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VARIATIONAL FORMULATION FOR A HOMOGENEOUS 

DIRICHLET PROBLEM FOR A PARABOLIC EQUATION 

This work deals with a variational formulation In a 
closed subspace of the Sobolev-type space for the parabolic 
equation with the homogeneous Dirichlet condition. A 
variational principle is constructed i.e. the functional 
such that Its critical point corresponds to a solution of 
the system of the initial and some terminal-boundary value 
problem. 

1. Preliminaries 
The parabolic equation Is considered in a bounded domain 

Q := il x (0,T) where T > 0 and Q is an open bounded domain 
of IRm with a Lipschitz boundary an (in the sense of Necas 
[5]). We denote the parts of boundary 3Q by ilQ := 0 x {0}, 
ilT := n X {T}, r := an X (0,T). We define a Sobolev-type-
space 

H : = { v e L2(Q) : Dtv, Dv, D D v e L2(Q) for 1 = 1 m } 

where D ^ are distributional derivatives. This space is 
the Hilbert space with the scalar product given by 

(1. 1) (u,v) := f[uv + D u D v + D u D v + D D u D D v ] dxdt H J t t 1 I I t L t 
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and the corresponding norm | • || . Here and below we shall 
use the Einstein convention for the sum 

m 
D u D v : = V D u D v and (D u)2 := D u D u. l i u l i i 1 1 1 = 1 

For a formal description of the boundary condition on r 
we introduce a closed linear subspace V of H. 

D e f i n i t i o n . Let Cw (Q) be the set of all Ox 
functions infinitely differentiable in Q which vanish in 
some neighbourhood of T. Then V is the closure of C°° (Q) in Ox 
H. Under the assumption on the boundary dii the measure y on 
T and the space L (D are well defined and the following 
lemma is true [5]. 

L e m m a 1. There are the linear and continuous 
operators of trace : 
Tr : H > H^fl) Tr : H > H^fl) Tr„ : H > L2(D. • 
o T r 
We remark that there exists Trj,(Dtv) e L (D the trace 

of the derivative Dfcv on L2(D. From the definition of the 
space V there follows 

L e m m a 2. For all v € V , Tr v, Tr v e H 1^) and O T O 

Trpv = Trr(Dtv) =0. • 
Since for <p e C°° (Q) <p(x,t) = ?>(x,0) + f |^(x,s)ds Ox J at 0 then 

(1.2) v(x,t) = Trv(x) + f D v(x,s)ds a.e. in Q V v e V. 
o 

Let k a 0 be a constant. Let a,a : V x V > IR be bilinear 
forms given by 
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(1.3) a(u, v) := | [ D u D v + D u D D v + kuD v] dxdt + 
Q 

+ f [D u, D v. +ku, v,]dx J 1 |o 1 |o |o |o 
n 

(1.4) a*(u,v) := [ [ D u D v - D u D D v - kuD v] dxdt + 
Q 

+ I [D u, Dv, +ku, v,]dx J L |T I |T |T |T 
n 

where v, , D v, and v. , Dv, are corresponding traces. |o i |o |t I |T 
By Integrating (1.3) by parts we get that these forms 

are adjoint i.e. 

(1.5) V u,v € V a(u,v) = a*(v,u) 

and also that the bilinear form e : V x V » IR given by 

(1.6) e(u,v) := i [a(u,v) + a*(u,v)] 

is symmetric. Its integral shape is the following 

(1.7) e(u, v) = ID U D v dxdt + ^ f [ D u, Dv, + ku, v, ]dx + J t t 2 J l |o l |o |o [o 
n 

+ i f [ D u . Dv. +ku, v , ] d x . 2 J I |T I |T |T |T 

n 
L e m m a 3. The form e : V x V » IR is strictly 

positive 
V v e V e(v,v) £ 0 and e(v,v) = 0 «=» v = 0 

P r o o f . Since k is a nonnegative constant e(v,v)a 0. 
Let e(v,v) = 0, then from equality £ (Dtv)2 dxdt = 0 we 

have Dfcv = 0 in L2(Q). By Fridrich's inequality [5] 

- 919 -



J. Wyborski 

3 0 0 V w 6 Hj(Q) |w| s C £ |D v| 
0 h (n) 1=1 1 L (n) 0 

and from f (D v, )2dx = 0 we get that Tr v = 0. J l | o o 
n 

Finally by (1.2) v = 0. • 
This lemma permits us to introduce a new norm in the 

space V. 
D e f i n i t i o n . The function Jv|y := <le(v, v) 1 is 

the norm in the space V and e(-,-) is a scalar product in V. 
The space V is a completion of V in the norm J * a n d it 

is a Hilbert space with this product. 
By V(A) we denote the space of all functions v e V such 

that D D v € L2(Q). 
We remark that from the continuity of the operators of 

trace Tr , Tr in (V, D - I ) we have the following estimates o T " "H 

d-8) M V * C | V | h 

and a following lemma. 
L e m m a 4. The space V(A) is dense in V. 
P r o o f . From the density of C w (Q) in (V, M ) and Ox 11 11H 

from the inequality (1.8) we obtain that C (Q) is dense in Ox 
(V, llvll ). Since C°° (Q) c V(A) we get our lemma. • H HV 0 x o 

The bilinear forms a,a have the following continuity 
conditions in this new norm. 

L e m m a 5. For every v e V(A) there exist constants 
Ci.Ca > 0 depending on v such that for all u e V 

(1.9) |a(u, v) | * C^v) |u|y 

(1.10) |a*(u, v) | s C2(v) ||u||v . 
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P r o o f . Integrating by parts (1.4) we obtain 

a(u, v) = a*(v,u) = [ [ D v D u + D D v D u - kvD u] dxdt + J t t i i t t Q 

+ r [D v, D u, + kV| u. ] dx J l |T l |T |T |T 
Q 

aind from Schwartz's inequality 

|a(u,v)| s £ |Dtv + D ^ v - kv||Dtu| dxdt + 

+ I [ I V |T I I D1 U|T I + k l V|TLLU | T l ] d X £ C1(V)IIUIIV • 
n 

Proof of the inequality (1.10) is similar. 

2. Formulation of the variational problem 
For f € L2(iJ) and f € H^Q) we define a linear functional Q o o 

f : V > R by 

(2.1) <f,v> := := f f D v dxdt + [ [Df Dv, + kf v, ] dx • 
i 0 * i 1 0 1 1° 0 1° 

It is obvious that 

(2.2) |<f-v>| s c ¡vlv V v e V. 

We state our initial-boundary value problem in the 
following variational formulation : 

(2.3) 
Find u e V such that : 

a(u,v) = <f,v> V v e V 

We denote this problem by VP. 
The equality : a(v,v) = e(v,v) = |v||y implies that this 
problem has at least one solution. The above formulation is 

- 921 -



J. Wyborskl 

Justified by the following 
T h e o r e m 1. Let u e V. Then u is a solution of VP 

iff it is a solution of the following IBV (ini ti al-boundary 
value) problem 

(2.4a) D u - D D u + ku = f in L2(Q) , t i l Q 
(2.4b) Tr u = f in H^fl) , 

0 0 0 

(2.4c) Trpu » 0 in L Z(D . 

P r o o f . (—•) Let u € V be a solution of VP. Identity 
(2.3) with 

v(x,t) = I f>(x,s)ds for any function <p e Cœ(Q) yields 
o 

(2.5) £ <p + DjU D ^ + ku <p ] dxdt = j" fQ<p dxdt 

By definition of the distributional derivative D we obtain 
(2.4a) in the space of distribution 2>'(Q). Since fQ€ L2(Q) 
the left side of (2.4a) is a regular distribution. So 
D ^ u e L2(Q) and (2.4a) is the equality in L2(Q). Now we 
take v such that 

t ' ^ 
v(x,t)= <p (x)+ | ®(x,s)ds for any ® e C^iti) and w 6 C^iQ). o J o o o o 

Because (2.5) is still valid for all such v we get the 
following weak elliptic equation in 

I 
n 

tD (u, - f )D <p + k(u, - f )<p ]dx = 0 V <p € Cw(n) t o o ro o o ro *o o 

which has a unique trivial solution. Hence Ui = f in H1 (£2). |o o o 
Finally we recall that (2.4c) is valid for all elements ve V 
(cf (1.2)). 
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The reverse implication (4—) is obvious. Indeed, 
multiplying (2.4a) by for any v e V and Integrating by 
parts we obtain (2.5) with qp • Dtv. From (2.4b) we have for 
all v € V 

[ [Dui D v, + ku, V, 1 dx = f [Df Dvi + kf v, ]dx J 1 |o 1 |o 10 10 J 1 0 1 |o 0 |o 
n n 

and finally equality (2.3) holds. • 
C o r o l l a r y . ^ ^ u € L (Q) Is a necessary 

condition for the existence of the solution of the VP. 
We associate the adjoint variational problem to VP 

denoted by VP* using the "mirror methpd" (cf [1], [4]). 

f Find u € V such that 
(2.6) " 

a*(u,v) = <g,v> V v € V . 

where g : V » R is a linear functional given by 

(2.7) <g,v>:= f gQDtv dxdt + J [ D g ^ v ^ k g ^ l d x V veV 
n 

for g e L2(Q) and g € H1 Cil). This VP* is equivalent to the 
0 T O 

following terminal-boundary value problem 
(2.8a) + D ^ u + ku = gQ in L2(Q) , 

(2.8b) T r u = g„ in H^(fl) , T T 0 
(2.8c) Trpu = 0 in L 2(D . 

3. Existence and unlquness of a solution of the 
generalized variational problem 

Lemma 4 permits us to define a generalized variational 
problem. For v 6 V(A) we define the linear functional 
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P : V > IR by 
V 

(3.1) <P ,u> a(u,v) V u c V . v 

Because it is continuous in (V,1-1 ) (cf (1.9)) there exists v 
only one extension of P to V which we denote by P . 

V V 

Similarly, there exists the extension f of the continuous 
functional f (2.1-2). 

D e f i n i t i o n . The generalized variational 
problem denoted by GVP is 

Find u e V such that 
(3.2) ; 

<P ,u> = <f,v> V v € V(A) v 

We remark that if the solution u of GVP belongs to V It 
is a solution of VP in the sense of (2.3). 

We shall state a certain general version of the Lax-
Mllgram theorem. Similar theorem can be found In [2], [3]. 

L e m m a 5. Let X be a normed space with the scalar 
product [*,•] and the Hllbert space Y be the completion of X 
in the norm J•| . If F : Y » R is a linear and continuous 
functional and A : Y x X » R is a bilinear form 
satisfying the following conditions 

(3.3) V v e X 3 C > 0 V u e Y |A(u,v)| s C(v)|u| 
(3.4) 3 a > 0 V v e X A(v,v) £ a||v| 

then a variational problem 

Find u e Y such that : 

A(u,v) = <F,v> V v e X 

2 

(3.5) 

has exactly one solution. 
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P r o o f . From the above conditions and the Riesz 
theorem the identity A(u,v) = [u,Sv] defines the linear 
mapping S : X » Y which is one to one onto D := S(X). 
Indeed, if. Sv = 0 then 0 = [v,Sv] = A(v,v) t oc|v|2 Implies 
v = 0. The Inequality 

(3.6) a|v|2 s A(v,v) = [v,Sv] * iv|||Sv| 

gives that there exists the invers operator S-1 : D > X 
such that V w € D |S_1w| s i Jw|. 
Because the functional F is continuous the linear functional 
G : D > IR defined as G := F « S-1 is also continuous, 
Indeed for all w € D we have 

(3.7) |<G, w> | = |<F, S_1w> | s CjS_1wJ s £ |w| V w € D. 

The domain D of functional G is dense in Y. For v e D1 we o 
can find a sequence v € X such that v — > v in Y. If there _ n n o 
exists v e D , ||v I > 0 then we have 0 = [v ,Sv] = A(v ,v) k " k" k k 
for all v e X, also for v = v . Thus 0 = A(v ,v ) a allv ||2>0 k k k k 
which is a contradiction. Therefore all v e D and we have n 

2 
0 = [v ,v ] » [v ,v ] = llv I which implies v = 0. n O 0 0 " 0" 0 
Hence the functional G has only one extension G on Y. Once 
again using the Riesz theorem, we conclude that there exists 
exactly one element u e Y such that <G,w> = [w,u] for all 
w e Y. This element u is a solution of (3.5) because and for 
all v e X and w = Sv 

A(u, v) = [u, Sv] = [u.w] = <G,w> = <F,S_1w> = <F,v> 

is fulfilled. • 

- 925 -



J. Wyborski 

Existence and uniquness of the solution of GVP follows 
from this lemma. 

T h e o r e m 2. The generalized variational problem 
(GVP) has exactly one solution in the space V. 

P r o o f . It is easy to verify that for X = V(A), Y= V, 
F = f and A : Y x X » R, A(u,v) := <P ,u> the assumptions 

V 
of Theorem 2 are fulfilled. 
(cf lemmas 4,5 and the equality for v e V A(v,v) = e(v,v) = 
= M>. 

4. Variational principle 
For a,a ,f,g we define a bilinear form a : V x V > R 

and a linear functional f : V > R by 

a(u,v) := a(ui>v2) + a*(u .v^ , 

<f,0> := <f,v2> + <g,v> , 

where u := (u ,u ) and v := (v ,v ) are elements of the 1 2 1 * * 
space V := V x V. Since the forms a,a are adjoint (cf (1.5)) 
the form a is selfadjoint. This fact permits us to associete 
the VP and VP problems with a certain functional whose 
variation is vanishing on solutions of these adjoint problems. 

T h e o r e m 3. Let u = (u ,u ) € V. Then u is a 1 2 
solution of the problem 

Find u = (u ,u ) e V such that : 1 2 
a(u^,v) = <f,v> (4.9a) 

(4.9b) 

iff u is a critical point of the functional X : V x V » R 

a (u ,v) = <g,v> V v € V 
2 

- 926 -



Homogeneous Dirlchlet problem 

(4. 10) X(u , u ) := a(u ,u ) - <f,u > - <g,u > . 1 2 1 2 2 1 
P r o o f . Since a(u,u) = 2a(u ,u ) for all u = (u ,u )e V 1 2 1 2 

it is possible to write the functional X in the following 
form 

A 1 A A A A A 

X(u) = ^ a(u,u) - <f,u> . 

Then <X'(u),v> := lim ^ [ X(u+tv) - X(u)] = a(u,v) - <f,v> 
t—> o 

V v e V and X'(u) = 0 iff a(u,v) = <f,v> for all v e V . 
Finally we remark that u = (u ,u ) e V is a solution of the 
system (4.9) iff it fulfils the last equality. • 
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