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VARIATIONAL FORMULATION FOR A HYPERBOLIC PROBLEM

The aim of this work 1is to give a variational
formulation of a second Fourier problem for a linear
hyperbolic equation. We prove the existence and uniqueness

of a generalized solution of this problen.

1. Symbols and conventions

Throughout this paper we use the Einstein summation
N

convention writing kijxixj, i,j=1,..,N instead of } kali.
1, =1

Besides commonly used spaces we use the following ones :
H"%(G) - where G is an open and bounded set in IRN, is
the normed space of functions u € L%(G) such that

du, du 8°u, 8°u e L%(G), i=1,..,N,
i t it t

(8 u denotes 6u , (x,t)=(x,..x,t) € R™!) with the norm
1 é)xl 1 N
N
2 2 2 .2 2 .2
ftull 12 (Juf Lt ||atu|| .t ) ||auu||_ 2) :
H H 1=1 L

moreover, it is a Hilbert space;

Ck’i(G), k = 0,1, is the normed space of real functions
from Ck(G) such that their derivatives of order k are
Lipschitz functions.

Following notations from [2], we denote by FNOUR™ the
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class of sets A ¢ R" with boundaries of class Ck’i.

2. Variational formulation

Let G ¢ R" be an open and bounded set of class #°'%;
denote by (ni,..,n“) the outward normal vector to 8G of
length 1.

Denote by I' = 8G x (0,T), Go =Gx {0}, G =G x (s},

rs=acx(o,s),o =Gx (0,s), s>0, T>0, s sT,

Define the following differential problem :
Problem I Find ue H(Q) such that

(1) ou := afu -8,k 8u) + pdu+ qu="f in L2(QT).
(2) trlcou =¢, 1In H'(G),

(3) trlcoat.u =9 in Lz(G),

(4) tryp k, 8uen =0 in L3(r).

r

We assume that

[ pe L”(G), p20 a.e. In G, qe L”(G), q20 a.e. in G,
2 1, 2

fe L°(Q), ¢ H (G), p e L(G),

(5) { ke L”(G), k, =k ae inG 1,J=1,..,N, Nz2

11
there exists >0 such that

2 2 _
§ kuz‘zjmuo(z1 +..+z"), z,€ R, i,J=1,..,N.

Consider besides the following variational problem:
Problem 2 Find ue H""'(Qr) such that

(6) (Lu,v) = F(v) V ve 4{"2(0‘).

where Lu: Hl’a(QT) —> R is a linear functional given by :
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Variational formulation

T
(7) (Lu,v) = I -(8,u,8%) ds + (3 u’atV) s *
0o L (Q) L Q)

s T

T 2
+J.(k 8 u,8" v) ds + 2T(k tr, 8 u,tr, 8 v) +

o0 M3t (o) SR L Il [
ds + T(qotrlG

u, tr | v) +
o

T
+ J‘ (qou,d v)
0 t o L%

L (Q)
s

T
u,trl v) 2 + I (poatu,atv) 2 ds

+ O,ST(trlc
o L) o L)

0

and F : HI’Z(QT) ——> R 1is a linear functional of the form

T
(8) F(v) = I‘f'at"’ ds + Tlg,,tr); 8,¥) +
(o)

2

L (Q) (o] L (G)
8

2T(kuaj¢o,tr| alv) + T(qowo, trlc v) +

GO - L (G) 0o L (G)

+0.5T(¢o. trlc v)
0 L (G)

It is easy to verify, that under assumptions (5),
problem 2 makes sense. One might have noticed that, in a
formal way, we can get problem 2 from problem 1 by taking the
scalar product in Lz(Qs) of the latter and 6tv and next
integrating over [0,T] in ds. This leads us directly to the
question of the relation between the problems 1, 2.

Assume that

0,1
(9) k” e C'(G).

Theorem 1. If we assume (5) and (9) then problem
1 has a solution u € HZ(QT) iff it is a solution of problem 2.

- 889 -



J. Skwierczynski

Begin with a proof of a lemma stating the relationship of
problem 1 to the following intermediate problem.
Problenm 3 Findue H(Q) such that

(10) (Lu,v) = F(v) v veH"Q),
where ‘
(11) (Lu,v) = -(8 u.azv) + (8 u,dv) +
t 't 2 t 't
L (QT) L (G'l')
+ (k 8.u,8°v) +2(k tr, 8utr, av) +
1371 2 1y Je, s e 2
L (Q‘l') [¢] (o} L (G)
+ (Q°u.3/V) + (qotrlc u,t:r‘| v) +
L°Q) o o L)
T
+ O,S(trlc u,t.r'l v) + (ped u,d v) )
o o L0 L ()
T
(12) F(v) = (f.atV) R + (¢1,trlc atv) .
L (QT) 0 L (Qs)

+ 2(kuajqpo,tr| alv) ” + (qoqpo,trlc v) .

cO L (G) 0 L (&)

+ O,S(goo.tricov)l‘z(c)

Lemma 1. Under the assumptions of Theorem 1,
distribution u € HZ(QT) is a solution of problem 1 iff it
is a solution of problem 3.

Proof. In order to show the implication "= ", take
vV € Cm(ﬁ_r), multiply equation (1) by atv and integrate over
Q‘r' Taking into account the boundary conditions (2) - (4) and
insegrating by parts we get equation (10) for v € CQ(GT); as

such functions are dense in HI’Z(QT), from the continuity of
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all the expressions in the norm of HI’Z(QT). we get the
desired implication.
Now we shall show the implication "&". As u € Hz(QT) and
k,, € c®'(G) for i,J=1,...,N, Ou € LZ(QT)and, if we take in
t
equation (10) v e C"(ﬁr) such that v(x,t) = J ¢(s,x)ds,

- o
P € C:(QT). we easily get the fulfilment of equation (1)

in the distributional sense; as Du and f belong to Lz(QT).
u satisfies (1) in Lz(QT).

Now we shall show the fulfilment of the boundary
conditions (2) - (4). Take v € C"(Q) such that 8v = 0 in
the neigbourhood of I'. As u fulfils (1), we get

(trlc 3

. u,tr|c a,v) 2 + 2(kutr}0

t

au,trl 4 v) +
o L) 1

G 1 2
0

t (] L (G)

+ (qotrIG u,trl v) + 0.5(tr|G u,t:rl v) =
"o

(o} 0 L (G) 0 L (G)

[

= (“’:'“‘|c av) , + 2(kUaJ¢o,trHG 3 v) +

0 t L (G) (o] L2(G)

+ (q°¢0’tr|c v) ,  +0,5T(p. trlc v)
o L°(c) 0 L(G)
If now we take v such that v(x,0) = 0, then from the

arbitrariness of 6tv(x,0) we get condition (3). To prove (2)

_ _ 1,2 _
take vi(x,t) = trlcou P, V€ H (QT), atv 0.
Taking into account that u satisfies (1) and (3), from

equation (10) we get the equation

(kUtrIG ajv,trlcoalv) 2 + ((q+0.5)t:rIG

L%(c) V,tPI V) 2 =0
(] 0

Go L (G)

which, together with the positive definiteness of li and

- 891 -



J. Skwierczyrski

the nonnegativeness of q, gives the condition trlc v=v=0
(4]
in H't€) being equivalent to (2).

As we have proved that u satisfies (1) - (3), from (10)
and by the assumption that u e Hz(QT) we conclude that u
satisfies (4). This completes the proof of Lemma 1.

In the proof of Theorem 1 we shall need two easy facts.

Fact 1. If f eL(0,T), then

T ] T
OI (OI £(t) dt) ds =0J' (T-t)of(t) dt.

Fact 2. For uve Hi'z(Qr) the mapping s -» trlc 8iu
3
is a continuous function from (0,T) to L%(G) and

T
(alu,ajv) 2 = J. ( trlc 8‘u,trlc 8Jv) 2 ds,
L (QT) 0 s 8 L (G)

T
J' itr, dul?_  ds = 13 ul
le "1 2 12
0 s L (G) L (Q_r)

Proof of Theorem 1. Assume that u € HZ(QT) is a
solution of problem 2. Integrating by parts the first and
third members of (Lu,v) in (7) and applying facts 1, 2 we
get the following equation for u:

((T—t)nu.atv) 2 + T(trlc atu’trlc atv) 2 +
L) o o L7(G)

T
+ JJ‘ trlr (kuaju)otrlr (atv)onldmds +
o rs 8 s

+ T(qotrlc u,tr‘l v) s 2T(k”t:x'|G aju,tr av) +

2
(o] 0 L (G) o] I0 L (&)
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+ O.ST(trlG

= o +
ou,tr|G v) ) T(q ¢°,trlc v)

2
0 L (G) o L (&)

+ ( (T-t)f,8.v) + T(p_ ,tr, 3.v) +
t LZ(QT) 1 IGot TS

+ 2T(liaJ¢°,tr| alv) + O,ST(wo,trle) s

GO L (G) L (G)

v ve H'%(Q).
T
Using fact 1 we can write the following equation

T
(13) J‘I tr|p (k, 8 u)etr . 8 ven,dn ds =
0 r [ 8

= I (T-t)tr, (k 8 u)etr, 3 vendnm.
1y 3§ IT7e”
r

Iy r

Reasoning simmilarly as in the proof of Lemma 1 we
obtain

(T-t)ou = (T-t)f in La(QT).

_ 2
(T—t.)tr'll..(kuaju)nl =0 in L),

and conditions (2), (3). As (T-t) € L™(Q), T-t >0 inQ,
thus from (13) we get the fulfilment of (1) and (4). This
proves that u is a solution of problem 1.

To prove the reverse implication we shall use Lemma 1,
stating that u € Ha(QT) is a solution of problem 1 iff it
is a solution of problem 3. Notice that, if s € (0,T),
then u € HZ(QT) is also a solution of problem 3 in Qs' If we
integrate equation (10) written for Qs in parameter s over
(0,T), then, from fact 2, we see that u e H'(Q) satisfies
(1).
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3. Existence anduniquennes of a generalized solution

Define a mapping [.,.] : H%(Q) x H''3(Q.) — R with
T T

a formula :
N .
[u,v] = (u,v) + ) (8 u,8v) +

2
L (QT) i=1 L (QT)

o~

+(tr|0 3

u,trl a V) 2 + (trlca
0

¢ t
o

u,tr‘I av) +
0 L°(6) 1=1

t (] L (G)

i

+ (atu,atv) + (trl

u,trl v)
L (OT)

o

o L)

We also define Null =V [u,ul, 1.0 H'%(Q) — R. It is
obvious that II.IIv iIs a norm in Hi’z(QT). but this space is
not complete in this norm.

Def inition 1. Space V iIs a completion of
H'*(Q) in the norm I Il .

As i I 1s a norm in H'%(Q) and [.,.] has the
properties of a scalar product, V is a Hilbert space with
this product. Now we shall give another useful characterization
of this space.

Let 1 : H'%(Q) — H'(Q) x H'(G) x L*(G) be defined
by the formula

(14) I(u) = (qu, Icu, Itu)=(u,trlc u, tr'c atu).

o 0

As HI’Z(QT) is dense in V and in the norm of the cartesian
product IIIull = llullv, we can extend I to an isometry of V
into a closed subspace of the cartesian product
Hl(QT) x H'(G) x L3(G). This isometry will be also denoted
by I = (IH, Ic' It).
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Now we shall state a general version of a theorem on the
existence of a generalized solution of a varlatlional
problem. It 1is one of the possible formulation of the
Lax-Milgram theorem. A simmilar theorem can be found in [1].

Let (v,[.,.]1,H "v) and (W,(.,.),0 i) be Hilbert spaces,
suppose V is the completion of W in the norm |l "v’ this norm
is defined on elements of W and there exists a constant ¢ >0
such that Hwﬂvs cellwl VweW Let F: V—R be linear and
continuous (F € L(V,R)) and a : W x W —— R a bilinear form

satisfying conditions
(15) 3C0: VuveWw |a(uyv)ls CoHu“voHvH,
(16) 3@w0: YweW a(w,w)z aollwil’.
For a variational problem
(17) find u € W such that a(u,w) = F(w) VweW

we can define an extension to V and a generalized solution.
Its definition will be given in the proof of the following
theorem:

Theorem 2. Under the above assumptions problem
(17) has exactly one generalized solution.

Proof. Define by Aw : W—> R, we W, a functional

given by the formula Ah(u) = a(u,w). From the assumptions
(15), (16), the bilinear form a is 1is a linear functional
continuous in the norm |l "v' From the Riesz theorem we

conclude that there exsists precisely one w, € V such that
A‘(u) = [u,wol V ueW Let us denote by S : W —— V the
mapping assigning the element Y to w. Thus we can write

Ah(u) = [u,Sw]l. From the properties (15), (16) we conclude
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that VweW aollwllj = a(w,w) = [w,Sw]s IlwllvalISwllv and thus

Hw"v = ioHSva YV w e W. We can now write

IF(w)] SC o tiwl s < o uswll_ .
v o v

Let us denote by M the functional given by the formula
M(S(w)) = F(w), M :S(W) — R . It is a linear and continuous
functional on S(W).

Notice that S(W) 1is dense in V. For suppose the
contrary : there exists an elerhent Vo € v, Vo € s(W) + (the
space orthogonal to S(W)), livgl, > 0. Then we can find a
sequence wne W, wn——) vo in V. There are two possibilities :
(a) there exists n such that w e S(W) l, w1, > 0;

(s o
(b) for every n e N, w_ e S(w) .
In the case (a) we can write
0]

[w ,'Sw] =A(w )=alw ,Ww) VweW,
n w n n
. . o : .. 0 o
and taking w = w o, we get
o

2
0=alw ,w ) 2z aclw I
n n n

, thus llw I = 0,
\ n Vv
o o 0 0

which 1is a contradiction.
In the case (b) we have
_ . . - 2
0= [vo.wn] —_ [vo.vo] Ilvollv ,
n—xo

thus llvollv = 0, which 1s a contradiction.

From the density of S(W) in V it follows that there is
only one extension of M : S(W) —— R to V. Denoting this
extension by G we notice that M € L(V,R).
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Once again, using Rlesz theorem, we conclude that there
exsists a unique u € V such that G(v) = (a,vl Vvev.

This u is the unique generalized solution in this sense
that, if v € S(W) and v = S(w), w € W, then

(18) G(v) = F(w) = [u,S(W)] V w e W,
moreover, 1if u e W, then
G(v) = F(w) =[u,S(w)] = a(u,w) V weW

This completes the proof of Theorem 2.

Now we shall apply Theorem 2 to problem 2. Take
Ww=H'%Q), Vas in Definition 1; it is obvious that the
assumptions of Theorem 2 are satisfied. To check the
fulfilment of the other assumptions we use integration by

parts, fact 2 and conditions (5), and we get

(Lu,u) = 0,5(8 u,d u) + 0,5T(tr, u,tr, u) +
t 2 |c | 2
L (OT) 0 0 L (G)
N
+ 0,5a Z (8,u,8u) , + O,ST(t.rIG 6tu,tr|G a,u) , +
t=1 L (QT) [o] [o] L (G)
N
+1,5Ta Z (tx-IG 6iu,trlc a,u)
i=1 [o] 0 L (G)

In order to prove the positive definiteness of L we notice
that there exists C > 0 such that for v € V we have:
2 2, & 2 2
vil? < C™( ZIIB I vl + W3 I vl +
v i'H 2 t'H 2
i=1 L (Q'l') L (O,r)

+ I vi® o+ ar,wn® ).
L (G) L (G)
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To prove this we shall use the representation of V as a
closed subspace of the cartesian product of
H'(Q) x H'(G) x L*(G). Take u € C7(Q), then

Iu(x,t)l2 s 2[Iu(x.0)|2 + ( Jﬁlatu(x,s)lds )2] <
(o]
< 2[ lu(x,0)1% + ( rlatu(x.s)ouas"‘) 1 s 2[lu(x,0)1? +
) [}
+ T2 rlatu(x.s)l"’ds 1,
0

and thus lNlul® s 2Ttr, ull? + 2T°18 ul’
le 2 t
L (O_r) 0 L (G) L (Q,r)

As the trace operator trIG :HI(QT) s> L3(c) is continuous,

o
the above estimate is true for ue Hl(QT) ( Cm(QT)is dense in
Hl(QT)), it is also true for IHv € HI(QT).

As obviously |[(Lu,v)| = Cllull‘vollvll1 2 and |F(v)]| =
H ’(QT)
=< Clllvllv all these facts prove the fulfilment of the
assumptions of Theorem 2.

Corrol ary Problem 2 has a unique generalized
solution in the space V.

Now we shall glive another characterization of the
generalized solution of Problem 2.

Theorem 3. Anelement ueV is a generalized
solution of Problem 2 iff for every v € HLZ(QT) we have
(LIu,v) = F(v), where

(LI, V) = I—(a 13,6%) _ ds+ (31.1,8v) _  +
tH "t 2 t'H 't 2
(o] L (OS) L (QT)
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I(k 8.14,8°v) _ ds + 2T(k trlcalu,trl av)  +

1344 L (Q.) 60 L (G)
r ~r ~
+ I (qel u,8.v) ds + T(qgeIl u,tr;_ v) +
ot Lz(Q.) R
+ 0.5T(1 3, tryo V) J' (pe3, 1 ,8,v) ds.
o % o L)

Moreover, u has the following properties:
operator 0O is defined on IHG and DIHG € L?(QT).

uIHu =f in L (Qr)' Icu % in H (G).
Proof. The first part of the thesis follows obviously
from Theorem 1. If we look closer at the conditions
satisfied by the generalized solution we shall notice that

in our case (for the form (Lu,v) ) we may write
Vwe Hl’a(Qr) (LIw,v) = (Lw,v) for v ¢ Hl'a(QT).

moreover, from the continuity of operator I we get the

identity of the two following problems :
find w € H"Z(QT) such that (LIw,v) = F(v) V v e Hl'a(Q_r)

and

find w € HI’Z(QT) such that (Lw,v) = F(v) Vv e H""’(QT).

As operator I defined on V is linear and continuous, thus

(18) may be written as follows:
ueVisa generalized solution of problem 2 Iff

(19) (LI, v) =F(v) Vve Hl’a(QT).
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Now we move to the proof of the second part of the
thesis. Take v € C"(ﬁ;) given by the formula

t
00
vix,t) =°I vt(x.s)ds. v, € Co(Q'r)'

For such v, from (18) we get
<(T-t)ulﬂu,vt)> = ((T-t)of.vt)Lz(OT).
On the left side of this equation we have a distributional
derivative which is regular, as (T-t)of € Lz(QT). Since
T-t > 0 for t € (0,T), we have Iu=f inL*(Q).
The only thing we have to prove is Icﬁ = ¢, in H‘(QT).
Take another v € lﬂ"a(QT) given by the formula v = v (x),

o
1 = = 2 =
vboe H (QT)' For such v we have trlG atv = 8tv 8tv
= aftv = 0 and our equation reduces to
2T(kijaj(lcu-¢o).a!vco)La(G)+ T((q+0'5)°(Iou-¢o)’atV)L2(c)= 0.

From the arbitrariness of Ve and assumptions (5) on kU and
o
q we get the desired equation, which ends the proof of

Theorem 3.
There are some final remarks we want to make :
1) our generalized solution is too weak to give a meaning

to the initial condition tr| du = ¢, in L?(G) other than
o
the one given by (18), but such a situation is not uncommon
with such solutions; ‘
2) if we had a theorem giving sufficient conditions for

the generalized solution to be regular in the sense of being
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an element of }f’z(QT), then Theorems 1 and 3 would give us
the equivalence of this solution and the common generalized

solution of problem 1.

REFERENCES

[1] H. Marcinkowska: On internal approximation of
parabolic problems, Ann. Polon.Math., 42 (1983) 173-180.
[2] J. N e & a s : Les méthodes directes en théorie des

tquations elliptiques, Prague, 1967.
INSTITUTE OF MATHEMATICS, TECHNICAL UNIVERSITY OF WARSAW,

00-661 WARSZAWA
Received January 7, 1988.

- 901 -






