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VARIATIONAL FORMULATION FOR A HYPERBOLIC PROBLEM 

The aim of this work is to give a variational 
formulation of a second Fourier problem for a linear 
hyperbolic equation. We prove the existence and uniqueness 
of a generalized solution of this problem. 

1. Symbols and conventions 
Throughout this paper we use the Einstein summation 

N 
convention writing k x x , i,j=l,..,N instead of Y" k x x . ij l j u lj l J 

i,j=i 
Besides commonly used spaces we use the following ones : 
12 N 

H ' (G) - where G is an open and bounded set in IR , is 
the normed space of functions u € L (G) such that ATU, ATU, A^U, A2U € L2(G), i=i,..,N, 

( a u denotes ^ , (x,t) = (x ,..x ,t) € IRM+1) with the norm i OX 1 N i 
+ 1 1 « - E |a»tu|%> ; H ' H L 1=1 L 

moreover, it is a Hilbert space; 
k 1 

C ' (G), k = 0,1, is the normed space of real functions 
from C (G) such that their derivatives of order k are 
Lipschitz functions. 

Following notations from [2], we denote by M (IR ) the 
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n k 1 class of sets A c R with boundaries of class C ' . 

2. Variational formulation 
Let G c R be an open and bounded set of class 

denote by (n^.-.n^) the outward normal vector to 3G of 
length 1. 

Denote by T = 9G x (0,T), G = G x {0>, G = G * {s}, o s 
r = 3G X (0,s), Q = G X (0,s), s > 0, T > 0, s s T. s s 

Define the following differential problem : 
P r o b l e m I Find ue H2«^) such that 

(1) •u := fl2u - S ^ k ^ u ) + pfl̂ u + qu = f in L (Q^, 

(2) tr, u = <p in H^G), c o 0 
(3) tr. d u = <p in L2(G), 

|Co 1 1 

(4) tr|p k^a^o^ = 0 in L2(D. 

We assume that 

p€ L^iG), pfcO a.e. in G, qe L"°(G) , q*0 a. e. in G, 

f€ L2«^), fQ€ H^G), f»t€ L2(G), 

(5) ktje L^iG), kjj"^, a e- l n G- i>J • 1....N, N * 2; 
there exists a>0 such that 

2 2 k z z fcao(z +.. +z ), z € R, i, J = 1,. . ,N. lj l j l M l J 

Consider besides the following variational problem: 
P r o b l e m 2 Find u€ H1'2«^) such that 

(6) (Lu, v) = F(v) Vve«1'2«^). 
1 2 where Lu: H ' (Q̂ ,) — > R is a linear functional given by : 
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(7) (Lu,v) = f -(Ô u.afv) ds + (8 u,3 v) + 
oJ 1 1 L2CO > 1 1 L (o ) 

• T 

+ f (k 8 u,82 v) ds + 2T(k tr, 8 u.tr, 3 v) + 
oJ 1J J lt L2(Q , lJ l°o J l°o 1 L2(G, 

• 

+ I (q«u,8 v) ds + T(qotr. u,tr. v) + J M ' t 2, . M Ig le 2 0 L (Q ) 1 0 1 0 L (G) 
8 

+ 0,5T(trI u,tr, v) + f (po3 u,3 v) ds G le 2 J t t 2 0 L (G) 0 L (Q ) s 
1 2 and F : H ' (t^) » R Is a line«u~ functional of the form 

(8) F(v) = f ( f , 3 v) , ds + Tif.tr. fl v) + 
J t 2 1 G t 2. . 

0 L (0 ) 1 0 L (G) s 
2T(k a <p , tr I a v) + T(qo«p ,tr, v) + 

i j j * o ' c 1 2 M G 2, % 1 0 L (G) 1 0 L (G) 

+0.5T(© . tr, v) T0 G 2 
1 0 L (G) 

It is easy to verify, that under assumptions (5), 
problem 2 makes sense. One might have noticed that, in a 
formal way, we can get problem 2 from problem 1 by taking the 

2 scalar product in L (Q ) of the latter and d v and next s t 
integrating over [0,T] in ds. This leads us directly to the 
question of the relation between the problems 1, 2. 

Assume that 

(9) k ^ e C0,1(G). 

T h e o r e m 1. If we assume (5) and (9) then problem 
1 has a solution u € H (Qt> iff it is a solution of problem 2. 
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Begin with a proof of a lemma stating the relationship of 
problem 1 to the following intermediate problem. 

P r o b l e m 3 Find ue H 2 ^ ) such that 

(10) (Lu,v) = F(v) V v € H 1 , 2(Q T), 

where 

(11) (Lu,v) = -(a u.afv) „ + (a u,s v) o + t t 2 t t 2. L (Q ) L (GT> 

+ (k a u,a2 v) + 2(k tr, d u,tr. 8 v) + IJ J it 2 IJ C J C 1 2 J J L (Q ) J 1 0 1 1 0 L (G) T 

+ (qou.a^v) + (qotr.u.tr, v) + 
L (Q ) 1 0 1 0 L (G) T 

+ 0,5(tr. u, tr | v) o + (p«8 u,3 v) . G G 2, t t 2, ' 1 0 1 0 L (G) L (QT> 

(12) F(v) = (f,3v) o + (© ,trI a v) o + t 2 1 G v 2 L (Q ) 1 0 L (Q ) T s 
+ 2(k a © ,tr, a v) + (qo© ,tr. v) + 

1J J 0 L°O 1 L2(G, 0 LGO L2(G, 

+ 0 , 5 ( < p t r , V ) . 
1 0 L (G) 

L e m m a 1. Under the assumptions of Theorem 1, 
distribution u e H (Qt) is a solution of problem 1 iff it 
is a solution of problem 3. 

P r o o f . In order to show the implication "=> ", take 
v Ç C°°(Qt), multiply equation (1) by d v and integrate over 
Qt> Taking into account the boundary conditions (2) - (4) and 
in3egrating by parts we get equation (10) for v e C°°(Q ); as 

1 2 such functions are dense in H ' (QT), from the continuity of 
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1 2 
all the expressions in the norm of H ' (Q̂ .), we get the 

desired implication. 

Now we shall show the Implication As u € H 2 ^ ) and 

k € C0,1(G) for i,J=l N, nu e L2(Q )and, if we take in 1J T 
_ t 

equation (10) v € C (Q^ such that v(x,t) = J* ç>(s,x)ds, 
o 

<p € ^()(Qt)> w® easily get the fulfilment of equation (1) 
2 

in the distributional sense; as du and f belong to L (Q̂ .), 

u satisfies (1) in L2(Q ). T 
Now we shall show the fulfilment of the boundary 

conditions (2) - (4). Take v e C^it^) such that 3fcv = 0 in 

the neigbourhood of T. As u fulfils (1), we get (tr, a.u.tr, a.v) + 2(k tr. d u.tr, d v) + 
G t |G t 2 1J G J ' G 1 2 1 0 1 0 L (G) J 1 0 J 1 0 L <G) 

+ (q°tr i u,tr. v) + 0.5(tr, u.tr, v) 
1 0 1 0 L (G) 1 0 1 0 L (G) 

, tr i 9 v) + 2(k a ® ,tr, d v) + 
G t 2, . 1J yo' G 1 2 1 0 L (G) 1 1 1 0 L (G) 

+ ( q « V t r , v ) 2 + 0.5T(*.tr, v) . 
1 0 L (G) I 0 L (G) 

If now we take v such that v(x,0) = 0, then from the 

arbitrariness of 3tv(x,0) we get condition (3). To prove (2) 

take v(x,t) = tr. u - <pQ, v € H
1'2«^), a v = 0. 

' o 

Taking into account that u satisfies (1) and (3), from 

equation (10) we get the equation 

( kU t r|G 0V»
t r|0 0

f l| V )L 2(G, + ((q+°-5)tr|G0
V'tr|C0

V)L2(G, " 0 

which, together with the positive definiteness of k and 

- 891 -



J. Skwlerczyriskl 

the nonnegativeness of q, gives the condition tr, v = v = 0 
i 0 

in H being equivalent to (2). 
As we have proved that u satisfies (1) - (3), from (10) 

and by the assumption that u € H^Q^) we conclude that u 
satisfies (4). This completes the proof of Lemma 1. 

In the proof of Theorem 1 we' shall need two easy facts. 
F a c t 1. If f € l/iO.T), then 

f ( f f(t) dt) ds = f (T-t)of(t) dt. 
0 0 0J 

1 2 F a c t 2. For u,v € H ' (Q^ the mapping s -» tr, 
' s 2 is a continuous function from (0,T) to L (G) and 

(3 u,3 v) = f ( tr. 8u.tr, 3 v) ds, 1 J 2, J G 1 G J 2, . J L (Q ) 0"' 1 s 1 s J L (G) T 

f iitr i a uii2 ds « na uii J G 1 2 1 2 , . 0 1 s L (G) L (Q ) 
T 

P r o o f of Theorem 1. Assume that u €. H2«^) is a 
solution of problem 2. Integrating by parts the first and 
third members of (Lu,v) in (7) and applying facts 1, 2 we 
get the following equation for u: 

((T-t)du,a v) + T(tr| 3 u.tr, d v) + 
t 2 G t G t 2, . L (Q ) 1 0 1 0 L (G) T 

+ J J* tr>r (kt 8 u)otr,r Otv)o^dmds + 
o r ' s ' s s 

+ Tiqotr, u.tr. v) • 2T(k tr, 3u.tr, dv) * 
1 0 1 0 L (G) 1 0 1 0 L (G) 
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+ 0,5T(tr. u,tr, v) = t r v ) 
I O I 0 L (C) 

p ,tr. v) + o c 2 1 0 L (G) 

+ ( (T-t)f.a v) m + T(© ,tr| 3 v) o + - • . - . J> • U I f v I t 2 "1 G t 2 L (Q ) 1 0 L (G) T 
+ 2T(k d ® ,tr, d v) + 0,5T(<p , tr, v) IJ ro' G i 2, , ^o' G 2/#> ' 1 0 L (G) 1 L (G) 

V v e H 1 , 2 ( Q T ) . 

Using fact 1 we can write the following equation 
J. 

(13) J J t r , r (k4 d u)°tr .p Stvonidm ds = 
O p ' s ' ^ I s ^ 

s 
= I (T-t)tr)T,(k a u)otr l T ,a von dm. J |r IJ j [r t i 
r 

Reasoning simmilarly as in the proof of Lemma 1 we 
obtain 

(T-t)nu = (T-t)f in L2(Q ), T 
(T-t)tr|pik^SjU)^ = 0 In L 2(D, 

and conditions (2), (3). As (T-t) e L^iQ ), T-t > 0 in Q , 
thus from (13) we get the fulfilment of (1) and (4). This 
proves that u is a solution of problem 1. 

To prove the reverse implication we shall use Lemma 1, 
stating that u 6 H2(Qt) is a solution of problem 1 iff it 
is a solution of problem 3. Notice that, if s € (0,T), 
then u G H 2«) ) is also a solution of problem 3 in Q . If we T s 
integrate equation (10) written for Q in parameter s over 
(0,T), then, from fact 2, we see that u e H2(Q ) satisfies T 
(1). 
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3. Existence andun1quennes of a generalized solution 
Define a mapping [.,.] : H1,2(QT) X H 1 , 2(Q T) — > R with 

a formula : 
N 

[u,v] = (u,v) „ + y (a.u.a.v) + 2. L 1 1 2 , . 
L (Q ) 1=1 L (Q.„) T T 

N 
•ctr. a u,tr. a V) • I(tr|caiu'tr|Gaiv) 2 + 

1 0 1 0 L (C ) 1=1 1 0 1 0 L (G) 

+ ( at U' at V )2 + (tr|GU'tr|GV) 2 • 
L (0 ) 1 0 1 0 L (G) T 

We also define IIullv=V [u,u], II. My: H1'2«^) — > R. It Is 
1 2 

obvious that "-Hy Is a norm In H ' (QT), but this space Is 
not complete in this norm. 

D e f i n i t i o n 1. Space V is a completion of 
H1,2(Q ) in the norm II II . T v 1 2 

As II lly is a norm in H ' (Ĉ ) and [.,.] has the 
properties of a scalar product, V is a Hilbert space with 
this product. Now we shall give another useful characterization 
of this space. 

Let I : H1,2(Q ) > H*(Q ) x H^G) x L2(G) be defined T T by the formula 

(14) I(u) = (I u, I u, I u)=(u,tr. u,trt 3 u). 
h G t I o lGo 1 

1 2 As H ' (Q ) is dense in V and in the norm of the cartesian T 
product II lull = II ull , we can extend I to an isometry of V 
into a closed subspace of the cartesian product 
H 1 ^ ) x H^G) x L2(G). This Isometry will be also denoted 
byI = (IH,IG.It). 
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Now we shall state a general version of a theorem on the 

existence of a generalized solution of a variational 

problem. It is one of the possible formulation of the 

Lax-Milgram theorem. A simmilar theorem can be found in t l ] . 

Let (V, [ . , . ] , II lly) and (W, ( . , . ) , II II) be Hilbert spaces, 

suppose V is the completion of W in the norm II II , this norm 

is defined on elements of W and there exists a constant c >0 

such that llwll s collwll V w € W. Let F : V —> IR be linear and v 
continuous (F € LfV,R)) and a : W x W » IR a bilinear form 

satisfying conditions 

(15) 3 0 0 : V u.v € W ja(u,v) |s OiluH^lvll, 

(16) 3 a>0: V w € W a(w,w)s aollwll̂ . 

For a variational problem 

(17) f ind u € W such that a(u,w) = F(w) V w e W 

we can define an extension to V and a generalized solution. 
Its definit ion wil l be given in the proof of the following 
theorem: 

T h e o r e m 2. Under the above assumptions problem 

(17) has exactly one generalized solution. 

P r o o f . Define by Â  : W > R, w e W, a functional 

given by the formula A^iu) « a(u,w). From the assumptions 

(15), (16), the bilinear form a is is a linear functional 

continuous in the norm II II . From the Riesz theorem we 

conclude that there exslsts precisely one w e V such that 

A (u) = [u,w ] V u € W. Let us denote by S : W » V the w o 
mapping assigning the element wq to w. Thus we can write 

A (u) * [u,Sw]. From the properties (15), (16) we conclude 
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that V w € W aollwll2 s a(w,w) = [w,Sw]s llwll o||Swll and thus v ' ve v 
llwll s -ollSwII V w e W. We can now write v a v 

IF(w) | £ C o llwll s - « HSwII . v a v 

Let us denote by M the functional given by the formula 

M(S(w)) = F(w), H :S(W) —> IR . It is a linear and continuous 

functional on S(W). 

Notice that S(W) is dense in V. For suppose the 

contrary : there exists an element v e V, v e S(W) (the o o 
space orthogonal to S(W)) , "VQ"v > 0- Then we can f ind a 

sequence w €̂ W, ŵ  > vq in V. There are two possib i l i t ies 

(a ) there exists n such that w € S(W) IIw II > 0; 
0 n n V 0 0 

(b) for every n € IN, w e S(W) . 
n 

In the case (a) we cam write 

0 = [w ,Sw] = A (w ) = a(w , w) V w e W, 
n m n n 0 0 O 

and taking w = w , we get 
n 0 

0 = a(w ,w ) s aollw II.2., thus IIw II = 0, n n _ _ n V' n V 
0 0 0 0 

which is a contradiction. 

In the case (b) we have 

0 = [v ,w ] > [v ,v ] - Iv II2 
o' n o' o o v 

thus IIv II = 0, which Is a contradiction, o v 

From the density of S(W) in V it follows that there is 

only one extension of M : S(W) > R to V. Denoting this 

extension by G we notice that M € L(V,R). 
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Once again, using Rlesz theorem, we conclude that there 
exslsts a unique u e V such that G(v) * [u, v] V v € V. 

This u is the unique generalized solution In this sense 
that, if v c S(W) and v = S(w), w c W, then 

(18) G(v) - F(w) - [u,S(w)] V w € W, 

moreover, if u € W, then 

G(v) = F(w) =[u, S(w)] = a(u,w) V w e W. 

This completes the proof of Theorem 2. 
Now we shall apply Theorem 2 to problem 2. Take 

W = H1,2(Qt),' V as in Definition 1; it is obvious that the 
assumptions of Theorem 2 are satisfied. To check the 
fulfilment of the other assumptions we use integration by 
parts, fact 2 and conditions (5), and we get 

(Lu,u) fc 0,5(9 u,3 u) + 0,5T(tr, u,tr, u) + t t 2 G G 2, L <Qt) 1 0 1 0 L (G) 
N 

+ 0,5a y (3 u,a u) + 0,5T(tr, a.u.tr, 3.u) + L. 1 1 2 G t |Gt 2 1=1 L (Qt> I 0 1 O L (G) 
N 

+ l,5Ta Y (tr, 9 u,tr, 3 u) L G i ' G 1 2 1=1 1 0 1 0 L (G) 

In order to prove the positive definiteness of L we notice 
that there exists C > 0 such that for v € V we have: 

N 
iivir < c 2 ( Y «a i vii2 + ha i vii2 + V L 1 H 2 . t H 2 1=1 L (Q ) L <Q ) T T 

+ III vii2 + iirvii2 ). G 2 t 2 L (G) L (C) 
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To prove this we shall use the representation of V as a 
closed subspace of the cartesian product of 
H1 (Q̂ ,) x H^G) x L2(G). Take u e C*^), then 

|u(x,t)|2 s 2[ |u(x,0) |2 + ( J^uix.sJIds J2] * 

S 21|u(x,0)|2 + ( f \d u(x,s)«l|ds2) ] S 2[|u(x,0)|2 + 
oJ 

T 
+ T2 | Id u(x,s)|2ds ], 

0 

and thus Hull2 s 2Tlltr, ull2 + 2T3II3 ull2 2 G 2 t 2 L (Qt> 1 0 L (G) L (Qt> 
1 2 

As the trace operator tr. :H (Q_) L (G) is continuous, 

the above estimate is true for u€ H (Q̂ ,) ( C (QT)is dense in 

H^Q )), it is also true for I v e H^Q ). 
T H T 
As obviously |(Lu,v)| s Cllull o||vll and |F(v)| s 

V H1,2(0T) 
s c

1
llv,,

v
 a 1 1 these facts prove the fulfilment of the 

assumptions of Theorem 2. 
C o r r o l a r y Problem 2 has a unique generalized 

solution in the space V. 
Now we shall give another characterization of the 

generalized solution of Problem 2. 
T h e o r e m 3. An element u e V is a generalized 1 2 

solution of Problem 2 iff for every v € H ' (Qt) we have 
(LIu.v) = F(v), where 

(Liu,v) = f-(a i u,a2v) ds + (a i u,a v) + J t H t 2 t H t 2 <T L (Q ) L (Q ) S T 
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T 
+ I (k a i„u.a^v) ds + 2T(k tr, .a i u.tr, a v) + 
oJ IJ j H It l2(q } Ij |Go j C I 0 L (C) 

r
T _ 

+ (q«I u.a v) ds • TCq-I u.tr. v) + 
O L (Q ) ' 0 L (C) s 

rT + 0.5T(I u,tr| v) „ + (p«8 I u,a v) „ ds. C IG 2. J t H t 2. ' 0 L (C) 0 L (Q ) 8 

Moreover, u has the following properties: 
•v ~ 2 operator • is defined on I u and al u e L (Q ), 
H H T 

•IHu = f in L2(Qt), IGu = <PQ in H1 (G). 
P r o o f . The first part of the thesis follows obviously 

from Theorem 1. If we look closer at the conditions 
satisfied by the generalized solution we shall notice that 
in our case (for the form (Lu,v) ) we may write 

V w e H1,2(Qt) (LIw.v) = (Lw,v) for v € H1'2^), 

moreover, from the continuity of operator I we get the 
identity of the two following problems : 

find w e H1,2(Q ) such that (LIw.v) = F(v) V v e H1,2(Q ) T T 
and 
find w € H1,2(Qt) such that (Lw,v) = F(v) V v € H1'2^). 

As operator I defined on V is linear and continuous, thus 
(18) may be written as follows: 

u e V is a generalized solution of problem 2 iff 

(19) (Liu,v) = F(v) V v e H1,2(Q ). T 
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Now we move to the proof of the second part of the 

thesis. Take v € C^it^) given by the formula 

r1 <» 
v(x,t) = I vt(x,s)ds, v € c

0
i ( U -

oJ 

For such v, from (19) we get 

<(T-t)DlHS>v t)> - ((T-t)of.v t ) L 2 ( V . 

On the left side of this equation we have a distributional 

derivative which is regular, as (T-t)of e L (Q ). Since T 
T-t > 0 for t e (0,T), we have Ihu = f in L

2 ^ ) . 

The only thing we have to prove is Icu = fQ in H (Qj). 
1 2 Take another v € H ' (Qj) given by the formula v = v

c 
o 1 2 v € H (Q_). For such v we have tr. 3 v = 3 v = S v = c T c t t t o 1 o 

2 
= 9jtv = 0 and our equation reduces to 

2T(k d (I u-<p ),8 v ) 2, + T((q+0,5)o(I u-<p ),8 v) 2, = 0. 1J J C *0 ' I CQ L (G)
 M ' G *0 t L (G) 

From the arbitrariness of v and assumptions (5) on k and 
Co 1J 

q we get the desired equation, which ends the proof of 

Theorem 3. 

There are some final remarks we want to make : 

1) our generalized solution is too weak to give a meaning 

to the initial condition tr. d u = <p in L (G) other than I C t 1 1 o 
the one given by (18), but such a situation is not uncommon 

with such solutions; 

2) if we had a theorem giving sufficient conditions for 

the generalized solution to be regular in the sense of being 
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1 2 an element of H ' (Q ), then Theorems 1 and 3 would give us 
T 

the equivalence of this solution and the common generalized 

solution of problem 1. 
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