

Jerzy Wyborski

VARIATIONAL FORMULATION FOR A HOMOGENEOUS DIRICHLET PROBLEM FOR A PARABOLIC EQUATION

This work deals with a variational formulation in a closed subspace of the Sobolev-type space for the parabolic equation with the homogeneous Dirichlet condition. A variational principle is constructed i.e. the functional such that its critical point corresponds to a solution of the system of the initial and some terminal-boundary value problem.

1. Preliminaries

The parabolic equation is considered in a bounded domain $Q := \Omega \times (0, T)$ where $T > 0$ and Ω is an open bounded domain of \mathbb{R}^m with a Lipschitz boundary $\partial\Omega$ (in the sense of Nečas [5]). We denote the parts of boundary ∂Q by $\Omega_0 := \Omega \times \{0\}$, $\Omega_T := \Omega \times \{T\}$, $\Gamma := \partial\Omega \times (0, T)$. We define a Sobolev-type space

$$H := \{ v \in L^2(Q) : D_t v, D_i v, D_i D_i v \in L^2(Q) \text{ for } i = 1, \dots, m \}$$

where D_i , D_t are distributional derivatives. This space is the Hilbert space with the scalar product given by

$$(1.1) \quad (u, v)_H := \int_0^T [uv + D_t u D_t v + D_i u D_i v + D_i D_i u D_i D_i v] dx dt$$

and the corresponding norm $\|\cdot\|_H$. Here and below we shall use the Einstein convention for the sum

$$D_i u D_i v := \sum_{i=1}^m D_i u D_i v \quad \text{and} \quad (D_i u)^2 := D_i u D_i u.$$

For a formal description of the boundary condition on Γ we introduce a closed linear subspace V of H .

D e f i n i t i o n. Let $C_{0x}^\infty(\bar{Q})$ be the set of all functions infinitely differentiable in \bar{Q} which vanish in some neighbourhood of $\bar{\Gamma}$. Then V is the closure of $C_{0x}^\infty(\bar{Q})$ in H . Under the assumption on the boundary $\partial\Omega$ the measure γ on Γ and the space $L^2(\Gamma)$ are well defined and the following lemma is true [5].

L e m m a 1. There are the linear and continuous operators of trace :

$$\text{Tr}_0: H \longrightarrow H^1(\Omega) \quad \text{Tr}_T: H \longrightarrow H^1(\Omega) \quad \text{Tr}_\Gamma: H \longrightarrow L^2(\Gamma). \quad \blacksquare$$

We remark that there exists $\text{Tr}_\Gamma(D_t v) \in L^2(\Gamma)$ the trace of the derivative $D_t v$ on $L^2(\Gamma)$. From the definition of the space V there follows

L e m m a 2. For all $v \in V$, $\text{Tr}_0 v, \text{Tr}_T v \in H_0^1(\Omega)$ and

$$\text{Tr}_\Gamma v = \text{Tr}_\Gamma(D_t v) = 0. \quad \blacksquare$$

Since for $\varphi \in C_{0x}^\infty(\bar{Q})$ $\varphi(x, t) = \varphi(x, 0) + \int_0^t \frac{\partial \varphi}{\partial t}(x, s) ds$

then

$$(1.2) \quad v(x, t) = \text{Tr}_0 v(x) + \int_0^t D_t v(x, s) ds \quad \text{a.e. in } \bar{Q} \quad \forall v \in V.$$

Let $k \geq 0$ be a constant. Let $a, a^*: V \times V \longrightarrow \mathbb{R}$ be bilinear forms given by

$$(1.3) \quad a(u, v) := \int_0^T [D_t u D_t v + D_t u D_t D_t v + k u D_t v] dx dt + \int_{\Omega} [D_t u|_0 D_t v|_0 + k u|_0 v|_0] dx$$

$$(1.4) \quad a^*(u, v) := \int_0^T [D_t u D_t v - D_t u D_t D_t v - k u D_t v] dx dt + \int_{\Omega} [D_t u|_T D_t v|_T + k u|_T v|_T] dx$$

where $v|_0$, $D_t v|_0$ and $v|_T$, $D_t v|_T$ are corresponding traces.

By integrating (1.3) by parts we get that these forms are adjoint i.e.

$$(1.5) \quad \forall u, v \in V \quad a(u, v) = a^*(v, u)$$

and also that the bilinear form $e : V \times V \rightarrow \mathbb{R}$ given by

$$(1.6) \quad e(u, v) := \frac{1}{2} [a(u, v) + a^*(u, v)]$$

is symmetric. Its integral shape is the following

$$(1.7) \quad e(u, v) = \int_0^T [D_t u D_t v] dx dt + \frac{1}{2} \int_{\Omega} [D_t u|_0 D_t v|_0 + k u|_0 v|_0] dx + \frac{1}{2} \int_{\Omega} [D_t u|_T D_t v|_T + k u|_T v|_T] dx .$$

Lemma 3. The form $e : V \times V \rightarrow \mathbb{R}$ is strictly positive

$$\forall v \in V \quad e(v, v) \geq 0 \quad \text{and} \quad e(v, v) = 0 \iff v = 0$$

Proof. Since k is a nonnegative constant $e(v, v) \geq 0$. Let $e(v, v) = 0$, then from equality $\int_0^T (D_t v)^2 dx dt = 0$ we have $D_t v = 0$ in $L^2(Q)$. By Friedrich's inequality [5]

$$\exists C > 0 \quad \forall w \in H_0^1(\Omega) \quad \|w\|_{H_0^1(\Omega)} \leq C \sum_{i=1}^n \|D_i w\|_{L^2(\Omega)}$$

and from $\int_{\Omega} (D_i v|_0)^2 dx = 0$ we get that $\text{Tr}_0 v = 0$.

Finally by (1.2) $v = 0$. \blacksquare

This lemma permits us to introduce a new norm in the space V .

D e f i n i t i o n. The function $\|v\|_V := \sqrt{e(v, v)}$ is the norm in the space V and $e(\cdot, \cdot)$ is a scalar product in V .

The space \bar{V} is a completion of V in the norm $\|\cdot\|_V$ and it is a Hilbert space with this product.

By $V(\Delta)$ we denote the space of all functions $v \in V$ such that $D_i D_i v \in L^2(Q)$.

We remark that from the continuity of the operators of trace Tr_0, Tr_T in $(V, \|\cdot\|_H)$ we have the following estimates

$$(1.8) \quad \|v\|_V \leq C \|v\|_H$$

and a following lemma.

L e m m a 4. The space $V(\Delta)$ is dense in V .

P r o o f. From the density of $C_{0x}^\infty(\bar{Q})$ in $(V, \|\cdot\|_H)$ and from the inequality (1.8) we obtain that $C_{0x}^\infty(\bar{Q})$ is dense in $(V, \|\cdot\|_V)$. Since $C_{0x}^\infty(\bar{Q}) \subset V(\Delta)$ we get our lemma. \blacksquare

The bilinear forms a, a^* have the following continuity conditions in this new norm.

L e m m a 5. For every $v \in V(\Delta)$ there exist constants $C_1, C_2 > 0$ depending on v such that for all $u \in V$

$$(1.9) \quad |a(u, v)| \leq C_1(v) \|u\|_V$$

$$(1.10) \quad |a^*(u, v)| \leq C_2(v) \|u\|_V.$$

Proof. Integrating by parts (1.4) we obtain

$$\begin{aligned} a(u, v) = a^*(v, u) &= \int_0^T [D_t v D_t u + D_1 D_1 v D_t u - kv D_t u] dx dt + \\ &+ \int_{\Omega} [D_1 v|_T D_1 u|_T + kv|_T u|_T] dx \end{aligned}$$

and from Schwartz's inequality

$$\begin{aligned} |a(u, v)| &\leq \int_0^T |D_t v + D_1 D_1 v - kv| |D_t u| dx dt + \\ &+ \int_{\Omega} [|D_1 v|_T |D_1 u|_T + k|v|_T |u|_T] dx \leq C_1(v) \|u\|_v. \end{aligned}$$

Proof of the inequality (1.10) is similar. ■

2. Formulation of the variational problem

For $f_Q \in L^2(\Omega)$ and $f_0 \in H_0^1(\Omega)$ we define a linear functional
 $f : V \longrightarrow \mathbb{R}$ by

$$(2.1) \quad \langle f, v \rangle := \int_0^T f_Q D_t v dx dt + \int_{\Omega} [D_1 f_0 D_1 v|_0 + k f_0 v|_0] dx.$$

It is obvious that

$$(2.2) \quad |\langle f, v \rangle| \leq C \|v\|_v \quad \forall v \in V.$$

We state our initial-boundary value problem in the following variational formulation :

$$(2.3) \quad \left[\begin{array}{l} \text{Find } u \in V \text{ such that :} \\ a(u, v) = \langle f, v \rangle \quad \forall v \in V. \end{array} \right]$$

We denote this problem by VP.

The equality : $a(v, v) = e(v, v) = \|v\|_v^2$ implies that this problem has at least one solution. The above formulation is

Justified by the following

Theorem 1. Let $u \in V$. Then u is a solution of VP iff it is a solution of the following IBV (initial-boundary value) problem

$$(2.4a) \quad D_t u - D_1 D_1 u + ku = f_0 \quad \text{in } L^2(Q),$$

$$(2.4b) \quad \text{Tr}_0 u = f_0 \quad \text{in } H_0^1(\Omega),$$

$$(2.4c) \quad \text{Tr}_\Gamma u = 0 \quad \text{in } L^2(\Gamma).$$

Proof. (\Rightarrow) Let $u \in V$ be a solution of VP. Identity (2.3) with

$v(x, t) = \int_0^t \varphi(x, s) ds$ for any function $\varphi \in C_0^\infty(Q)$ yields

$$(2.5) \quad \int_0^t [D_t u \varphi + D_1 u D_1 \varphi + ku \varphi] dx dt = \int_Q f_0 \varphi dx dt.$$

By definition of the distributional derivative D_1 we obtain (2.4a) in the space of distribution $\mathcal{D}'(Q)$. Since $f_0 \in L^2(Q)$ the left side of (2.4a) is a regular distribution. So $D_1 D_1 u \in L^2(Q)$ and (2.4a) is the equality in $L^2(Q)$. Now we take v such that

$$v(x, t) = \varphi_0(x) + \int_0^t \varphi(x, s) ds \text{ for any } \varphi_0 \in C_0^\infty(\Omega) \text{ and } \varphi \in C_0^\infty(Q).$$

Because (2.5) is still valid for all such v we get the following weak elliptic equation in $H_0^1(\Omega)$

$$\int_\Omega [D_1(u|_0 - f_0) D_1 \varphi_0 + k(u|_0 - f_0) \varphi_0] dx = 0 \quad \forall \varphi_0 \in C_0^\infty(\Omega)$$

which has a unique trivial solution. Hence $u|_0 = f_0$ in $H_0^1(\Omega)$. Finally we recall that (2.4c) is valid for all elements $v \in V$ (cf (1.2)).

The reverse implication (\Leftarrow) is obvious. Indeed, multiplying (2.4a) by $D_t v$ for any $v \in V$ and integrating by parts we obtain (2.5) with $\varphi = D_t v$. From (2.4b) we have for all $v \in V$

$$\int_{\Omega} [D_i u|_0 D_i v|_0 + k u|_0 v|_0] dx = \int_{\Omega} [D_i f|_0 D_i v|_0 + k f|_0 v|_0] dx$$

and finally equality (2.3) holds. ■

Corollary. $D_i D_i u \in L^2(Q)$ is a necessary condition for the existence of the solution of the VP.

We associate the adjoint variational problem to VP denoted by VP^* using the "mirror method" (cf [1], [4]).

$$(2.6) \quad \boxed{\begin{array}{l} \text{Find } u \in V \text{ such that :} \\ a^*(u, v) = \langle g, v \rangle \quad \forall v \in V. \end{array}}$$

where $g : V \longrightarrow \mathbb{R}$ is a linear functional given by

$$(2.7) \quad \langle g, v \rangle := \int_0^T g_0 D_t v dxdt + \int_{\Omega} [D_i g_T D_i v|_T + k g_T v|_T] dx \quad \forall v \in V$$

for $g_0 \in L^2(Q)$ and $g_T \in H_0^1(\Omega)$. This VP^* is equivalent to the following terminal-boundary value problem

$$(2.8a) \quad D_t u + D_i D_i u + k u = g_0 \quad \text{in } L^2(Q),$$

$$(2.8b) \quad \text{Tr}_T u = g_T \quad \text{in } H_0^1(\Omega),$$

$$(2.8c) \quad \text{Tr}_{\Gamma} u = 0 \quad \text{in } L^2(\Gamma).$$

3. Existence and uniqueness of a solution of the generalized variational problem

Lemma 4 permits us to define a generalized variational problem. For $v \in V(\Delta)$ we define the linear functional

$P_v : V \longrightarrow \mathbb{R}$ by

$$(3.1) \quad \langle P_v, u \rangle := a(u, v) \quad \forall u \in V.$$

Because it is continuous in $(V, \|\cdot\|_V)$ (cf (1.9)) there exists only one extension of P_v to \bar{V} which we denote by \bar{P}_v . Similarly, there exists the extension \bar{f} of the continuous functional f (2.1-2).

D e f i n i t i o n. The generalized variational problem denoted by GVP is

$$(3.2) \quad \left[\begin{array}{l} \text{Find } u \in \bar{V} \text{ such that :} \\ \langle \bar{P}_v, u \rangle = \langle \bar{f}, v \rangle \quad \forall v \in V(\Delta). \end{array} \right]$$

We remark that if the solution u of GVP belongs to V it is a solution of VP in the sense of (2.3).

We shall state a certain general version of the Lax-Milgram theorem. Similar theorem can be found in [2], [3].

L e m m a 5. Let X be a normed space with the scalar product $[\cdot, \cdot]$ and the Hilbert space Y be the completion of X in the norm $\|\cdot\|$. If $F : Y \longrightarrow \mathbb{R}$ is a linear and continuous functional and $A : Y \times X \longrightarrow \mathbb{R}$ is a bilinear form satisfying the following conditions

$$(3.3) \quad \forall v \in X \quad \exists C > 0 \quad \forall u \in Y \quad |A(u, v)| \leq C(v) \|u\|$$

$$(3.4) \quad \exists \alpha > 0 \quad \forall v \in X \quad A(v, v) \geq \alpha \|v\|^2$$

then a variational problem

$$(3.5) \quad \left[\begin{array}{l} \text{Find } u \in Y \text{ such that :} \\ A(u, v) = \langle F, v \rangle \quad \forall v \in X, \end{array} \right]$$

has exactly one solution.

Proof. From the above conditions and the Riesz theorem the identity $A(u, v) = [u, Sv]$ defines the linear mapping $S : X \rightarrow Y$ which is one to one onto $D := S(X)$. Indeed, if $Sv = 0$ then $0 = [v, Sv] = A(v, v) \geq \alpha \|v\|^2$ implies $v = 0$. The inequality

$$(3.6) \quad \alpha \|v\|^2 \leq A(v, v) = [v, Sv] \leq \|v\| \|Sv\|$$

gives that there exists the inverse operator $S^{-1} : D \rightarrow X$ such that $\forall w \in D \quad \|S^{-1}w\| \leq \frac{1}{\alpha} \|w\|$.

Because the functional F is continuous the linear functional $G : D \rightarrow \mathbb{R}$ defined as $G := F \circ S^{-1}$ is also continuous, indeed for all $w \in D$ we have

$$(3.7) \quad |\langle G, w \rangle| = |\langle F, S^{-1}w \rangle| \leq C \|S^{-1}w\| \leq \frac{C}{\alpha} \|w\| \quad \forall w \in D.$$

The domain D of functional G is dense in Y . For $v_0 \in \bar{D}^\perp$ we can find a sequence $v_n \in X$ such that $v_n \rightarrow v_0$ in Y . If there exists $v_k \in \bar{D}^\perp$, $\|v_k\| > 0$ then we have $0 = [v_k, Sv] = A(v_k, v)$ for all $v \in X$, also for $v = v_k$. Thus $0 = A(v_k, v_k) \geq \alpha \|v_k\|^2 > 0$

which is a contradiction. Therefore all $v_n \in \bar{D}^\perp$ and we have

$$0 = [v_n, v_0] \rightarrow [v_0, v_0] = \|v_0\|^2 \text{ which implies } v_0 = 0.$$

Hence the functional G has only one extension \bar{G} on Y . Once again using the Riesz theorem, we conclude that there exists exactly one element $u \in Y$ such that $\langle \bar{G}, w \rangle = [w, u]$ for all $w \in Y$. This element u is a solution of (3.5) because and for all $v \in X$ and $w = Sv$

$$A(u, v) = [u, Sv] = [u, w] = \langle \bar{G}, w \rangle = \langle F, S^{-1}w \rangle = \langle F, v \rangle$$

is fulfilled. ■

Existence and uniqueness of the solution of GVP follows from this lemma.

Theorem 2. The generalized variational problem (GVP) has exactly one solution in the space \bar{V} .

Proof. It is easy to verify that for $X = V(\Delta)$, $Y = \bar{V}$, $F = \bar{f}$ and $A : Y \times X \rightarrow \mathbb{R}$, $A(u, v) := \langle \bar{P}_v, u \rangle$ the assumptions of Theorem 2 are fulfilled.

(cf lemmas 4,5 and the equality for $v \in V$ $A(v, v) = e(v, v) = \|v\|_v^2$). ■

4. Variational principle

For a, a^*, f, g we define a bilinear form $\hat{a} : \hat{V} \times \hat{V} \rightarrow \mathbb{R}$ and a linear functional $\hat{f} : \hat{V} \rightarrow \mathbb{R}$ by

$$\begin{aligned}\hat{a}(\hat{u}, \hat{v}) &:= a(u_1, v_2) + a^*(u_2, v_1), \\ \langle \hat{f}, \hat{v} \rangle &:= \langle f, v_2 \rangle + \langle g, v_1 \rangle,\end{aligned}$$

where $\hat{u} := (u_1, u_2)$ and $\hat{v} := (v_1, v_2)$ are elements of the space $\hat{V} := V \times V$. Since the forms a, a^* are adjoint (cf (1.5)) the form \hat{a} is selfadjoint. This fact permits us to associate the VP and VP^* problems with a certain functional whose variation is vanishing on solutions of these adjoint problems.

Theorem 3. Let $\hat{u} = (u_1, u_2) \in \hat{V}$. Then \hat{u} is a solution of the problem

$$\left[\begin{array}{l} \text{Find } \hat{u} = (u_1, u_2) \in \hat{V} \text{ such that :} \\ a(u_1, v) = \langle f, v \rangle \\ a^*(u_2, v) = \langle g, v \rangle \quad \forall v \in V \end{array} \right. \quad \begin{array}{l} (4.9a) \\ (4.9b) \end{array}$$

iff \hat{u} is a critical point of the functional $X : V \times V \rightarrow \mathbb{R}$

$$(4.10) \quad X(u_1, u_2) := a(u_1, u_2) - \langle f, u_2 \rangle - \langle g, u_1 \rangle .$$

P r o o f. Since $\hat{a}(\hat{u}, \hat{u}) = 2a(u_1, u_2)$ for all $\hat{u} = (u_1, u_2) \in \hat{V}$ it is possible to write the functional X in the following form

$$X(\hat{u}) = \frac{1}{2} \hat{a}(\hat{u}, \hat{u}) - \langle \hat{f}, \hat{u} \rangle .$$

$$\text{Then } \langle X'(\hat{u}), \hat{v} \rangle := \lim_{t \rightarrow 0} \frac{1}{t} [X(\hat{u} + t\hat{v}) - X(\hat{u})] = \hat{a}(\hat{u}, \hat{v}) - \langle \hat{f}, \hat{v} \rangle$$

$\forall \hat{v} \in \hat{V}$ and $X'(\hat{u}) = 0$ iff $\hat{a}(\hat{u}, \hat{v}) = \langle \hat{f}, \hat{v} \rangle$ for all $\hat{v} \in \hat{V}$.

Finally we remark that $\hat{u} = (u_1, u_2) \in \hat{V}$ is a solution of the system (4.9) iff it fulfills the last equality. ■

REFERENCES

- [1] W. D. Collins : Dual extremum principles for the heat equation, Proceedings of the Royal Society of Edinburgh, 77A, (1977), 273-293.
- [2] J. L. Lions : Equations différentielles opérationnelles et problèmes aux limites, Springer-Verlag, Berlin (1961).
- [3] H. Marcinkowska : On internal approximation of parabolic problems, Ann. Polon. Math. 42(1983), 173-180.
- [4] P. M. Morse, H. Feshbach : Methods of Theoretical physics, vol. I, McGraw Hill, New York (1953).
- [5] J. Nečas : Les méthodes directes en théorie des équations elliptiques, Academia, Prague (1967).
- [6] J. Skwierczyński : Variational formulation for a hyperbolic problem (in this issue).

J. Wyborski

INSTITUTE OF MATHEMATICS, TECHNICAL UNIVERSITY OF WARSAW,
00-661 WARSZAWA

Received January 28, 1988.