

Jan Samsonowicz

## K-THEORY FOR IM-BUNDLES

Introduction

By an im-bundle we mean any quasi-bundle (i.e. any singular vector bundle) which can be represented as an image of an endomorphism of a locally trivial bundle. Some properties of the category  $\text{ImVB}$  of im-bundles are presented in [4] and [5].

Any im-bundle  $\xi$  over a space  $X$  determines a decomposition of this base space into the sets  $X_1, X_2, \dots, (X_i \subseteq X)$  over which the dimensions of fibres are constant. By a filtered space denoted  $\mathcal{X}$  we mean any space  $X$  together with a fixed decomposition of such kind. Observe that in a natural way we can define the semiring  $\text{ImVB}(\mathcal{X})$  (with respect to Whitney sum and tensor product) of isomorphism classes of im-bundles which give the same decomposition of  $X$ . Then the K-functor may be applied. Let us denote  $K(\text{ImVB}(\mathcal{X}))$  by  $K_{\text{im}}(\mathcal{X})$ . The main theorem of this paper says that

$$K_{\text{im}}(\mathcal{X}) = \bigoplus K(X_i).$$

Let us start from the following definitions and notation :

1. The category of filtered spaces

Let  $X$  be a topological space and  $r : X \longrightarrow \{1, 2, 3, \dots, n\}$

be a surjective function called filtration such that for each  $1 \leq k \leq n$  the set  $r^{-1}(\{1, \dots, k\})$  is closed in  $X$ . By a filtered space denoted  $\mathcal{X}^n$  or  $\mathcal{X}$  we mean any such pair  $(X, r)$ .

If  $\mathcal{X}^n = (X, r)$  and  $\mathcal{Y}^n = (Y, r')$  are two filtered spaces then we say that a continuous map  $\alpha : X \longrightarrow Y$  is compatible with this filtration if there exists a numerical function  $\bar{\alpha}$  which makes the following diagram commute :

$$\begin{array}{ccc}
 X & \xrightarrow{\alpha} & Y \\
 r & & r' \\
 \downarrow & & \downarrow \\
 \{1, 2, \dots, n\} & \xrightarrow{\bar{\alpha}} & \{1, 2, \dots, n\}
 \end{array}$$

Note that if  $\bar{\alpha}$  exists then it is uniquely determined by  $\alpha$ . The category with filtered spaces as objects and maps, which are compatible with filtrations, as morphisms we denoted by  $\mathbf{FTop}$ .

For any filtered space  $\mathcal{X}$  and for any continuous map  $\alpha : X \longrightarrow Y$  there exists a natural pull-back of the filtration  $r : Y \longrightarrow \{1, 2, \dots, n\}$  onto  $X$ . The structure of this filtered space  $\mathcal{X} = (X, r, \alpha)$  we call induced from  $\mathcal{Y}$  under  $\alpha$ .

It is suitable to define a homotopy in this category as any map  $H : \mathcal{X} \times I \longrightarrow \mathcal{Y}$  where the filtration of  $\mathcal{X} \times I$  is induced from  $\mathcal{X}$  under the projection  $\mathcal{X} \times I \longrightarrow X$  onto the first factor.

## 2. The category of im-bundles and the $K_{im}$ -functor

A real (or complex) quasi-bundle called shortly q-bundle is a triple  $\xi = (E, p, X)$  where  $p : E \longrightarrow X$  is a continuous map such that any fibre  $p^{-1}(x) = \xi_x$ ,  $x \in X$ , is an  $n_x$ -dimensional

vector space over the field  $F$  of real (or complex) numbers. A morphism  $\psi : \xi \longrightarrow \xi'$  of  $q$ -bundles is a pair of maps  $(u, f)$  such that the diagram :

$$\begin{array}{ccc} E & \xrightarrow{u} & E' \\ p & & p' \\ \downarrow & f & \downarrow \\ X & \longrightarrow & X' \end{array}$$

commutes and the restriction of  $u$  to any fibre is linear.

We consider only  $q$ -bundles with a bounded dimension of fibres (i.e.  $n_x = \dim_F \xi_x \leq m < \infty$ ) and such that the sets

$$X_n(\xi) := \{x \in X : n_x \leq n\}$$

$n = 0, 1, \dots, m$  are subcomplexes of a finite CW-complex  $X$ .

Any  $q$ -bundle  $\xi$  is called an im-bundle if and only if the condition  $x \in X_k = X_{\underline{k}} \setminus X_{\underline{k-1}}$  implies that there exist an open neighbourhood  $U$  of  $x$  and  $k$  linearly independent sections  $(s_1, s_2, \dots, s_k : U \longrightarrow p^{-1}(U))$  of  $\xi|_U$ .

With our assumption on  $(X, X_{\underline{k}})$  each im-bundle  $\xi = (E, p, X)$  is an image of an endomorphism of a trivial bundle (see Th. 1 in [4]) and hence may be represented by a map  $\alpha : X \longrightarrow \text{End}(F^n)$  or more general by a map

$$\alpha : X \longrightarrow \text{End}(F^\infty) = \varinjlim_k \text{End}(F^{n+k})$$

where  $\text{End}(F^n) \subset \text{End}(F^{n+1}) \subset \dots \subset \text{End}(F^{n+k})$  is given by  $i(\varphi) = (\varphi \otimes 0)$ . By definition  $\text{im}\alpha$  denotes the im-bundle contained in the trivial bundle  $\theta^n = (X \times F^n, \pi_1, X)$  with fibres  $\text{im}\alpha(x)$ . Observe that any im-bundle may be represented as a matrix (with function coefficients) of the endomorphism

$\alpha(x)$  in the canonical base of  $F^n$ . The set of isomorphism classes of im-bundles over  $X$  we denote by  $ImVB(X)$ . It is a semiring with respect to Whitney sum and tensor product (see [4]). By an im-bundle  $\xi$  we mean both : an im-bundle and its isomorphism class.

Let  $\mathfrak{End}(F^\infty)$  denote the filtered space  $(\mathfrak{End}(F^\infty), \text{rank}+1)$ . Let  $\mathfrak{X}$  be any filtered space and let  $\alpha : \mathfrak{X} \longrightarrow \mathfrak{End}(F^\infty)$  be a map in the category  $FTop$ . Observe that  $\bar{\alpha}(r(x)) = \text{rk}(\alpha(x))+1$  for  $x \in X$ .

We know (see [4]) that the isomorphism class of an im-bundle determines the homotopy class  $[\alpha] \in [\mathfrak{X}, \mathfrak{End}(F^\infty)]$  and vice versa ; any homotopy class in  $[\mathfrak{X}, \mathfrak{End}(F^\infty)]$  determines an im-bundle up to isomorphism. Let  $ImVB(\mathfrak{X})$  denote the subsemiring in  $ImVB(X)$  which consists of classes of im-bundles for which a representation may be chosen as a map  $\alpha : \mathfrak{X} \longrightarrow \mathfrak{End}(F^\infty)$  in the category of filtered spaces. It is clear that

$$ImVB(\mathfrak{X}) = [\mathfrak{X}, \mathfrak{End}(F^\infty)] .$$

The main purpose of this paper is to investigate the ring completion  $K(ImVB(\mathfrak{X}))$  which we denote shorter by  $K_{im}(\mathfrak{X})$ . Observe that as in the classical case  $K_{im}$  is a contravariant functor from the category of filtered spaces to the category of rings.

### 3. Piecewise trivial im-bundles

Let  $\mathfrak{X}^n = (X, r)$  be a filtered space and  $h : \{1, 2, \dots, n\} \longrightarrow \mathbb{Z}_{\geq 0}$  ( $\mathbb{Z}_{\geq 0} = \{0\} \cup \mathbb{N}$ ) be an nondecreasing function ; let  $h$  denote also the  $n$ -tuple  $(h(1), h(2), \dots, h(n)) \in \mathbb{Z}^n$ .

Then we define  $\text{rk}(h) : \mathcal{X} \longrightarrow \text{End}(F^\infty)$  by the formula :

$$\text{rk}(h)(x) = [\varphi_0(x)I_{k_0}] \oplus [\varphi_1(x)I_{k_1}] \oplus \dots \oplus [\varphi_n(x)I_{k_n}] \oplus 0 \oplus 0 \oplus \dots$$

where for each  $i = 1, 2, \dots, n$  :

-  $I_{k_i} : F^{k_i} \longrightarrow F^{k_i}$  is the identity ;

-  $k_{(i+1)} = h(i+1) - k_i$ ,  $k_1 = h(1)$  ;

-  $\varphi_i : X \longrightarrow F$  is any function such that  $\varphi_i^{-1}(0) = X_1$ .

Observe that the homotopy class  $[\text{rk}(h)] \in [\mathcal{X}, \text{End}(F^\infty)]$  is the same for any  $(n+1)$ -tuple  $(\varphi_0, \varphi_1, \dots, \varphi_n)$  of functions such that  $\varphi_i^{-1}(0) = X_1$  : if  $(\psi_0, \psi_1, \dots, \psi_n)$  is the any other such  $(n+1)$ -tuple then the matrices

$$\begin{bmatrix} (1-2t)\varphi_0 I_{k_0} & & & & \\ \hline & 0 & & & \\ \hline & & t \psi_0 I_{k_0} & & 0 \\ \hline & & & \ddots & \\ & 0 & & 0 & \\ \hline & & & & t \psi_n I_{k_n} \end{bmatrix} \quad t \in [0, \frac{1}{2}]$$

$$\begin{bmatrix} (2t-1)\varphi_0 I_{k_0} & & & & \\ \hline & 0 & & & \\ \hline & & (1-t)\psi_0 I_{k_0} & & 0 \\ \hline & & & \ddots & \\ & 0 & & 0 & \\ \hline & & & & (1-t)\psi_n I_{k_n} \end{bmatrix} \quad t \in [\frac{1}{2}, 1]$$

define the desired homotopy (in category FTop). Therefore  $\text{im}(\text{rk}(h)) \in \text{ImVB}(\mathcal{X})$  depends only on  $h$ .

**D e f i n i t i o n.** The im-bundle  $\text{im}(\text{rk}(h))$  will be called piecewise trivial and denoted by  $\theta^h$ .

Equivalently the piecewise trivial im-bundle  $\theta^h$  may be defined as an im-bundle contained in the trivial bundle  $\theta^{h(n)} = \text{span}\{e_1, e_2, \dots, e_{h(n)}\}$  over  $X$ , with fibres  $\theta^h|_x = \text{span}\{e_1, e_2, \dots, e_{h(r(x))}\}$  where  $\{e_i: X \longrightarrow X \times F^{h(n)}\}$  denotes a basis of the space of sections of  $\theta^{h(n)}$ .

Let  $\text{im}\alpha \in \text{ImVB}(\mathcal{X})$  be any im-bundle. Then we define an im-bundle  $\text{rk}(\text{im}\alpha) \in \text{ImVB}(\mathcal{X})$  as  $\theta^{\bar{\alpha}}$  and the n-tuple  $(\bar{\alpha}(1), \bar{\alpha}(2), \dots, \bar{\alpha}(n)) \in \mathbb{Z}^n$  by  $\text{rk}(\text{im}\alpha)$  or simply  $\text{rk}(\alpha)$ . Observe that if  $n = 1$  and  $\xi^k = \text{im}\alpha$  is a k-dimensional locally trivial bundle over  $X$ , then the bundle  $\text{rk}(\xi^k) = \text{rk}(\text{im}\alpha)$  is the k-dimensional trivial bundle  $\theta^k$  over  $X$ , denoted by  $k$  as the element of the ring  $K(X)$ .

#### 4. The reduced $\tilde{K}_{\text{im}}$ -functor

**L e m m a 1.** For any function  $h : \{1, 2, \dots, n\} \longrightarrow \mathbb{Z}$  there exist two nondecreasing functions  $h_1, h_2 : \{1, 2, \dots, n\} \longrightarrow \mathbb{Z}_{\geq 0}$  such that  $h = h_1 - h_2$ .

**P r o o f.** The functions  $h_1(k) = c + \sum_{i=1}^k \max(0, h(i) - h(i-1))$  and  $h_2(k) = c - h(k) + \sum_{i=1}^k \max(0, h(i) - h(i-1))$ , where  $h(0) = 0$  and  $c = \max(h(0), h(1), \dots, h(n))$ , have the required properties. This proves Lemma 1.

Let us define  $\text{rk} : K_{\text{im}}(\mathcal{X}) \longrightarrow \mathbb{Z}^n$  as  $\text{rk}([\xi_1 - \xi_2]) = \text{rk}\xi_1 - \text{rk}\xi_2 \in \mathbb{Z}^n$ . It is clear that  $\text{rk}$  is the well defined homomorphism of rings. From Lemma 1 we have immediately :

**Proposition 1.** The ring homomorphism  $\text{rk} : K_{im}(X) \longrightarrow \mathbb{Z}^n$  is an epimorphism.

**Proof.** For any  $h \in \mathbb{Z}^n$  there exist nondecreasing  $h_1, h_2 \in (\mathbb{Z}_{\geq 0})^n$  such that  $\text{rk}([\theta^{h_1} - \theta^{h_2}]) = h_1 - h_2 = h$ . This proves Proposition 1.

By the proof of Lemma 1 it is also clear that

$\psi : \mathbb{Z}^n \longrightarrow K_{im}(X^n)$  given by the formula  $\psi(h) = \psi(h_1 - h_2) = \text{im}(\text{rk}(h_1)) - \text{im}(\text{rk}(h_2)) \in K_{im}(X^n)$  correctly defines a homomorphism of rings.

**Proposition 2.** The ring homomorphism  $\psi : \mathbb{Z}^n \longrightarrow K_{im}(X)$  is a monomorphism and  $\text{rk} \circ \psi = \text{id}_{\mathbb{Z}^n}$ .

**Proof.** Let  $h \in \mathbb{Z}^n$  and  $h_1, h_2 \in (\mathbb{Z}_{\geq 0})^n$  be the two functions given in the proof of Lemma 1. We have

$$\text{rk} \cdot \psi(h) = \text{rk}(\text{im}(\text{rk}(h_1)) - \text{im}(\text{rk}(h_2))) = h_1 - h_2 = h.$$

This proves Proposition 2.

**Definition.** The reduced  $K_{im}$ -functor, denoted  $\tilde{K}_{im}$ , is equal to  $\ker(\text{rk} : K_{im}(\ ) \longrightarrow \mathbb{Z}^{n(\ )})$ .

From the above considerations, the functor  $K_{im}$  splits :

$$K_{im}(X^n) = \tilde{K}_{im}(X^n) \oplus \mathbb{Z}^n.$$

The goal of this paragraph is to describe the ring  $K_{im}(X)$ . In the classical theory the ring  $\tilde{K}(X)$  may be identified with the stable equivalence classes of bundles. For  $\tilde{K}_{im}(X)$  the stable equivalence must be generalized. It turns out that it is sufficient to replace the trivial bundle  $\theta^k$  by the piecewise trivial  $\theta^{h(\ )}$  in the definition of stable equivalent bundles. First we prove the following

**Theorem 1.** Let  $\xi \in \text{ImVB}(\mathcal{X}^n)$  be an im-bundle such that there exists a diagonal representation  $\alpha : \mathcal{X}^n \rightarrow \text{End}(F^n)$  of  $\xi$  (i.e. for each  $x \in X$   $\alpha(x)$  is a diagonal matrix). Then  $\xi$  is a piecewise trivial im-bundle.

**Proof.** Let  $\alpha = \text{diag}(\alpha_1, \dots, \alpha_m)$ ,  $\text{im}\alpha = \xi$  be a diagonal representation of im-bundle  $\xi$ . It is sufficient to prove that there exists a homotopy (in the category FTop) between  $\alpha$  and the map  $\beta = \text{diag}(\beta_1, \dots, \beta_m) : \mathcal{X}^n \rightarrow \text{End}(F^m)$  such that

- for each  $k = 1, \dots, m$ ,  $\beta_k$  is a real nonnegative function  $\beta_k : X \rightarrow \mathbb{R}_{\geq 0}$  and  $\beta_k^{-1}(0) = X_{\underline{i}}$  for some  $i = 0, 1, \dots, \bar{\alpha}(n)$ .
- for each point  $x \in X$  the relation  $\text{sgn}\beta_1(x) \geq \dots \geq \text{sgn}\beta_m(x)$  holds.

It is clear that any im-bundle  $\text{im}(\text{diag}(\beta_1, \dots, \beta_m))$  is a piecewise trivial one. Let us define  $\beta_k$  to be equal to the  $k$ -th symmetric function in the indeterminates  $|\alpha_1|, \dots, |\alpha_m|$  (i.e.  $\beta_k(x) := \sum_{i(k')} |\alpha_{i_1}| |\alpha_{i_2}| \dots |\alpha_{i_{k'}}|$ , where  $i(k') = (i_1 < \dots < i_{k'}) \in \mathbb{Z}^{k'}$ ). Observe that the relation  $\beta_k(x) = 0$  implies  $\beta_j(x) = 0$  for  $j \geq k$  and moreover  $\beta_k^{-1}(0) = X_{\underline{i}}$ .

We start an induction with respect to  $m$ . The first step is clear:  $\text{im}\alpha_1 = \text{im}|\alpha_1|$  for  $\alpha_1 : \mathcal{X} \rightarrow F$ .

It is enough to prove that  $\text{im}(\text{diag}(\gamma, \beta_1, \dots, \beta_m))$  is isomorphic to  $\text{im}(\text{diag}(\gamma + \beta_1, \gamma\beta_1 + \beta_2, \gamma\beta_2 + \beta_3, \dots, \gamma\beta_{m-1} + \beta_m, \beta_m))$  where  $\gamma = |\alpha_{m+1}|$ .

Consider the relation  $A \cdot \text{diag}(\gamma, \beta_1, \dots, \beta_m) = C$  where :

$$A = \left[ \begin{array}{|c|c|c|c|c|c|c|c|c|} \hline 1 & 1 & 0 & \dots & \dots & 0 & 0 & 0 & 0 \\ \hline -\beta_1 & \gamma & 1 & 0.. & \dots & 0 & 0 & 0 & 0 \\ \hline \beta_1 \beta_2 & -\gamma \beta_2 & \gamma \beta_1 & 1.. & 0 & 0 & 0 & 0 & 0 \\ \hline -\beta_1 \beta_2 \beta_3 & \gamma \beta_2 \beta_3 & -\gamma \beta_1 \beta_3 & \gamma \beta_1 \beta_2 & & 0 & 0 & 0 & 0 \\ \hline & & & & & & & & 0 \\ \hline & & & & & & & & 1 \\ \hline \pm \prod_{i=1}^m \beta_i & \mp \gamma \prod_{i \neq 1} \beta_i & \pm \gamma \prod_{i \neq 2} \beta_i & & \dots & \dots & \dots & \dots & \mp \gamma \prod_{i=1}^{m-1} \beta_i \\ \hline \end{array} \right]$$

$$B = \left[ \begin{array}{|c|c|c|c|c|c|c|c|} \hline 1 & 0 & 0 & \dots & \dots & 0 & 0 & 0 & 0 \\ \hline 1 & 1 & 0 & \dots & \dots & 0 & 0 & 0 & 0 \\ \hline 0 & 1 & 1 & 0 & \dots & 0 & 0 & 0 & 0 \\ \hline \vdots & 0 & 1 & 1 & & & & & \\ \hline \vdots & & & & & & & & \\ \hline 0 & 0 & 0 & & & 1 & 1 & 0 & 0 \\ \hline 0 & 0 & 0 & & & 0 & 1 & 1 & 0 \\ \hline 0 & 0 & 0 & & & 0 & 0 & 1 & 1 \\ \hline \end{array} \right]$$

$$C = \left[ \begin{array}{|c|c|c|c|c|c|c|c|c|} \hline \gamma + \beta_1 & \beta_1 & 0 & 0 & \dots & \dots & 0 & 0 & 0 \\ \hline 0 & \gamma\beta_1 + \beta_2 & \beta_2 & 0 & \dots & \dots & 0 & 0 & 0 \\ \hline 0 & 0 & \gamma\beta_1\beta_2 + \beta_3 & \beta_3 & 0 & \dots & 0 & 0 & 0 \\ \hline \vdots & \vdots \\ \hline 0 & 0 & 0 & \dots & \dots & \ddots & \beta_{m-1} & \beta_m & \beta_m \\ \hline 0 & 0 & 0 & 0 & \dots & 0 & \ddots & \beta_m & \beta_m \\ \hline 0 & 0 & 0 & 0 & \dots & 0 & 0 & \gamma \prod_{i=1}^{m-1} \beta_i + \beta_m & \beta_m \\ \hline \end{array} \right]$$

The methods described in [4] give us isomorphism :

$$\text{im}(\text{diag}(\gamma, \beta_1, \beta_2, \dots, \beta_m)) \cong \text{im}C \cong \text{im}(\text{diag}(C_{11}, C_{22}, \dots, C_{mm})).$$

The relation  $\{ \beta_i(x) = 0 \Rightarrow (\beta_{i+j}(x) = 0 \text{ for } j \geq 0), x \in B \}$ , implies that the following homotopy is of constant rank :

$$\text{diag}[C_{11}, C_{22}, (1-t)C_{33} + t(\gamma\beta_1 + \beta_2), \dots, (1-t)C_{mm} + t(\gamma\beta_{m-1} + \beta_m)].$$

The above homotopy determines the required isomorphism of im bundles. This proves Theorem 1.

From Theorem 1 we have immediately the following characterisation of the piecewise trivial im-bundles :

**Proposition 3.** The im-bundle  $\xi = (E, p, X) \in \text{ImVB}(X^m)$  is a piecewise trivial im-bundle if and only if there exists an embedding of  $\xi$  into the trivial bundle  $\theta^m = (X \times F^m, \pi_1, X)$  of dimension  $m = \max_{x \in X} \{\dim_x E\}$  and sections

$s_1, \dots, s_n : X \longrightarrow E$  of  $\xi \subseteq \theta^m$  such that  $\xi = \text{span}\{s_1, \dots, s_n\}$  and  $\langle s_i, s_j \rangle = 0$  for any pair  $(i, j)$ ,  $i \neq j$ . (Here  $\langle \cdot, \cdot \rangle$  denotes

the standard product in  $\theta^m$ ).

**P r o o f.** The existence of such sections means that there exists the following diagonal representation of  $\xi \subseteq \theta^m$ :  $\alpha = \text{diag}(|s_1|, \dots, |s_n|)$ . For the inverse observe that any  $\xi$  with diagonal representation  $\text{im}\alpha = \xi$ , admits such sections defined by the columns of  $\alpha$ .

Now we are able to prove the following.

**T h e o r e m 2.** Let  $\xi \in \text{ImVB}(X^n)$  be any im-bundle. Then there exists an im-bundle  $\eta \in \text{ImVB}(X^n)$ , such that  $\xi \oplus \eta \in \text{ImVB}(X^n)$  is a piecewise trivial im-bundle.

**P r o o f.** Let  $\xi = \bigcup \xi_k = \bigcup (E^k, p, V^k)$  be the decomposition (described in [4]) of  $\xi$  into locally trivial bundles  $\xi^k$  ( $k = 0, 1, \dots, m$ ) over  $V^k$ , where each  $V^k$  is an open neighbourhood of  $X_k$ . Let us consider  $\xi^k$  over  $X_k$ . There exists a locally trivial bundle (in particular an im-bundle)  $\text{im}\gamma_k$ , where  $\gamma_k: X_k \longrightarrow \text{End}(F^k)$  such that  $(\text{im}\gamma_k \oplus \xi^k)$  is a trivial bundle. Each im-bundle  $\text{im}\gamma_k$  (defined over  $X_k$ ) may be extended to the whole space  $X$  by :

$$\text{im}\bar{\gamma}_k := \begin{cases} 0 & \text{over } \underline{X_{k-1}} \\ \text{im}\gamma_k & \text{over } \underline{X_k} \\ \theta^n & \text{over } \underline{X_{k+1}} = X \setminus \underline{X_k} \end{cases}$$

Note that  $(\text{im}\bar{\gamma}_1 \oplus \text{im}\bar{\gamma}_2 \oplus \dots \oplus \text{im}\bar{\gamma}_n) \oplus \xi$  is an im-bundle which is trivial over each set  $X_k$ . Therefore we may assume that im-bundle  $\xi$  is trivial over the set  $X_k$  of the smallest non-zero dimension.

Let  $s_1 \dots s_k$  be  $k$  orthogonal to one another non-zero sections of  $\xi^k$  over  $V^k \supseteq X_k$  extended continuously by 0 onto

the whole base space  $X$ . Let  $\eta_k$  denotes an im-bundle which is trivial,  $k$ -dimensional with (orthogonal to one another) independent sections  $t_1, \dots, t_k: X_{\overline{k+1}} \longrightarrow E(\eta_k)$  over  $X_{\overline{k+1}} = X \setminus X_{\overline{k}}$  and zero dimensional over  $X_{\overline{k}}$ . The sections  $s_i + t_i$  of the im-bundle  $\xi \oplus \eta_k$  span over  $X_{\overline{k}}$  the  $k$ -dimensional trivial bundle, whose orthogonal complement in  $(\xi \oplus \eta_k)|_{X_{\overline{k}}}$  is an im-bundle denoted by  $\xi'$ . Observe that  $\langle s_i + t_i, s_j + t_j \rangle = 0$  for  $i \neq j$ . The fibres dimension of  $\xi'$  is non-zero only over  $X_{\overline{k+1}}$ , so the induction argument may be used. In no more than  $m$  steps we obtain the im-bundle  $\eta = \eta_{k_1} \oplus \eta_{k_2} \oplus \dots \oplus \eta_{k_m} \in \text{ImVB}(X)$  such that  $\xi \oplus \eta$  admits sections described in Proposition 3. This proves Theorem 2.

From Theorem 2 we have :

**Proposition 4.** The map  $\psi: \text{ImVB}(X) \longrightarrow \tilde{K}_{im}(X)$  defined by  $\psi(\xi) = \xi - \text{rk}(\xi)$  is surjective. There is one to one correspondence between  $\tilde{K}_{im}(X)$  and the set  $\text{IMVB}(X)/\sim$  where  $\xi_1 \sim \xi_2$  if and only if there exist piecewise trivial im-bundles  $\theta_1$  and  $\theta_2$  such that  $\xi_1 \oplus \theta_1 \cong \xi_2 \oplus \theta_2$ .

**Proof.** First statement is obvious because for any  $[\xi_1 - \xi_2] \in \tilde{K}_{im}(X)$  there exists (by Theorem 2)  $\eta_2 \in \text{ImVB}(X)$  such that  $\xi_2 \oplus \eta_2$  is piecewise trivial and therefore  $\xi_1 - \xi_2 = \psi(\xi_1 \oplus \eta_2)$ . For the second observe that  $\tilde{\psi}: \text{IMVB}(X)/\sim \longrightarrow \tilde{K}_{im}(X)$  is correctly defined by  $\tilde{\psi}([\xi]) = [\xi - \text{rk}(\xi)]$  and it is bijective. In fact  $\tilde{\psi}([\xi_1]) = \tilde{\psi}([\xi_2])$  implies that  $[\xi_1 - \text{rk}(\xi_1)] = [\xi_2 - \text{rk}(\xi_2)]$  and  $[\xi_1 \oplus \text{rk}(\xi_2)] = [\xi_2 \oplus \text{rk}(\xi_1)]$  so  $\xi_1 \sim \xi_2$ . This proves Proposition 4.

**5. Main Theorem**

Let  $X^n = (X, r)$  be a filtered space and let  $A = X_{\underline{k}} = r^{-1}(1, 2, \dots, k)$  for fixed  $1 \leq k \leq n$ . It is clear that  $A^k = (A, r|_A)$  is also a filtered space. Let us define the filtration on  $X/A$  :

$$X/A := (X/A, r')$$

where

$$\begin{cases} r(x) - k + 1 & \text{for } x \in X \setminus A \\ 1 & \text{for } [x] = [A] . \end{cases}$$

Let us consider two maps of filtered spaces  $A \xrightarrow{i} X \xrightarrow{j} X/A$ . Just as in classical K-theory we obtain two ring homomorphisms

$$\tilde{K}_{1m}(A) \xrightarrow{j^*} \tilde{K}_{1m}(X) \xrightarrow{i^*} \tilde{K}_{1m}(A) .$$

On the other hand there exist two natural homomorphisms which we call **collaps** (c) and **blowup** (b) :

$$\tilde{K}_{1m}(A) \xrightarrow{b} \tilde{K}_{1m}(X) \xrightarrow{c} \tilde{K}_{1m}(X/A) .$$

The blowup homomorphism  $b : \tilde{K}_{1m}(A) \longrightarrow \tilde{K}_{1m}(X)$  we define as follows :

$$b([\xi]) := [\text{im}(b'(\alpha))]$$

$$b'(\alpha)(x) := \begin{bmatrix} (1 - \varphi_A(x))\tilde{\alpha}(x) & \varphi_A(x) I_n \\ \hline \varphi_A(x) I_n & 0 \end{bmatrix}$$

where :

- $x \in A$ ,  $\xi = \text{im}\alpha$ ,  $\alpha : A \longrightarrow \text{End}(F^n) \subset \text{End}(F^{2n}) \subset \text{End}(F^\infty)$  ;
- $\tilde{\alpha} : X \longrightarrow \text{End}(F^n)$ ,  $\tilde{\alpha}$  is continuous extension of  $\alpha$  ;

-  $\varphi_A : X \longrightarrow [0,1]$  any function such that  $\varphi_A^{-1}(0) = A$ .

However it is clear that the above definition is independent of choices of  $\varphi_A$  and  $\alpha$  (in the "Ftop homotopy class"  $[\alpha]$ ) and therefore it correctly defines the homomorphism ; it seems to be unnecessarily complicated. To explain the sense of blowup observe that  $b([\xi])$  is simply determined by the im-bundle over  $X$  which is  $\xi$  over  $A$  and trivial of high dimension over  $X \setminus A$ .

The collaps homomorphism  $c : \tilde{K}_{im}(X) \longrightarrow \tilde{K}_{im}(X/A)$  is defined as follows :  $c([\xi]) = [im(c'(\alpha))]$  where

$$c'(\alpha)([x]) = \begin{cases} \varphi_A(x)\alpha(x) & [x] \neq [A] \\ 0 & [x] = [A] \end{cases}$$

and  $\varphi_A : X \longrightarrow [0,1]$  is any function such that  $\varphi_A^{-1}(0) = A$ .

With help of the above definition we are able to formulate

Theorem 3. The sequence  $0 \longrightarrow \tilde{K}_{im}(X/A) \xrightarrow{j^*} \tilde{K}_{im}(X) \xrightarrow{i^*} \tilde{K}_{im}(A) \longrightarrow 0$  is exact.

Moreover : (1)  $i^* \circ b = id_{\tilde{K}_{im}(A)}$

$$(2) c \circ j^* = id_{\tilde{K}_{im}(X/A)}.$$

Proof. Observe that :

(1) implies that  $i^*$  is epimorphic ,

(2) implies that  $j^*$  is monomorphic.

Therefore it is enough to prove that  $im j^* = \ker i^*$  and the relations 1), 2).

**L e m m a 2.** Let  $\xi, \xi_0 \in \text{ImVB}(\mathcal{X})$  be two im-bundles such that  $\xi = \text{im}\alpha$  and  $\xi_0 = \text{im}(\varphi_A \alpha)$ . Then the relation  $\xi - \text{rk}(\xi) = \xi_0 - \text{rk}(\xi_0)$  holds if and only if  $\xi|_A = \text{rk}(\xi)|_A$ .

**P r o o f of the Lemma 2.** If we assume that  $\xi - \text{rk}(\xi) = \xi_0 - \text{rk}(\xi_0)$  then we have  $(\xi - \text{rk}(\xi))|_A = (\xi_0 - \text{rk}(\xi_0))|_A$ , but  $(\xi_0 - \text{rk}(\xi_0))|_A = 0$ , hence we obtain  $\xi|_A = \text{rk}(\xi)|_A$ .

For inverse observe that the condition  $\xi|_A = \text{rk}(\xi)|_A$  implies that we may choose the base of  $\theta^n$ , an embedding of  $\xi$  into  $\theta^m$  and a representation  $\alpha : \mathcal{X} \longrightarrow \text{End}(F^m)$  of the im-bundle  $\xi$ , such that  $\alpha|_A$  is a diagonal matrix. Therefore, we may assume that the rank of the matrix  $[\alpha(x), \beta(x)] \in M(m \times 2m)$  - where  $\beta$  is a diagonal representation of the im-bundle  $\text{rk}(\xi)$  - is equal to the rank of  $\alpha(x) \in \text{End}(F^m)$  for any  $x \in X$ . Let us consider the map given by the matrix :

$$H_t(x) = \left[ \begin{array}{c|c} \varphi_A(x)\alpha(x) & 0 \\ \hline t \alpha(x) & \beta \end{array} \right].$$

Observe that  $\text{rk } H_t(x) = \begin{cases} 2 \text{rk}\alpha(x) & \text{dla } x \in X \setminus A \\ \text{rk}\alpha(x) & \text{dla } x \in A \end{cases}$ ,

so it is independent of the parameter  $t \in I$ . Now it is clear ([4]) that :

$$\text{im} \begin{bmatrix} \varphi_A(\cdot) \alpha(\cdot) & 0 \\ 0 & \beta \end{bmatrix} \cong \text{im} \begin{bmatrix} \varphi_A(\cdot) \alpha(\cdot) & 0 \\ \alpha(\cdot) & \beta \end{bmatrix} \cong$$

$$\text{im} \begin{bmatrix} I - \varphi_A(\cdot) I & 0 \\ 0 & I \end{bmatrix} \cdot \begin{bmatrix} \varphi_A(\cdot) \alpha(\cdot) & 0 \\ \alpha(x) & \beta(x) \end{bmatrix} \cong$$

$$\text{im} \begin{bmatrix} 0 & -\varphi_A(\cdot) \beta(\cdot) \\ \alpha(\cdot) & \beta(\cdot) \end{bmatrix} \cong \text{im} \begin{bmatrix} 0 & -\varphi_A(\cdot) \beta(\cdot) \\ \alpha(\cdot) & t \beta(\cdot) \end{bmatrix} \cong$$

$$\text{im} \begin{bmatrix} \alpha(x) & 0 \\ 0 & \varphi_A(\cdot) \beta(\cdot) \end{bmatrix}.$$

This proves Lemma 2.

Now we are able to prove Theorem 3.

For (1) let  $[\xi - \text{rk}(\xi)] \in \tilde{K}_{1m}(A)$ ,  $\text{im} \alpha = \xi$ . By the definition  $\text{im}[b'(\alpha)]|_A = [\xi]$ , so  $(i^* \circ b) = \text{id}_{\tilde{K}_{1m}(A)}$  because  $i^*$  is just the restriction. For (2) let  $[\xi - \text{rk}(\xi)] \in \tilde{K}_{1m}(X/A)$ ,  $\text{im} \alpha = \xi$ . By definition  $(c \circ j^*)[\xi - \text{rk}(\xi)] = [\xi_0 - \text{rk}(\xi_0)]$ , and we obtain the relation (2) immediately from Lemma 2 when we put  $X := X/A$  and  $A := [A]$ .

For  $\ker i^* = \text{im } j^*$  let  $\xi \in \text{ImVB}(X)$ ,  $[\xi] \in \tilde{K}_{1m}(X)$ . From Lemma 2 we have  $i^*([\xi]) = 0$  if and only if  $[\xi] = [\xi_0] \in \text{im } j^*$ .

This finishes the proof of Theorem 3.

**Corollary 1.** Let  $\mathcal{X}^2 = (X, r)$ ,  $r^{-1}(1) = x_0 \in X$ ,  $r^{-1}(2) = X \setminus X_0$ , be a filtered space. Then there exists an isomorphism  $i^* : \tilde{K}_{im}(X) \longrightarrow \tilde{K}(X \setminus x_0)$  defined by the relation  $i^*([\xi]) = [\xi|_{X \setminus x_0}]$ . If  $[im\alpha] \in \tilde{K}(X \setminus x_0)$  then we have the relation  $(i^*)^{-1}([im\alpha]) = [im\varphi_0(\ )\alpha(\ )] \in \tilde{K}_{im}(X)$  (where  $\varphi_0 : X \longrightarrow \mathbb{R} = (\mathbb{R}, |\text{sgn}|)$  is any real function such that  $\varphi_0^{-1}(0) = x_0$ ).

**Corollary 2.** There is an isomorphism  $K_{im}(X^n) = \bigoplus K(X_i)$ .

**Proof.** From Theorem 3 (where we put  $\mathcal{A} := \underline{x_1, x_2, \dots, x_n}$ ) we obtain  $\tilde{K}_{im}(X^n) = \bigoplus_{i=1}^n \tilde{K}(X_i)$ . From Corollary 1 we have :

$$K_{im}(X^n) = \tilde{K}_{im}(X^n) \oplus \mathbb{Z}^n = \left( \bigoplus_{i=1}^n \tilde{K}(X_i) \right) \oplus \mathbb{Z}^n = \bigoplus_{i=1}^n (\tilde{K}(X_i) \oplus \mathbb{Z}) = \bigoplus_{i=1}^n K(X_i).$$

**Corollary 3.** Let  $X$  be a finite CW-complex, let  $K_{im}(X)$  denote the ring completion of  $\text{ImVB}(X)$  and let  $\mathbb{Z}^X$  be the set of all functions  $f : X \longrightarrow \mathbb{Z}$ . Then the homomorphism  $\text{rk} : K_{im}(X) \longrightarrow \mathbb{Z}^X$  defined by the relation  $\text{rk}[\xi_1 - \xi_2] = \dim \xi_1|_X - \dim \xi_2|_X$  is monomorphic.

**Proof.** Let  $\text{rk}[\xi_1 - \xi_2] = 0 \in \mathbb{Z}^X$ . We may assume that there exists a filtration  $r : X \longrightarrow \{1, 2, \dots, n\}$  (determined by any triangulation of  $X$  which is compatible with the CW-structures given by the im-bundles  $\xi_i$ ) such that :

- $\xi_1, \xi_2 \in \text{ImVB}(X)$ ,  $\text{rk}(\xi_1) = \text{rk}(\xi_2)$  ;
- each  $X_i$  is contractible.

Then we have  $K_{im}(X^n) = \tilde{K}_{im}(X^n) \oplus \mathbb{Z}^n = 0 \oplus \mathbb{Z}^n$ .

Because  $[\xi_1 - \xi_2] = 0$  as an element of  $\tilde{K}_{\text{Im}}(X^n)$ , so there exists  $\eta \in \text{Im}VB(X)$  such that  $\xi_1 \oplus \eta = \xi_2 \oplus \eta$  therefore  $[\xi_1 - \xi_2] = 0$  as an element of  $K_{\text{Im}}(X)$ .

#### REFERENCES

- [1] M. F. Atiyah : K-theory, Harvard University Cambridge Mass. 65.
- [2] D. Husemoller : Fibre bundles, McGraw-Hill Book Comp. 1966.
- [3] M. Karoubi : K-theory, Grundlehren math. Wiss. 228 Springer 1977.
- [4] J. Samsonowicz : Images of vector bundles morphisms, Bull. Acad. Polon. Sci. vol 34, No 9-10 (1986), 99-609.
- [5] J. Samsonowicz : Kernels of vector bundles morphisms, Demonstratio Math. 22 (1989) in print.

INSTITUTE OF MATHEMATICS, TECHNICAL UNIVERSITY OF WARSAW,  
00-661 WARSZAWA

Received December 18, 1987.