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K-THEORY FOR IM-BUNDLES

Introduction

By an im-bundle we mean any quasi-bundle (i.e. any
singular vector bundle) which can be represented as an image
of an endomorphism of a locally trivial bundle. Some
properties of the category ImVB of im-bundles are presented
in [4] and [5].

Any im—bundle € over a space X determines a decomposition
of this base space into the sets XI,XZ, I (Xls X) over
which the dimensions of fibres are constant. By a filtered
space denoted X we mean any space X together with a fixed
decomposition of such kind. Observe that in a natural way we
can define the semiring ImVB(X) (with respect to Whitney sum
and tensor product) of isomorphism classes of im-bundles
which give the same decomposition of X. Then the K-functor
may be applied. Let us denote K(ImVB(X)) by Kln(I). The main
theorem of this paper says that

Kl_(x) =o K(Xi).

Let us start from the following definitions and notation :

1. The category of filtered spaces

Let X be a topological space and r : X —{1,2,3,...,n}
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be a surjective function called filtration such that for
each 1 = k = n the set r-i({l,...,k}) is closed in X. By a
filtered ‘space denoted 2" or X we mean any such pair (X,r).

If " = (X,r) and Y = (Y,r’) are two filtered spaces
then we say that a continuous map a« : X —— Y is compatible
with this filtration if there exists a numerical function «
which makes the following diagram commute :

X x > Y

N7 o N2
{1,2,...,n} « > {1,2,...,n}

Note that if « exists then it is uniquely determined by «.
The category with filtered spaces as objects and maps, which
are compatible with filtrations, as morphisms we denoted by
FTop.

For any filtered space X and for any continuous map « :
X —— Y there exists a natural pull-back of the filtration
r:¥Y — {1,2,...,n} onto X. The structure of this filtered
space X = (X,r,a) we call induced from ¥ under «.

It is suitable to define a homotopy in this category as
any map H : X x I —— Y where the filtration of X x I is
induced fr‘om X under the projection X x I —— X onto the

first factor.

2. The category of im-bundles and the K.m—functor

A real (or complex) quasi-bundle called shortly gq-bundle
is a triple £ = (E,p,X) where p : E —— X is a continuous

map such that any fibre p-l(x) = €x, xeX, is an nx—dimensional
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vector space over the field F of real (or complex) numbers.
A morphism ¥ : § —— & of g-bundles is a pair of maps
(u,f) such that the diagram :

u

E > E’
p p’

N N

X f > X°

commutes and the restriction of u to any fibre is linear.
We consider only g-bundles with a bounded dimension of

fibres (i.e. n = dimF Ex = m < o) and such that the sets
X () :={xeX: n =n}
l_l X

n=20,1,...,m are subcomplexes of a finite CW-complex X.
Any g-bundle £ is called an im-bundle if and only if the
condition x € Xk = Xk\Xk_1 implies that there exist an open

neighbourhood U of x and k linearly independent sections

(s,,8,,...,8, : U—> p (V) of & .

2
With our assumption on (X,Xk) each im-bundle § = (E,p,X)

is an image of an endomorphism of a trivial bundle (see Th.1
in [4]) and hence may be represented by a map o :X ——End(F")
or more general by a map
@ : X — End(F”) = lim End(F™*)
-

K
where End(F") & End(F ¢ ... c End(F™) is given by

i(g) = (¢ ® 0). By definition ima denotes the im-bundle
contained in the trivial bundle 68" = (X x Fn,ni,X) with

n+1)

fibres ima(x). Observe that any im-bundle may be represented

as a matrix (with function coefficients) of the endomorphism
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a(x) in the canonical base of F'. The set of isomorphism
classes of im-bundles over X we denote by ImVB(X). It is a
semiring with respect to Whitney sum and tensor product (see
[4]). By an im-bundle € we mean both : an im-bundle and its
isomorphism class.

Let &nd(F®) denote the filtered space (End(Fm), rank+1).
Let X be any filtered space and let a : X —> &nd(F") be a
map in the category FTop. Observe that a(r(x)) = rk(a(x))+1
for x € X. '

We know (see [4]) that the isomorphism class of an im-
bundle determines the homotopy class [al € [¥X,&nd(F*)] and
vice versa ; any homotopy class in [X,&nd(F*)] determines an
im-bundle up to isomorphism. Let ImVB(X) denote the
subsemiring in ImVB(X) which consists of classes of im-
bundles for which a representation may be chosen as a map
« : X — 8nd(F”) in the category of filtered spaces. It is

clear that
ImVB(X) = [X,&nd(F")]

The main purpose of this paper is to investigate the ring
completion K(ImVB(X)) which we denote shorter by Kim(I).
Observe that.as in the classical case Klm is a contravariant
functor from the category of filtered spaces to the category

of rings.

3. Piecewise trivial im-bundles

Let X"= (X,r) be a filtered space and h :{1,2,...,n}——azzo
(Z>0 = {0} U N) be an nondecreasing function ; let h denote
also the n-tuple (h(1),h(2),...,h(n)) € Z".
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Then we define rk(h) : X —— &nd(F") by the formula :
rk(h)(x) = [¢o(x)1kole [qpi(x)Ik le ...® lwn(x)lk lJe Oe Oe...

1 n
where for each {1 = 1,2,...,n :
k k
-1 :F !_ 5 F! is the identity ;
1

- k(1+1) = h(1+1)-kl , k1 = h(1) ;

- X —— F is any function such that ¢:1(0) = Xl
Observe that the homotopy class [rk(h)] e [X,8&nd(F*)] is

the same for any (n+1)-tuple (¢o,¢1,....¢n) of functions

such that ¢;IUJ) = X : 1f (,¥,...,¥) is the any other

such (n+1)-tuple then the matrices

(1-2t)p 1 | ty I |
° %ol 0 ° %0
1
0 i 0 i
H(1-2t)p T, Ly I
H n ! n
[ : b
(2t-1)p 1| (1-t)y 1
0 k°§ O 0 ko _ 0
1
tE[E, 1]
0 0
H(2t-1)g T, H(1-t)y T
i n I nJ

define the desired homotopy (in category FTop). Therefore
im(rk(h)) € ImVB(X) depends only on h.

- 873 -



J. Samsonowicz

Def init1ilon. The im-bundle im(rk(h)) will be
called plecewise trivial and denoted by eh.

Equivalently the plecewise trivial im-bundle eh may be
defined as an Im-bundle contained in the trivial bundle

"™ = span(ei.e

Y - } over X, with fibres eh
2 h(n) |x

(n)
span{el,ez,...,eh(r(x))} where (el.X —5 X x P } denotes

a basis of the space of sections of e““”.

Let imax € ImVB(X) be any im-bundle. Then we define an

im-bundle rk(imax) € ImVB(X) as 6" and the n-tuple (a(1),a(2),

.,a(n)) € 7" by rk(ima) or simply rk(a). Observe that if
n =1 and €k= imax is a k-dimensional locally trivial bundle
over X, then the bundle rk(&k) rk(ima) is the k-dimensional
trivial bundle 9k over X, denoted by k as the element of the
ring K(X).

4. The reduced i_m—functor
Lemma 1. For any function h :{1,2,...,n} — Z there
exist two nondecreasing functions h1’h2: {1,2,...,n} — zzo

such that h=h - h .
1 2 .

Proof. The functions h1(k)= c+ ¥ max(0,h(i)-h(i-1))

1=1
k

and h_(k) = ¢ - h(k) + I max(0,h(i)-h(i-1)), where h(0) =0
1=1
and c= max(h(0),h(1),...,h(n)), have the required properties.

This proves Lemma 1.
Let us define rk : Klm(x) —> 71" as Pk([ﬁl— 62]) = rkEl—
—rkg2 € Z". It is clear that rk is the well defined

homomorphism of rings. From Lemma 1 we have immediately :
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Propos1ition 1. The ring homomorphism rk :
Ku(:!) — > I" is an epimorphism.

Proof. For any h € I" there exist nondecreasing
h h
n 1 2 - _ =
hx’ha € (zzo) such that rk([e 0°]) = h- h h. This

proves Proposition 1.
By the proof of Lemma 1 it is also clear that
v: I"— l(l_(il'n) given by the formula y(h) = lll(hl— hz) =

1m(rk(h1))—1m(rk(h2)) € K“(fln) correctly defines a
homomorphism of rings.
Proposition 2. The ring homomorphism
'/ "— Km(it) is an monomorphism and rk o y = ldzn.
Proof. Let heZ'and h, h e (Z, )" be the two

functions gliven in the proof of Lemma 1. We have

rk-y(h) = rk(im(rk(h )) - im(rk(h)))) = h - h, = h.

This proves Proposition 2.
Def inition The reduced Km—functor, denoted im

is equal to ker(rk : Km( ) — ).

From the above considerations, the functor Klm splits :
K (@™ =K (™ o 7"
im im

The goal of this paragraph is to describe the ring xm(:r).
In the classical theory the ring K(X) may be identified with
the stable equivalence classes of bundles. For ﬁlm(ix) the
stable equivalence must be generalized. It turns out that it
is sufficient to replace the trivial bundle 6k by the
plecewise trivial eh‘ ) in the definition of stable equivalent

bundles. First we prove the following
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Theorem 1. Let £ € ImVB(X") be an im-bundle such
that there exists a diagonal representation a : X"—> &nd(F")
of £ (1.e. for each x € X a(x) is a diagonal matrix). Then £
Is a plecewise trivial im-bundle.

Proof. Let a= diag(al,...,a_), ime = £ be a diagonal
representation of im-bundle €. It 1s sufficient to prove
that there exists a homotopy (in the category FTop) between
« and the map B = diag(Bi,....B_) : 4"—— &nd(F") such that

- for each k = 1,...,m, B 1is a real nonnegative function

k

B, : X — R, and 8;1(0) = X, for some 1 = 0,1,...,a(n).
- for each point x€ X the relation sgnBl(x) z ... 2 sgan(x)
holds.

It is clear that any im-bundle 1m(diag(81,...,Bm)) is a
plecewise trivial one. Let us define Bk to be equal to the

k-th symmetric function in the indeterminates |ak|,...,|am|

(l.e. B (x) := § |al||al |...|e, |, where i(k’) = (1<
2

1(k?*) 1 1k’
..< 1) e Z¥'). Observe that the relation B (x) = 0

implies Bj(x) = 0 for j = k and moreover B;I(O) =X

We start an induction with respect to m. The first step

is clear : 1ma1 = 1m|a1| for @ X —> F.

It is enough to prove that im(diag(W.BI,...,Bm)) is
isomorphic to im(diag(y+ B ,7B + B,,78,* 33"'.'7Bm-{'.8m’3m)
where y = °%n1|'

Consider the relation A-diag(w,Bl,...,Bm) = C where :

- 876 -



K-theory for IM-bundles

- 877 -

1 1 o} 0
-131 ' 1 0.. 0
8132 —7!32 7/81 1.. 0
-813283 73283 -76133 78132 0
0
1
m m-1
T T B, (7 T B, [*7 T B, 7B
i1=1 1#£1 1#£2 i=1
1 0 0 0
1 1 0 0
0 1 1 0 0
o] 1 1
o] 0 o] 4]
o] 0 o] 0]
o] 0 o] 1




J. Samsonowicz

81 B, 0 0 i... ...i0 o0 0
o ¥B+B,I B, 0 0io 0
0 0 i¥B8,+8,i B, | O 0io0 0
C =
0 0 0 B
m-1
0 0 0 0 i.... 0 i, 8
- n
0 0 0 0 oio i"?
| 7,['181+Br

The methods described in {4] give us isomorphism :

im(diag(y,Bi,Bz,...,Bm))  imC = im(diag(Cll,sz,...,Cmm)).

The relation { Ba(X) =0 (Bx+3(X) =0 for j = 0), x € B},
implies that the following homotopy is of constant rank :
diaglC ,C_,(1-t)C_+ t(¥B + B),...,(1-t)C_+ t(z8 + B ).

The above homotopy determines the required isomorphism of im
bundles. This proves Theorem 1.
From Theorem 1 we have immediately the following
characterisation of the piecewise trivial im-bundles : '
Proposition 3. The im-bundle £ = (E,p,X) €
€ ImVB(X") is a plecewise trivial im-bundle if and only if
m

there exists an embedding of € into the trivial bundle 6 =

= (X x F',nl,X) of dimension m = max {dim E} and sections
xXEX x
S,..»8 1 X —> Eof £¢ @" such that £ = span{s_,...,s }

and <si,sj> = 0 for any pair (i,J), i#j. (Here <.,.> denotes
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the standard product in 8").

Pr oo f. The existence of such sections means that
there exists the following diagonal representation of § < o
a = d1ag(|sll,....|sn|). For the inverse observe that any £
with diagonal representation ima = §, admits such sections
defined by the columns of a.

Now we are able to prove the following.

Theorem 2. Let £ € ImVB(X") be any im-bundle.
Then there exists an im-bundle 9 € ImVB(ﬁ’), such that
€ ® m e InVB(X") is a plecewise trivial im-bundle.

Proof. Let €=U Ek = U (E* p,V*) be the decomposition
(described in [4]) of £ into locally trivial bundles £° (k =
0,1,...,m) over vE , Where each Vk is an open neighbourhood
of Xk. Let us consider Ek over Xk. There exists a locally

trivial bundle (in particular an im-bundle) 1m7k , Where R
n

Xi———a End(F *) such that (imyke Ek) is a trivial bundle.
Each im-bundle imrk (defined over Xk) may be extended to the
whole space X by :

0] over X
k-1
imy := 1m7k over Xk
"y
2] over X— =X\ X .
kel l:
Note that (1ma‘rle m;ae .. ® 1m77n) ® £ is an im-bundle which

is trivial over each set Xk . Therefore we may assume that
im-bundle € is trivial over the set xk of the smallest non-
zer6 dimension.

Let S,--:8S, be k orthogonal to one another non-zero

sections of Ek over Vk =2 Xk extended continuously by O onto
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the whole base space X. Let nk denotes an im-bundle which is
trivial, k-dimensional with (orthogonal to one another)

independent sections t_ ,...,t : X— —— E(n ) over X— =
1 K ket k k+1

= X\ Xk and zero dimensional over Xk. The sections sl + tl

of the im-bundle £ e n_ spann over X; the k-dimensional

trivial bundle, whose orthogonal complement in (£e "k)|X— is
k

an im-bundle denoted by £’. Observe that <s1+ tl,sj+ t3> =0

for 1 # J. The fibres dimension of £’ is non-zero only over

x_ ]

k+1

m steps we obtain the im-bundle =N ® n ® ... ® n, € ImVB(X)
1 2 m

such that £ © n admits sections desribed in Proposition 3.

so the induction argument may be used. In no more than

This proves Theorem 2.

From Theorem 2 we have :

Proposition 4. The map ¢ :ImVB(X) — iin(I)
defined by y(€) = €- rk(€£) is surjective. There is one to
one correspondence between ﬁlm(m) and the set IMVB(X)/_
where €1~ §2 if and only if there exist piecewise trivial
im-bundles 91 and 92 such that 510 91 & Eze 92.

Proof. First statement is obvious because for any
[§1— 62] € iu(fl) there exists (by Theorem 2) € ImVB(X)

such that Eze n, is piecewise trivial and therefore El— §2 =

¢(€10‘n2)' For the second observe that v :ImVB(X)/  —> KI_(I)
is correctly defined by $([£])= [£-rk(£)] and it is bijective.
In fact E([€1]) = ﬁ([&zl) implies that [El- rk(&i)] = [Ezf

- rk(€2)] and [Ele rk(§2)1,= an rk(€f)] S0 §1~ Ea' This
proves Proposition 4. ’
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5. Main Theorem
Let X" = (X,r) be a filtered space and let A = X =

r1(1,2,...,k) for fixed 1 s k = n. It is clear that £ =
(A, r A) is also a filtered space. Let us define the
filtration on X/A :
X/d := (X/A,r’)

where
r(x) -k +1 for x € X\A
1 for [x] = [A] .

Let us donsider two maps of filtered spaces & > X 15 %/4.
Just as 1In classical K-theory we obtain two ring homomorphisms
L 2 *

K (4 —5K (1) 25K (0 .
im im / im
On the other hand there exist two natural homomorphisms
which we call collaps (c) and blowup (b) :
B () 2 (1) —S K (a4 .
im im im

The blowup homomorphism b : ]'Ei-(d) —_— ii-(I) we define as

follows :

b((£€]) := [im(b’ (a))]

(1-9, (x))&(x) l p,(x) T_

b’ (a)(x) := :
o, (x) I , 0

where :
-xed £=1imx, o : 4 —> End(F") ¢ End(F™) ¢ 8nd(F™) ;

—a: X — End(F"), « is continuous extension of « ;
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: X — [0,1] any function such that ¢i1(0) = A.
However it 1is clear that the above definition |is

-9,
independent of choices of v, and a« (in the "Ftop homotopy
class” [al]) and therefore it correctly defines the
homomorphism ; it seems to be unnecessarily complicated. To
explain the sense of blowup observe that b([£]) is simply
determined by the im-bundle over X which is € over A and
trivial of high dimension over X\A.

The collaps homomorphism ¢ : i‘_(x) —_ i’_(I/J) is defined

as follows : c([€)) = [im(c’(a))] where

¢A(x)a(x)' [x] = [A]
c' (a)([x]) =
0 [x] = [A]

and ®, X —— [0,1] is any function such that ¢;1(0) = A,
With help of the above definition we are able to
formulate . .

Theorem 3. The sequence 0—— ilm(x/l)—l—a ilm(x)le
*

SLIN ﬁl.(d) —> 0 1is exact.

*
Moreover : (1) 1 ob= 1d§ )

im

-
(2) c o J = idi Loy °
inm

Proof. Observe that :
(1) implies that i* is epimorphic ,
(2) implies that J' is monomorphic.
Therefore it 1s enough to prove that imJ‘ = ker i‘ and the
relations 1), 2).
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Lemma 2. Let &,Eo € ImVB(X) be two im-bundles such
that € = imx and Eo = 1m(¢Aa). Then the relation £- rk(§) =
= Eo- rk(&o) holds if and only if EIA = rk(£|A).

Proof of the Lemma 2. If we assume that &€- rk(§) =
= Eo- rk(§°) then we have (&- rk(E))|A = (Eo- rk(€o))|Ar but

(Eo- Pk(Eo))|A= 0, hence we obtain €|A= rk(€)'A.

For Iinverse observe that the condition €|A = rk(E)lA
implies that we may choose the base of 8", an embedding of £
into 8" and a representation & : X —» &nd(F") of the im-
bundle £, such that a A is a diagonal matrix. Therefore, we
may assume that the rank of the matrix [a(x),B(x)] € M(mx2m)
- where B8 1is a diagonal representation of the im-bundle
rk(£) - is equal to the rank of a(x) € &nd(F") for any x € X.

Let us consider the map given by the matrix :

9, (xX)a(x) l 0

Ht(x) = :
t a(x) i B

2 rka(x) dla x € X\A
Observe that rk Hk(x) = ,
rka(x) dla x € A

so it is independent of the parameter t € I. Now it is clear
([(4]) that :
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o,( Ja( ) | 0 p,(da() | 0
im i % im ; )
0 i B al ) i B
- I-wA( )1 ! (4] - QA( Ja( ) ! o
im : . ; &
0 i1 a(x) | B(x)
- i
0 l v, ( )BC) 0 v,( )BC)
im § % im ; r
«() | BC) «) | tB()
a) | o
im z
0 j 9, ( )B()

This proves Lemma 2.
Now we are able to prove Theorem 3.
For (1) let [£- rk(€)] e f('l_(d). imx = £. By the definition

= [£] , so (1° b) = id because 1~ 1s Jjust

im(b’ (a)] 2 o)
im

|a
the restriction. For (2) let [£- rk(€)] e El_(I/l), ime = €.

By definition (c o J )& rk(€)] [, - rk(£)], and we

obtain the relation (2) immediately from Lemma 2 when we put
X :=X/d4 and 4 := [A]. .
For ker i = im J let £ e ImVB(X), [£€] e K _(X). From

Lemma 2 we have i‘([€])= 0 if and only if [£] = [€°] € im J‘.
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This finshes the proof of Theorem 3.

Corollary 1. Let2=(Xr), r'(1)=x €X,
r2) = x\ X, be a filtered space. Then there exists an
isomorphism 1* i’lm(fl) —_— ﬁ(X\xo) defined by the relation

1*(en = IEIX\x ]. If [1ma] e R(X \ x) then we have the
[o]

relation (1) ([1ma]) = [1mp ( Jal )] € K _(X) (where g :

X —> R = (R, |sgn|) is any real function such that ¢;1(0) =

=x).
(s
Corollary 2. There is an isomorphism Kh(fl'n) =
= o K(Xi).
Pr oo f. From Theorem 3 (where we put 4 := Il,fl'z,... ,fln)

n
we obtain Ku('In) = e K(Xl). From Corollary 1 we have :
1=1

K(Xl).

K;."‘n" fi“(l")o I"=(e i(xl))e "= (E(Xl)e 7) =
= 1

i=1 i=1 |

Corollary3. Let X be a finite CW-complex, let
K“(X) denote the ring completion of ImVB(X) and let ¥ be
the set of all functions f : X —— Z. Then the homomorphism
rk : K_(X) — Z* defined by the relation rki€ - €] = =
dim€1|x

Proof. Let rkl§-§,]=0c¢ Z*. Ve may assume that
there exists a filtrationr : X — {1,2,...,n} (determined
by any triangulation of X which is compatible with the CW-
structures given by the im-bundles £ ) such that : ’
- 61,62 € ImVB(X), rk(€1) = rk(Ea) ;
~ each )(l is contracible.

Then we have K (") =K (2") e 2" = 0 o 2°

- din&zlx is monomorphic.
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Because {El- Ezl = 0 as an element of Elm(x“), so there

exists 7 € ImVB{X) such that Ele n = 529 7n therefore [El-Eal=0

as an element of xl_(x).

(1]

[2]

(3]

(4]

[5]

REFERENCES

M. F. At i1yah: K-theory, Harvard Unlversity Cambridge

Mass. B65.

D. Husemoller : Fibre bundles, McGrow-Hill Book
Comp. 18966.

M. Karoubi : K-theory, Grundlehren math. Wiss. 228
Springer 1977.

J. Samsonowli c 2z : Images of vector bundles
morphisms, Bull.Acad.Polon.Sci. vol 34, No 9-10 (1986),
99-6089. )

J. Samsonow1ic z : Kernels of vector bundles
morphisms, Demonstratio Math. 22 (1989) in print. |

INSTITUTE OF MATHEMATICS, TECHNICAL UNIVERSITY OF WARSAW,
00-661 WARSZAMA
Received December 18, 1987.

- 886 -



