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K-THEORY FOR IM-BUNDLES 

Introduction 

By an im-bundle we mean amy quasi-bundle (i.e. any 

singular vector bundle) which cam be represented as sin image 

of an endomorphism of a locally trivial bundle. Some 

properties of the category ImVB of im-bundles are presented 

in [4] and [5]. 

Any im-bundle £ over a space X determines a decomposition 

of this base space into the sets over 

which the dimensions of fibres are constant. By a filtered 

space denoted X we mean any space X together with a fixed 

decomposition of such kind. Observe that in a natural way we 

can define the semiring ImVB(X) (with respect to Whitney sum 

and tensor product) of isomorphism classes of im-bundles 

which give the same decomposition of X. Then the K-functor 

may be applied. Let us denote K(ImVB(X)) by K (X). The main 
i 111 

theorem of this paper says that 

K (X) = ® K(X ). 
la 1 

Let us start from the following definitions and notation : 

1. The category of filtered spaces 
Let X be a topological space and r : X »{1,2,3 n> 
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be a surjective function called filtration such that for 
each 1 s k s n the set r_1({l k}) is closed in X. By a 
filtered space denoted X° or X we mean any such pair (X,r). 

If X" = (X,r) and 1/"' = (Y,r') are two filtered spaces 
then we say that a continuous map a : X » Y is compatible 
with this filtration if there exists a numerical function a 
which makes the following diagram commute : 

r r' 

{1,2*. ...n> >{l,2,*..,n} 

Note that if a exists then it is uniquely determined by a. 
The category with filtered spaces as objects and maps, which 
are compatible with filtrations, as morphisms we denoted by 
FTop. 

For any filtered space X and for any continuous map a : 
X > Y there exists a natural pull-back of the filtration 
r : Y » {1,2 n> onto X. The structure of this filtered 
space X = (X,r,a) we call induced from V under a. 

It is suitable to define a homotopy in this category as 
any map H : X x I > V where the filtration of X x I is 
induced from X under the projection X x I » X onto the 
first factor. 

2. The category of im-bundles and the K -functor 1 m 
A real (or complex) quasi-bundle called shortly q-bundle 

is a triple £ = (E,p,X) where p : E > X is a continuous 
map such that any fibre p *(x) = £ , xeX, is an n -dimensional 
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vector space over the field F of real (or complex) numbers. 
A morphism 0 : £ » of q-bundles is a pair of maps 
(u, f) such that the diagram : 

P P' 
f X = > X' 

commutes and the restriction of u to any fibre is linear. 
We consider only q-bundles with a bounded dimension of 

fibres (i.e. n = dim £ s m < eo) and such that the sets x F x 
X (£) := {x e X : n s n> n x 

n = 0,1 m are subcomplexes of a finite CW-complex X. 
Any q-bundle £ is called an im-bundle if and only if the 
condition x € X = X \X implies that there exist an open k k k-l 
neighbourhood U of x and k linearly independent sections 
(si,s2 sk : U > p-1(U)) of €|0 . 

With our assumption on ( X , e a c h im-bundle £ = (E,p,X) 

is an image of an endomorphism of a trivial bundle (see Th.1 
in [4]) and hence may be represented by a map a :X »End(F*1) 
or more general by a map 

a : X > EndtF00) = lim End(Fn+k) 
k 

where End(F") c End(Fn+1) c ... c End(Fn+k) is given by 
i(V) = (<p © 0). By definition ima denotes the im-bundle 
contained in the trivial bundle 8n = (X x Fn,7r , X) with 
fibres ima(x). Observe that any im-bundle may be represented 
as a matrix (with function coefficients) of the endomorphism 
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a(x) in the canonical base of F11. The set of isomorphism 

classes of im-bundles over X we denote by ImVB(X). It is a 

semiring with respect to Whitney sum and tensor product (see 

[4]). By an im-bundle £ we mean both : an im-bundle and its 

isomorphism class. 

Let SndiF09) denote the filtered space (End(F°°), rank+1). 

Let X be any filtered space and let a : X » £nd(F°°) be a 

map in the category FTop. Observe that a(r(x)) = rk(a(x))+l 

for x € X. 

We know (see [4]) that the isomorphism class of an im-

bundle determines the homotopy class [a ] e [X,gnd(F )] and 

vice versa ; any homotopy class in [X,gnd(F°°)] determines an 

im-bundle up to isomorphism. Let ImVB(X) denote the 

subsemiring in ImVB(X) which consists of classes of im-

bundles for which a representation may be chosen as a map 

a : X > §nd(F ) in the category of filtered spaces. It is 

clear that 

ImVB(X) = [X,gnd(Fw)] . 

The main purpose of this paper is to investigate the ring 

completion K(ImVB(X)) which we denote shorter by It (X). I in 
Observe that as in the classical case K is a contravariant lm 
functor from the category of filtered spaces to the category 

of rings. 

3. Piecewlse trivial im-bundles 

Let X"= (X,r) be a filtered space and h :{1,2 n>—>I. 

(Z>q = {0} u IN) be an nondecreasing function ; let h denote 

also the n-tuple (h(l),h(2) h(n)) e Zn. 
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Then we define rk(h) : St £nd(F ) by the formula : 
rk(h) (x) = [© (x)I ]© [© (x)I ]© ...© [<p (x)I ]® 0® 0 k 1 k n k 0 1 n 
where for each i = 1,2,...,n : 

k k 
- I : F 1 > F 1 Is the identity ; 

l 
- k ( i + i ) = h(i+l)-ki , kt = h(l) ; 
- tp : X > F is any function such that ^ ( O ) = Xt . 

Observe that the homotopy class [rk(h)] e [0C,§nd(F )] is 
the same for ajiy (n+l)-tuple <p ) of functions 

0 1 n 
such that i>_1(0) = X : if , 0 ,. . . , ) is the any other I i 0 1 n 
such (n+l)-t'uple then the matrices 

(l-2t)#> I ! 0 k ' 0 

(l-2t)y I n k 

t l/l I k 0 

t 0 I n k 

t€[0,^ ] 

(2t—1) I ! 0 k 0 
(l-t)*0 Ik 

(2t-l )<p I n k 
I 
( 1 - t I n k 

t«[|,l] 

define the desired homotopy (in category FTop). Therefore 
im(rk(h)) e ImVB(X) depends only on h. 
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D e f i n i t i o n . The im-bundle im(rk(h)) will be 

called piecewise trivial and denoted by 6h. 

Equivalently the piecewise trivial im-bundle 6 h may be 

defined as an im-bundle contained in the trivial bundle 

eh(n) = span{e ,e ,...,e } over X, with fibres 0h. = 
1 2 h(n) IX 

span{e ,e ,...,e > where {e :X » X x f*1'11'} denotes 

^ 1 2 ' h(r(X)) 1 

a basis of the space of sections of 9h(n). 

Let ima € ImVBd) be any im-bundle. Then we define an 
im-bundle rk(ima) € ImVB(X) as Q* and the n-tuple (a(l),a(2), 

...,a(n)) 6 Z n by rk(ima) or simply rk(a). Observe that if 
it 

n = 1 and £ = ima is a k-dimensional locally trivial bundle 
it 

over X, then the bundle rk(£ ) = rk(ima) is the k-dimensional 
it 

trivial bundle 0 over X, denoted by k as the element of the 

ring K(X). 

4. The reduced K -functor 
in 

L e m m a 1. For any function h :{1,2 n} — » Z there 

exist two nondecreasing functions h ,h : {1,2 n> » Z^ 
1 2 £0 

such that h = h - h 1 2 
k 

P r o o f . The functions h (k)= c+ £ max(0,h(i)-h(i-l)) 
1 = 1 

k 
and h (k) = c - h(k) + £ max(0,h(i)-h(i-1)), where h(0) = 0 

1 = 1 
and c= max(h(0),h(l) h(n)), have the required properties. 
This proves Lemma 1. 

Let us define rk : K (X) > Z n as rk([£ - C D = rk? -
lm 1 2 1 

-rkf € Zn. It is clear that rk is the well defined 

homomorphism of rings. From Lemma 1 we have immediately : 
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P r o p o s i t i o n 1. The ring homomorphism rk : 
K (I) > Zn is an epimorphism. i B 

P r o o f . For any h € Zn there exist nondecreaslng 
h h9 h ,h € (Z^ )n such that rk([0 0 ]) = h - h = h. This 1 2 SO 1 2 

proves Proposition 1. 
By the proof of Lemma 1 it is also clear that 

: Zn » ̂ „/SC") given by the formula 0(h) = h j = 

im(rk(h ))-im(rk(h )) e K (X14) correctly defines a 1 2 la 
homomorphism of rings. 

P r o p o s i t i o n 2. The ring homomorphism 
iff : Zn » K (X) is an monomorphism and rk <> ̂  = idTn. In £ 

P r o o f . Let h € Zn and h , hg 6 (Zfc())n be the two 
functions given in the proof of Lemma 1. We have 

rk-0(h) = rk(im(rk(h )) - im(rk(h ))) = h - h = h. 
1 2 1 2 

This proves Proposition 2. 
D e f i n i t i o n . The reduced K -functor, denoted K lm im 

is equal to ker(rk : K ( ) — > Zn( '). 1 n 
From the above considerations, the functor K splits : lm 

K (SC11) = K (X") ® Zn. im lm 
The goal of this paragraph is to describe the ring K (X). I ID 
In the classical theory the ring K(X) may be identified with 
the stable equivalence classes of bundles. For K (X) the 

in 
stable equivalence must be generalized. It turns out that it 

k 
is sufficient to replace the trivial bundle 9 by the 
piecewise trivial 0h< ) in the definition of stable equivalent 
bundles. First we prove the following 
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T h e o r e m 1. Let € € ImVBil") be an lm-bundle such 
that there exists a diagonal representation a 
of £ (i.e. for each x € X a(x) Is a diagonal matrix). Then £ 
is a plecewlse trivial lm-bundle. 

P r o o f . Let a = diagta^,. .. ,a ), ima = ? be a diagonal 
representation of lm-bundle (;. It Is sufficient to prove 
that there exists a homotopy (in the category FTop) between 
a and the map 0 = diagO^ 0^) : DC*1 > £nd(Fw) such that 
- for each k = 1 m, 0 I s a real nonnegative function 

0 : X » IR and 0-1(O) = X for some i = 0,1 a(n). k =0 k 1 
- for each point x€ X the relation sgn0 (x) s . . . £ sgn0 (x) 1 m 
holds. 
It Is clear that amy lm-bundle lm(diag(0 0 )) Is a 1 m 
piecewise trivial 

one. Let us define 0 to be equal to the 
k-th symmetric function in the indetermlnates | | |aj 
(I.e. 0 (x) := £ |a. Ik. I---I«. I. where i(k') = (i< k 1 1 • 1 i 1 1 1 , 1 1 l(k') 1 2 k 
<...< 1 ,) e Zk'). Observe that the relation 0 (x) = 0 k k 
Implies 0 (x) = 0 for j i k and moreover 0_1(O) = X . 

J k ^ 
We start an induction with respect to m. The first step 

is clear : ima = lmla I for a : St » F. l 1 l1 l It is enough to prove that im(diag(y,0 ,...,0 )) is 1 111 
isomorphic to im(dlag(y+ Pt,7P + Pn»rP + 0 O + "0 .0 ) 1 1 2 2 J m-1 m m 
where j = la I. 1 m+l 1 

Consider the relation A'diag(y,0 0 ) = C where : 
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1 i 0 o 0 0 0 

7 i 0 o 0 0 0 

y ß i 1 . . 0 o 0 0 0 

" W s *ß2ß3 -rß ß 1 3 rß,ß9 1 2 0 0 0 0 

0 

1 

m 
* n ß , 

i= i 1*2 

m-1 
r n ß , 

i=i 

m 
* n ß , 

i= i 1*2 

m-1 
r n ß , 

i=i 

i 0 0 0 0 0 0 

i 1 0 0 0 0 0 

0 1 1 0 0 0 0 0 

; 

0 1 1 

0 0 0 1 1 0 0 

0 0 0 0 1 1 0 

0 0 0 0 0 1 1 
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"i 0 0 0 0 0 

0 <*2 0 0 0 0 

0 0 rtA+P 3 0 ... 0 0 0 

0 0 0 

0 0 0 0 0 0 a 
0 0 0 0 0 0 B-l 

* n 

The methods described in [4] give us isomorphism : 
im(diag(y,0 .8 0 )) m imC s im(diag(C ,C C )). 1 2 in 11 22 nun 
The relation { P^x) = 0 =» (x) = 0 for j a 0), x e B}, 
implies that the following homotopy is of constant rank : 
diag[C ,C , (l-t)C + t(y£ + 0 ) (l-t)C + t(yp + 0 ). 11 jo l 2 mm l in 
The above homotopy determines the required isomorphism of im 
bundles. This proves Theorem 1. 

From Theorem 1 we have immediately the following 
characterisation of the piecewise trivial im-bundles : 

P r o p o s i t i o n 3. The im-bundle £ = (E,p,X) € 
€ ImVBCOC11) is a piecewise trivial im-bundle if and only if 
there exists an embedding of £ into the trivial bundle 8m = 
= (X x F™, w ,X) of dimension m = max {dim E } and sections 1 X x€X 
s *..., s : X » E of £ £ 0 m such that £ = span{s ,...,s > I n I n 
and <s ,s > = 0 for any pair (i,J), i*j. (Here <.,.> denotes 
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the standard product in 9 ). 
P r o o f . The existence of such sections means that 

there exists the following diagonal representation of £ £ 0m: 
a = diag( Is I Is I). For the inverse observe that any £ 1 n 
with diagonal representation ima = admits such sections 
defined by the columns of a. 

Now we sire able to prove the following. 
T h e o r e m 2. Let £ e IrnVBOC") be any im-bundle. 

Then there exists an im-bundle ti e ImVBCSC"), such that 
£ © T) e ImVBOC") is a piece wise trivial im-bundle. 

P r o o f . Let £ = U £k = U (E^.p.V1') be the decomposition 
(described in [4]) of £ into locally trivial bundles £ (k = 
0,1 m) over V1* , where each V11 is an open neighbourhood 
of X^. Let us consider over There exists a locally 
trivial bundle (in particular an im-bundle) imy , where y : k k n 
Xk » End(F k) such that (imyt© £k) is a trivial bundle. 
Each im-bundle imy 
whole space X by : 

k 
Each im-bundle imy (defined over X ) may be extended to the k k 

0 over X k-l 
imy := imy over X k k k 

n 
9 k over X — • X \ X . k+l k 

Note that (imy © imy © ... © imy ) © £ is an im-bundle which 1 2 n 
is trivial over each set . Therefore we may assume that 
im-bundle £ is trivial over the set X of the smallest non-k 
zero dimension. 

Let sj...sk be k orthogonal to one another non-zero 
sections of £k over V* 2 extended continuously by 0 onto 
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the whole base space X. Let T)̂  denotes an im-bundle which Is 
trivial, k-dimenslonal with (orthogonal to one another) 
Independent sections t t : X — » E(ij ) over X — = 1 k k+1 k k+1 
=* X \ X and zero dimensional over X . The sections s + t k k 1 1 

of the Im-bundle £ © tĵ  spann over X- the k-dlmenslonal 

trivial bundle, whose orthogonal complement In (£© n ^ ) I s 
I k 

ail Im-bundle denoted by . Observe that < s + t , s + t > = 0 i i J J 
for 1 * J. The fibres dimension of Is non-zero only over 
X — , so the Induction argument may be used. In no more than 
m steps we obtain the lm-bundle ipi) © tj © . . . © i) € ImVB(X) 

1 2 • 
such that £ © TJ admits sections desrlbed In Proposition 3. 
This proves Theorem 2. 

From Theorem 2 we have : 
P r o p o s 1 t 1 o n 4. The map 0 : ImVB(I) — > K (X) 1B 

defined by = rk(£) is surjective. There is one to 
one correspondence between K (I) and the set IMVB(X)/ in ^ 
where £ ~ if and only If there exist plecewise trivial 
im-bundles 0 and 0 such that £ © 0 as £ © 0 . l 2 m l ^2 2 

P r o o f . First statement Is obvious because for any 
- € 1 « K (DC) there exists (by Theorem 2) i) € ImVB(X) 
1 2 in 2 

such that i)2 is plecewise trivial and therefore ^ = 
© u ). For the second observe that \j> :ImVB(X)/ — > K (X) 1 2 ~ 1« 

is correctly defined by'$([£])- [C~rk(^)] and it is bijective. 
In fact jJnCJ) = implies that E^- rki^)] = 

- rk(€ )] and [6 © rk(£ )] = £ © rk(£ )] so £ ~ € . This A 1 Ct & 1 \ A 

proves Proposition 4. 
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5. Main Theorem 
Let St" = (X,r) be a filtered space and let A = Xfc = 

r_1 (1,2 k) for fixed 1 s k s n. It is clear that f = 
= (A,T|A) is also a filtered space. Let us define the 
filtration on X/A : 

X/A := (X/A, r') 
where 

r(x) - k + 1 

1 

for x e X\A 

for [x] = [A] 

Let us Consider two maps of filtered spaces A X X/A. 

Just as in classical K-theory we obtain two ring homomorphisms 

K iX/A) lm J_> K (X) - — > K (A) . lm li 
On the other hand there exist two natural homomorphisms 
which we call collaps (c) and blowup (b) : 

K, U ) 1« K, (X) lm K (X/A) lm 
The blowup homomorphism b : K̂  («4) 
follows : 

K (X) we define as lm 

b([€l) := [im(b'(a))] 

b'(a)(x) := 
(l-«>A(x))a(x) | 

b'(a)(x) := 

* A ( X ) X N | 
0 

where : 
- x € A, £ = ima, a A > SndiF") c SndiF2") c ^ndiF" 
- a : X > End (F°), a is continuous extension of a F 
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- : X > [0,1] any function such that p̂"1 (0) • A. 

However it is clear that the above definition is 
independent of choices of and a (in the "Ftop homotopy 
class" [a]) and therefore it correctly defines the 
homomorphism ; it seems to be unnecessarily complicated. To 
explain the sense of blowup observe that b([£]) is simply 
determined by the im-bundle over X which is £ over A and 
trivial of high dimension over X\A. 
The col laps homomorphism c : K (X) > K (X/ti) is defined 1b 
as follows : c([Ç]) = [im(c'(a))] where 

c'(a)([x]) = 
<PA(x)a(x) [x] * [A] 

0 [x] = [A] 

and : X > [0,1] is any function such that v'^O) = A. 
With help of the above definition we are able to 

formulate , 
"" 1 ^ i T h e o r e m 3. The sequence 0 > K (X/il)-̂ —> K (X) — ^ lm lm 

— K M ) — » 0 is exact. In 
Moreover : ( 1 ) i <> b = id~ . K (<s) lm 

( 2 ) c • J* • idK CI/A • 
la 

P r o o f . Observe that : 
(1) implies that i is epimorphic , 
(2) implies that J is monomorphic. • * 

Therefore it is enough to prove that imj = ker i and the 
relations 1), 2). 
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L e m m a 2. Let €>€Q € ImVB(X) be two im-bundles such 
that f[ = lma and • imifMx). Then the relation rk(£) = 
- € - rk(£ ) holds If and only If - rk(£, ). 0 0 | A | A 

P r o o f of the Lemma 2. If we assume that rk(£) = 
= rk(?0) then we have **(£)) |A - rk(C0))|A, but 

(£ - rk(? ))i =0, hence we obtain « rk(£). . 0 0 | A | A IA 
For inverse observe that the condition = rk(£)|A 

implies that we may choose the base of 8n, an embedding of £ 
into 9 and a representation a : I > of the im-
bundle such that a ^ is a diagonal matrix. Therefore, we 
may assume that the rank of the matrix [oc(x),3(x)l € M(mx2m) 
- where £ is a diagonal representation of the im-bundle 
rk(£) - is equal to the rank of a(x) 

€ gndiF") for any x e X. 
Let us consider the map given by the matrix : 

Ht(x) « 
<PA(x)a(x) ! 0 

t a(x) | 3 

Observe that rk Ht(x) = • 
2 rka(x) dla x € X\A 

rka(x) dla x € A 

so it is independent of the parameter t e l . Now it is clear 
([4]) that : 
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9>a( )a( ) 0 <Pki )a ( ) | 0 

« lm « lm 
0 «( ) | 3 

I-fA( ) I | 0 f>A( )«( ) I 0 

o I I a(x) j 3(x) 

0 j "fA( W ) 0 | "*>A( W ) 
st lm st lm 

a( ) | P( ) a( ) | t 3( ) 

a(x) | 0 

0 | f>A( W ) 

This proves Lemma 2. 
Now we are able to prove Theorem 3. 

For (1) let [£- rk(?)] e K^U), lmot • By the definition 

im[b' (a) ] . = [£] . so (i*o b) = ld~ (J ) because 1* is Just 
' la 

the restriction. For (2) let rk(£)] 6 K (X/d), imoc -

By definition (c • J*)EC" rk(€)] - - rk(CQ)], and we 

obtain the relation (2) immediately from Lemma 2 when we put 
I := X/d and d := [A]. 

For ker 1* = lm J* let £ € ImVBCD, [£] € K (X). From 

Lemma 2 we have i*([£])= 0 if and only if [$] « [£q] c lm J*. 
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This finshes the proof of Theorem 3. 
C o r o l l a r y 1. Let I2 = (X,r), r_1(l) = Xq € X, 

r" (2) = X \ X , be a filtered space. Then there exists an 
isomorphism 1* : K (X) > K(X\x ) defined by the relation in 0 
i*([£]) = ]. If [ima] e K(X \ x ) then we have the X\x 0 1 0 
relation (i*)'^[ima]) = [im»>( )a( )] e K (X) (where q> : 0 1b 0 
X > X = (R, |sgn|) is any real function such that f_1(0) = 

C o r o l l a r y 2. There is am isomorphism K^iX") = 
= ® KiXj). 

P r o o f . From Theorem 3 (where we put jf:=X,X,...,X) 
1 2 n 

n 
we obtain K^iX11) = ® KiX^. From Corollary 1 we have : 

" 1 = 1 
K (X11)- K (X")® Zn = ( © K(X })® Zn = © (K(X )® Z) = ® K(X ). la la 1 1 1 

1=1 1=1 1=1 

C o r o l l a r y 3. Let X be a finite CW-complex, let 
K^(X) denote the ring completion of ImVB(X) and let Z be 
the set of all functions f : X > Z. Then the homomorphism 
rk : K (X) > ZX defined by the relation rk[? - € ] = = la 1 2 dim^i|x - di»^2|x is monomorphic. 

P r o o f . Let rkl^- ^ = 0 € ZX. We may assume that 
there exists a filtration r : X » {1,2 n> (determined 
by any triangulation of X which is compatible with the CW-
structures given by the im-bundles £ ) such that : 
- € ImVB(X), rk(^) = rk(?2) ; 
- each Xt is contraclble. 

Then we have K (X*) = K (X11) ® Zn = 0 ® Zn. 1» la 
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Because - £ ] = 0 as an element of K (SC"), so there 1 lm 
exists 7) e InVB(X) such that f^® i} = © v therefore [ ^ - ^ 1 = 0 

as an element of K (X). 
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