functional F is continuous the linear functional
G: D—> R defined as G := F o S ' is also continuous,
indeed for all w € D we have

(3.7 |<Gw| = |<F,sTw| scls?w| s |v] VvV weD.

The domain D of functional G 1s dense in Y. For v° € ﬁi we
can find a sequence vn € X such that vn——+ v0 in Y. If there

=1
exists v.eD7, ﬂvkﬂ > 0 then we have 0 = [vk,Sv] = A(vk,v)
for all v € X, also for v =v. Thus 0 = A(v_,v.) = a|v H2>0
k k' k k
which is a contradiction. Therefore all vn € D and we have
2
0= [vn,vol — [v,v 1 = ﬂvol which implies v = 0.

Hence the functional G has only one extension G on Y. Once
again using the Rlesz theorem, we conclude that there exists
exactly one element u € Y such that <G,w> = [w,u] for all
W € Y. This element u is a solution of (3.5) because and for

all ve X and w = Sv

A(u,v) = [u,Sv] = [u,w] = <G, w> = <F,S'w> = <F,v>

is fulfilled. ]
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Existence and uniquness of the solution of GVP follows
from this lemma.

Theorem 2. The generalized variational problem
(GVP) has exactly one solution in the space V.

Proof. It is easy to verify that for X = V(A), Y=V,
F=fand A: YxX —> R, Alu,v) := <§;,u> the assumptions
of Theorem 2 are fulfilled.

(cf lemmas 4,5 and the equality for v € V A(v,v) = e(v,v) =

2
= "v“v). v n

4. Variational principle

-~

For a,a',f,g we define a bilinear form a : Q x 0 — R

and a linear functional f : V —— R by

A A A -
a(u,v) := a(ul,vz) + a (uz,vi) s
<f‘,;/> = <f‘,v2> + <g,v1> ,
where ‘§ i = (ul,uz) and v := (vl,vzl are elements of the
space V := V x V. Since the forms a,a are adjoint (cf (1.5))

the form a is selfadjoint. This fact permits us to associete

the VP and VP' problems with a certain functional whose

variation is vanishing on solutions of these adjoint problems.
Theorem 3. Let u= (uflﬁ) € V. Then u is a

solution of the problem

Find u = (ul,uz) € V such that :
(4.9a) a(ul,v) = <f,v>
(4.9b) a'(uz,v) =<g v VYveV

iff u is a critical point of the functional X : VxV —> R
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(4.10) X(ul,uz) 1= a(ul,uz) - <f,u2> - <g,u1> .

Proof. Since ;(ﬁ,ﬁ) = 2a(u1,u2) for all u = (ui,uz)e v

it is possible to write the functional X in the following

form
X(u) = % a(u,u) - <f,w> .

Then <X’ (u),v> := 1im % [ X(u+tv) - X(W] = a(u,v) - <f,v>
t— 0

VveV and X'(u) =0 iff a(u,v) = <f,v> for all v € V .
Finally we remark that u = (ul,uz) € V is a solution of the

system (4.9) iff it fulfils the last equality. ]
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