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Mieczyslaw Krél

ON SOME RETROSPECTIVE AND PROSPECTIVE EQUATIONS
FOR A VECTOR-VALUED QUASI-DIFFUSION PROCESS

Let <Q,F,P> be a probability space, To = [to,T) c R, and

let Xt: Q x To — R" be a m-dimensional stochastic process.

Further, let t = t< ... <t<t<T<T, t =<t,...,t>,
o 1 n n 1 n
2 = <X ,...,X> € R , Where x = <x1,...,x" > € Rm, for
n 1 n k k k
K=1,...,n, x = <x',...,x®> e R®, and A,B € B°, where 3"

is a o—algebra of Borel sets in R".

In papers [1], (2], [3] there are given definitions of a
quasli-diffusion process and there are investigaied
properties of this process in the one-dimensional case.
Since quasi-diffusion processes are useful for description
and stochastic investigation of some system of storage, it
is of great importance to find their properties for the
m-dimensional case with m > 1. In our paper, we are going to
prove the Kolmogorov-type retrospective and prospective
theorem for a non-Markov vector~valued quasi-diffusion
process Xc .

We are calling the m-dimensional process Xt with values
in R" a quasi-diffusion process if for n = 1 and for

>

arbitrarily chosen ¢ > O, tn, t, T, 2;, X the following

conditions are fulfilled ([2]) :
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1 ’ -
(1) lim — P? '3 (t,x,t.ve(x)) =0,
T t n
1 -
(2) 1lim — I (y-x) P? ’;> (t,x;T,dy) = A? ’;> (t,x) ,
T— t n n n n
Ve(x)

1 _ ,
(3) 1lim e I (y—x,z)zP? ’: (t,x;T,dy)= (B? ’§ (t,x)z,z)
T t n n n n
Ve(x)

for z = <z',...,2% € R® where Py 2 (t,x;T,A) is the

probability of the event that the quasi-diffusion process is
in the state belonging to the Borel set A at the moment =,
while it was in x ,...,xn,x states at earlier moments t1""

1
, tn,t. It means that in general we have

P> (t,X;T,A) =P(X_e€A | X ,...,X ,X).
£ cooXy t T t LI

Moreover,
V) ={yeR: |yx| <e}, Vi(x) =R -V_(x),

Ay 3 (t,x) = <Ad 3 (t,x), ..., A3 5 (t,x) >,
t ,x t ,x t ,x
n n . n n n
where
AS 5 (t,x) = 1lim I (y*- ) P> 3 (t,x;7,dy)
€ ,x ’ t € ,x sy by ’
n T Dt n n
v (x)
€
for k=1,...,m and

B> - (t,x) = [ibf)"-) (t,x) 1,
t ,x tn,x

1,J=1,...,m 1is a positively defined matrix for which.
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Retrospective and prospective equations

i,] _ 1 11 S )
b? ,3 (t,x)= 1lim T—% I (y-x)ly-x )P? 2 (t,x;x,dy),
n n T — t n n
v _(x)
€
for 1,J=1,...,m.

We denote as (B? 2 (t,x)z,z) and (y-x,z) the scalar
products. For example

m m
- 1,) i)
(B? ’3 (t,x)z,z) = X z b? ’3 (t,x) z 2z’ .
n n i=1 j=1 n n

We will wuse the following notation for differential

operators
© 1 d
(A> » (t,x),V) = Z A> o (t,x) — ,
t ,x t ,x i
n’n 1=1 n’n ax
n m 1, a2
(B 2 (£,x)V,V) = z Zb—t)’;)(t,x) —
n n i=1 j=1 n n ox 8dx

Let g : R® —— R denote a function integrable in R" with
respect to probability measures P? 2 (t,x;T,dy), for all

g;, t, T, 2;, X, which means that for
uw 2 (t,x;7) := I gly) P?_'3 (t,x;T,dy)
R- n n

we have

lus > (t,%x)| = K < +w .
t ,x
n n

Using now the known equality

(4) Py o (t ,x;%,A) =
t » n n

n-1" n-1

= I Py - (t,x;T,A) P» > (t,x;t,dx)
n t ,x t n n

R n n n-1' "n-1

we easily show that
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(5) u > (t ,x;T) =
t x n n
= I u;)';)(t.y;t) P:) .;) (tn,xn;t.dy) .

RI n n n-1" n-1
Conditions (1)-(3) can be written in the following form :
1" P3> o (t,x;T,V/(x)) = o(x-t) ,

t ,xn €
L J

2" j (y-x) P:)n.;)n(t.X;T.dy) = Ay 3 (%) (-t) + o_(z-t),

’
Vc(x) non

(3" I (y-x,2)°Pp 2 (txiTdy)=(By 3 (£,%)2,2) (v-t)+ o (7-t),
v (x) n n n n
€
where
I (y-x) PZ’,;’ (t,x;t,dy) =
n n

Ve(x)

< I (yl-xl) P? 2 (t,x;‘t,dY)....,I (y™x™) P? 2 (t,x;T,dy >,
n’'n n’ n

v v
e(x) e(x)

I (Y'X.Z)ZP;_) > (t,x;7,dy) =
n'xn

vV _(x)
€
ST 1 1 i
= z z [J-(y"—xj)(y -x') 2’z PZ) ;)(t,x;t,dy] .
1=1 j=1 n’'n
(x)
€

Theorem 1. If conditions (1)-(3) are fulfilled
and the bounded, continuous function g : R®" — R is such

that the function u > (t ,x ;T) posesses continuous
n-1 xn—l non
derivatives
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Retrospective and prospective equations

dusr - (t,x;T) 8%ur» - (t,x;7)
tn,xn tn,xn
i ’ ’ 10J=1""’m0
ax’ axl ax"
then, the function u;) > (tn,x $T) posesses the
n-1’ " n=1 n
derivative

durx o (t ,x;T)
t » X n n
n-1" n-1

at

the following equation is fulfilled

dux o> (t ,x;T)
t x n n

n-1" n-1 =
at
n
= (A > (t,x),Dw - (t,x;T)+
t y X n n t , X n n
n-1" n-1 n-1" n-1
+ % (B> > (t ,x)V,V)u > (t ,x;7),
t » X n n t 3 n n

n-1" n-1 n-1

and the following condition holds
limu» > (t ,x;T) =g(x) .
t N n n n
t T n-1 n-1
n
Proof. Wehavet =t <... <t <t <t <~
[0} 1 n-1 n

Expanding the function uw > (t,y;T) into the corresponding
n' n

Taylor power series in the neighbourhood Ve(xn) of the point

m
xne R we have

(8) u> ,;) (tn,y;'t)— up '-z (t,xn;t) = (y-—x,V)u—t-)n’-; (t,xn;t)+

1 2
t5 (y-x,V) uw 2 (t,xn,'t) +rp 2 (t,‘t,xn,y) ,
n n n n

where y e V(x) ={ z e R" ; |z=x | < €}, and
€ n n
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2
(7) A Ire 2 (L mxsy)| S« |y-x |
n n
2 2
2] u, x (s,y;Tt) @ u, x (s,xn.t)
n n n n
o = sup - ,
1 35 1 J
s€(t ,T) dy dy ax ax
n n
yEV ?x )
1=t y<m
and
(8) l1im &« =0.
(]
€ >0

Moreover, form (5) and (1)-(3) we have

w >t ,x;1)-w > (t,x;T) =
t ,x n n t ,x n
n n n

J' [up > (t.yiT)-wp > (t,x;T)) Pp o (t,x;t,dy) =

[ ] n n n n n-1" n-1

I [up 2 (t,y37)-up > (t,x;T)1Pp
n’'n n-1

» (t ,x;t,dy) +
n n

’Tn-1

Ve(xn)
+ oe(t-tn)~
Using (6) we have

(9) u» > (t,x;T) - uw» - (t,x;T) =
t y X n t ,x n
n-1" n-1 n n
=r> > (t,T;x ) + o (t-t ) +
tn,xn n € n

1 2
[(y xn,V)u?»’z (t,xn,t) * 5 (y-xn,V) u ’? (t,xn,t)]
n n n n
vV (x )
€ n
. P? 2 (tn,xn;t,dy) ,

n-1’ "n-1

where
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Retrospective and prospectlive equations

o (t-t )= uw o (t,y;t)-us > (t,x;T)|P> o (t ,x;t,dy)
€ n t ,x y t ,x n t , X n n
n n n n n-1" n-1
V’(x )
>4 n

- .
rp 2 tmx) = [ ry atmx,yPp 3 (b,xt.dy)
non n-1" n-1
vV (x )
€ n
From (7) we have the inequality

. 2
|r€) 2 (t,'t,xn)| S a I |y-x| P> 3 (tn.xn.t.dy) ,
n n-1’ "n-1
vV (x )
€ n
and consequently using (3) and (8) we have

LN ) ( (b, % )po® Ty_x“ )

lim r- > (t,;x <= a (B> > (t,x ,
|t—) t t'_tn t'n’ xn » | € tn' xn " IY'an y_xnl
n

and this quantity tends to O if only € —»> 0. Since £ is an

arbitrarily chosen number and € > 0, we may write

(10) ry> o (t,t;x ) = o _(t-t ) .
tn,xn n [ 4 n

Finally, from (9), (10), (2), (3), ((2") and (3%)) we

get
uw > (t ,x;T) - u > (t,x;T)
’ n n t ,x n
n-1" n-1 n n =
t -t
n
= (A> 5> (t ,x),V) ud > (t,x;T) +
t » X n n t ,x n
n-1" n-1

1 oe(t—tn)
t5 (B> > (t,x)V,V) us »(t,x;T) +

t s X n n t ,x n
n-1" n-1 nn t —tn

Since partial derivatives of the function uz) ;) (t.kn;'t)
n’'n

are continuous, then taking the limit with t — tn we have
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9

3t U

n n-1

2> (t ,x;71) = (A>
x n n t
n-1 n-1

> (t ,x),V)
X n n

' n-1

cu> o (bt ,x;T) +
t » n n

n-1" n-1

1
"'é‘(B?

n-1

> (t ,x)V,V) w
x n n t
n-1 n-1

> (t ,x;T) ,
X n n

’ n-1

or in the equivalent form

dus - (t ,x;T) . 8wy o> (t ,x;T)
t x n n t x n n

n-1"*n-1 - EA{) n-1

1
n-1 ax
n

8%us 3 (t ,x;T)
t x n n

m
Xb{)"‘ 5> (t ,x) n-l :
1 n-1"%p1 ™" <‘5xn ax

J

1

The second part of our Theorem follows easily from the

equality
w2 (tn,xn;'t) = Ig(y) P> 2 (tn.xn;T»dy) =
n-1’ "n-1 m n-1" n-1
R
= g(x) + I (gly)-g(x)) Py 3 (t ,x;7,dy) =
m n-1" n-1

R

= g(x ) + j (8(y)-g(x ) P»

n-1

2 (tn,xn;-t,dy) + oe(r—tn).

S |

vV (x )
€ n
From our assumption the function g : R" — R is bounded

and continuous. Therefore, taking into account that € 1is

arbirarily chosen we have

lim uw> > (tn,xn;t) = g(xn) .

t 5T n-1' " n-1
n

This completes the proof of our Theorem.
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Let us assume now that the measures P—t) ;) (t,x;T,dy) are
n’ n
absolute continuous with respect to the Lebesgue measure in

R™. It means that there exist functions f? 2 (t,x;T,y) such

that for each set B € 8" we have

(11) Py 2 (t,x7,B) = J'f?’;(t.x;r.y) dy.
n n B n

Theorem 2. If conditions (1)-(3) are fulfilled,

A;_) 2 (t,x) and BE) 2 (t,x) are continuous and such that for

n n
each function f-t-> 5 (t ,x;t,x) there exist continuous
n-1" "n-1 pon
derivatives
8 . -8 f )
sef? 2 (tLx it x), —jAd o (t,x) £3 > (t,x;t,x)|,
t » X n n i t ,x t » X n n
n-1’ "n-1 ox n’'n n~-1’ " n-1
82 \
—_ [b—)"’-) (t,x) f> o (t ,x ;t,x)],
i J t ,x t ,x n’n
ax 9dx n’'n n-1’ "n-1
for i,J=1,...,m, then for x € R" and t > tn we have
8_ £ 3 (t ,x;t,x) +
at ¢ nn"’

’Tn-1

n-1
+ f: a_ AS St x) >
L t.n, xn * t

n-1

> (t ,x ;t,x)] =
b 4 n n

' Ta-1

_ 1 m m 62 1,3
=5 - bE’ ;)(t.x) f;) 2 (tn.xn;t.x) .
1=1 jJ=1 8x Ox n’ n “n-1" "n-1
Proof. Let tst<... ¢t <t<s<t<T and
0 1 n-1 n

let ¢ :R®—> R, ¢ € 6°(R®) be a function such that g(x)= 0

for x ¢ T, where I' is a compact set in R".
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If y € Ve(x) c I', then from the Taylor expansion we have

o(y) = o(x) = (y=x,V) o(x) + % (y-x,N2p(x) + r(x,y) ,

where
2 62¢(x) 62¢(y)
Ir(x,y)| = aely-xl , @, = sup 5T STy |
y€VY (x)! ax 9x 8y 98y
151, §<m
and lim a =0 .

€ >0
Therefore for the arbitrarily chosen € > 0 we have

L [ I oly) P? 2 (s,x;7,dy) - o(x) ] =
RIII n n

TS
. o (t-s)
= = { I lo(y)-p(x)] P 2 (s,x;T,dy) } t3T-s T

vV (x)
€
= ;%g { I [(y-x,V)e(x)] P? ’3 (s,x;T,dy) +
vV _(x) non
€
1 2
t3 I [(y-x,V)"9(x)] P?;,i;(s,x;t,dy) +

vV (x)
€
o (tT-s)
+ I r(x,y) P? 2 (s,x;T,dy) }+ _-—
n’'n

vV (x)

€
Therefore,

1 .
(12) == [ I¢(y) P? ’;) (s,x;T,dy) - ¢(x) ] =

Rm n n
1 o (t-s)
= (A 3 ((s,x),Ne(x) + 5 (Bp 2 (5,x)V,V)p(x) + ——— .,
n n n n

since
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Retrospective and prospective equations

p(x) P:) .-’-‘) (s.x;'t,Ve(x)) = Oe(‘l.'—S) .

Jq’(y) P?.) 2 (s,x;T,dy) = oe(t—s) ,

Vv’ (x)
>4

and »
2

| I @, I ly=x| P> 2 (s,x;T,dy)
n n

V (x) VvV (x)
>4

= y-X y—X - — = -
@, [(B?n’;zn(s,x) [y=x[" l.y"x|)(t s) + oc(t s)] oe(t s)
since € is arbitrarily chosen and o —> 0 as € — 0.

Moreover, it is easy to see that M = sup |¢(x)| < o
x€R™

which means that

(13)

J‘qp(x) P? > (s,xt,dy) - @(x) [ S2M<o.
m n-1’ *n-1

On the other hand, if we use (4) and (13), then we may write

4 -
3t I p(x) P? ’;) (tn,xn,t,x) =

Rm n-1" n-1
= lim — J.q:(x)[Pe 2 (t X T, dx) - P> 9 (t X ;s, dx)
sat n-1 n-l' n—l
R"
™t

sat Lo 1’ *n-1
. .y ] mn n n ne~ -
A R R n

™t

= 1im L I [I go(y)?i) ’;) (s,x;‘t,dy)—v(x)]P? 2 (tn,xn;s.dx)=

1
I lim —s[ w(y)P?’;z(s,x.t,dy)—so(x)]P? 2 (t X ;s,dx)

n sat m n n n-1’ n-1
R
™t

This gives together with (11) and (12)
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Iw(x) P—) ;‘) (tn,xn;t,x) =

n n-1

°’|

n-1" *n-1

R"
= ) _
= I p(x) 3t f? 2 (t ,x;t,x) dx =
R. n n
=I lim f: 2 (t ,x;s,x) [(Ai) > (s5,x),V) o(x) +
R® sat n-1"%a1 " " n’ *n
™e

oe(t-s)
+ ( ’;‘) (S.X)V.V) ?(X) + T_-S_] dx =

N =
5'.?

I [(A? 3> (t,x),V) ¢(x)]f-t> 2> (t ,x;t,x) dx +
n’x _l,x n n

n n-1
R

+ % I [B?.) 2 (t,x)V,V) ¢(x)]f:) > (t,x;t,x) dx =

IRn n n n-1" n-1
- dp(x) ,1
= ¥ I > A 2 (t,x) £2 2 (tn,xn;t,x) dx +
i=1 Rm n n n-1" n-1
m m 2
sy op [ 2 N, 08 o (b Lxt,x) dx .
2 i b ] t ,x t y X n n
1=1 j§=1 R® dx 8x n’'n n-1" "n-1
If we integrate by parts the above integral, then we
have
Be(x) Aé 3> (t,x) f? > (t ,x;t,x) dx =
R™ ax n' *n n—i’xn-l non
p(x) i [Ai) 3> (t,x) f? > (t ,x;t,x) ] dx ,
R™ 6x n’ *n n-l’xn-l pon
and
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J‘ ad ¢(X) b—)’ _) (t X)f‘) > (t » X ;t’,,X) dx =
—'1 J £ ,» X n n
Rn ax 8x n’ n n-1

n-l

I p(x) —— [b—l)”a(t,x)f-a > (t,x;t,x)] dx
ax ax t t x n n

n' n-1’ "n-1

for 1,J=1,...,m. Finally, we have

I p(x) 6_ fo 2 (tn.xn;t,x) dx =

at ¢,
an n-1" n-1
v a 1
= - Z p(x) — [ A? > (t,x) fa 2 (t X st,x)] dx +
i=1 IRln ox n'xn n-l' n-1
1 m m 2
* 3 Z z I¢(X) [ j—) (t, x)f—) > (t .xn;t,x)]dx,
151 351 om ax' ax’ ’ ‘a1’ *p1 °

and since the function ¢ is arblitrarlily chosen it ends the

proof of our Theorem 2.

In the case of m = 1 Theorem 2 (the prospective theorem)
is proved in [1], [2] and [3]. Theorem 1 is a generalization
of the retrospective Kolmogorov equation for the case of

non-Markov quasi-difussion processes.
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