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ON AN INVERSE PROBLEM FOR THE NORMAL SINGULAR INTEGRALS

1. Preliminaries

Let E be a non-empty subset of a metric space, having an
accumulation point Eo‘(in the case EcR we admit also €°= ®).
Denote by K a non-negative function defined on the product R
x E, with #alues K(t,£) 2m-periodic and even in t, non-
increasing on the interval <0,m>, for every fixed £ € E.

Def inition 1. The function K, introduced
above, is called a kernel if it satisfies the conditions

n
(1) I K(t, &) =1 for every € € E ,
-

(2) 1lim K(t,£) =0 for every T € (0,m>.

£¢
The kernel K is said to be normal if there are positive
numbers A, 8 such that for every h € (0,3) and for some
€ = £€(h) € E the inequality '

(3) h K(h,&(h)) z A

holds, and

(4) lim &(h) = Eo
h— ©

Write LG for the class of all 2n-periodic real-valued

functions of one variable, Lebesgue-integrable over <-m,mn>.
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Definition 2. A real number x is called a D-
point of f € LG if

1 ™
(5) lim 5 I (f(x+u) - £f(x))du = 0.
h—> 0 o

A number x is said to be a Ds- point of the function f if
h
(B6) lim % I (f(x+u) + f(x-u) - 2f(x))du = 0.
h— 0 0
If x is a D- point [DS— point] of f € LG , then we write
x € D(f) [resp. x € Ds(f)].

We will consider the singular integral
n
Uk, E 3£.K) = If(t) K(x-t,)dt (f € L )
-

It is said to be normal when K denotes a normal kernel.
For arbitrary fixed C > 0, 8 > 0, € € (0,1), X, € R we

introduce the sets

2. =2(X) = {(x,€) e Rx E: |x-x [K(0,§) =C},
3
2. 56~ ((x8) € RE :Eé‘ |£(t+x)-£ (t+x ) [dt) " °K(0,&) = C}.

The following theorem of the Romanovski type is known.

Theorem Suppose that f € LG and K is a kernel.
If X € D(f) and C > O [xoe Ds(f) and C >0, & >0, £ € (0,1)],
then

(7) U(x,&f,K) — f(xo) as (x,§) — (xo,io) and (x,§) € ZC

[resp. (x,€) € zc,a,e ]. In particular,
(8) lim U(x,&;f,K) = f(xo)
€ £

(see [4] p. 175, (3] p. 137, [1] p. 63).
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Assuming that f € LG , K is a kernel and (7) or (8) is.
satisfied, it is natural to ask at which points xo it is
possible ?

In the next section some answers for this questions are

given.

2. Statement of results

Theorem 1. Suppose that K is a normal kernel,
f e LG » X€ R, (8) holds and exists € > 0 such that

(9) o(x) = f(x)—f(xo) 20 a.e. on (xo— €, X+ €) or
(8') p(x) =0 a.e. on (xo- €, X * €) .

Then X € D(f).
Theorem 2. Suppose that K is a normal kernel,

f e Lén , X € R, (8) holds and there exists £ > 0 such that
(10) w(t) = f(xo+ t)+ f(xo— t)- 2f(xo)= 0 a.e. on (0,g) or

(10°) Yy(t) =0 a.e. on (0,g) .

Then X € Ds(f).
Theorem 3. Let E= (0,1), €o= 0, and let K(t,£)

be 2n-periodic extension (in t) of the function

1/(26) , t € (-n,n)
P(t,€&) =
(0] , tec<un-& u<E,n (€ €E)

Then, for an arbitrary f € LG , the assumption (7) in which

C =z 1/2 implies X € D(f).
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3. Proof of Theorem 1
Suppose that (9) holds. By Definition 1 and (3) we have,
for h € (0,min(8,¢)) ,

1 h 1 h
0sAf OJ (F(xt t)-f(x ))dt = hK(h,E(h)) £ oj plx t t)dt =

h €
= j px & t)K(t,E(h))dt = j plx + L)K(t,E(h))dt.
0 -€

Hence

1 h -1 €
(11) os ¢ OI (Flxt)-f(x ))dt = A _ej plx +£)K(t,E(h))dt.

Combining the assumption (8) with conditions (1), (2) and
monotonicity and evenness of K(t,£) one has

t >4
1im I plx + LIK(t,£)at = 0,
E- & -¢

which together with (4) yields

£
lim | I p(x_+ tIK(t,E(h))dt = O .
h— 0 -€£

Thus, in view of (11), the point X, is a D- point of f.
Under the assumption (9') instead of (9), our thesis can
be obtained paralelly.
The proof of Theorem 2 is similar to the above one (we
replace the integrand ¢(xot t) by y¥(t), and the relation (8)

follows).

4. Proof of Theorem 3

To establish X € D(f) we observe that
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£/2 £
£ & -1 3 1 r
Ukt 3. 35 £.K = 2 J £(t+ x+ 3)dt = 7 I £(s + x )ds.
)
-&/2
Since (x + £ §) € 2. (K), we have
o 2’2 1/2 ’
U(x + £ &, £,K) —> f(x) as & —> 0"
o 2 » 2 1] » 0 ’

by assumptions of Theorem 3. Whence (5) holds for x = X, and

h — 0*. If we take (x- & , )y ez (K), then we obtain
o 2 2 1/2

(5) for x= X, and h —» 0 . Therefore X € D(f) when C

1/2.
In case C > 1/2 , the inclusion ZLQ(K) C ZC(K) leads to

X € D(f), immediately.

5. Exampleé
We will examine three concrete non-negative kernels.
(a) The kernel of Abel-Poisson is defined by

1 1-r?
p (t) = 5 S, T € E = (0,1), €o= 1.
T 1-2r cost + r

([1] p. 53). This kernel is normal.
Indeed, for positive h,

(1-r®)n , 1 1-r?

(1-r)%+ arsin®(hv2) 2™ (1-r)2/h + rh

Assuming that r = r(h) = (4h% 4 -h)%/4, we have h = (1-r)/T.

Hence
1 1-r° 1
hp (h) 2 == —— > _—~ if he (0,0n) ,
r(h) 2n 2(1-r)dr! 2n

and
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lim *r‘(h) = 1.
h— 0

(b) The kernel of de la Vallée Poussin is defined by

2
é‘.,lf——zgr'l;, (ZCOSE—)zn, neE=N, £ = o.

vn(t) = 2

([1] p. 112). It is normal, too.
To prove this, we choose the positive integers
n = n(h) = [2/h]?

corresponding to positive numbers h = 2 ([a] denotes the
integral part of a). Then, the obvious inequality

2
(cos g )2 2 (cos g )2(2/h)

together with the relation

2/7\2 -1
lim (cos A) = e
A— 0
leads to
(12) g (cos h )®®  for every h € (0,5 )
* 2e 2 *“o’

provided that 60 is small enough. By Stirling’s formula,

'22n
1 Jn [2/h)% = (n!) 2 for each h € (0,61) .

(13) 5 —Tn

whenever 61 denotes a suitable positive number.

Applying (12) and (13), we obtain
h'vn(h)(h) z 0.02 if h e (o,min(ao,al)).

Finally, it is evident that n(h) —»> @ as h —» 0.
(c) Consider the set E = (0,1/2) and it accumulation

point § = 0. Suppose that £ € E, t = el-hng), and write
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E/to , t e <0,t°> .
gg(t) = £/t , t € <t0,1> ,
0 , te(l,m> .

Denote by K(t,£) the even 2mn-periodic extension (in t) of
gg(t) introduced just now.

The last kernel K is not normal, since hK(h,§) =< £ for
every h € (0O,®r) and for all £ € E.

6. Remarks

Without the assumptions (9) and (9’) Theorem 1 is false.
Similarly, without (10) and (10’) Theorem 2 is not true.

Indeed, let f(t) be 2m-periodic extension of sgn t,

t € <-n,n). Clearly, for an arbitrary kernel K,

1im J-nf(t)K(t,E)dt =0 =f£(0) ,
£ ¢ -m
but X, = 0 ¢ D(f). Thus, the thesis of Theorem 1 does not
hold.
As regards Theorem 2, let us put

- Kk
(-1)" x
f(t) = k=0

<1/2k+1,1/2k)(t), t € (0,1) ,

0] , te<1,m v {0},

where xB denotes the characteristic function of the set B.
Let us extend this function on R by 2n-periodic and even
way. Considering the sequence hn = 2-n, we observe that xo =
0 ¢ Ds(f). Let K be the kernel mentioned in Theorem 3, but
with
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£
E={¢e€ (0,1) : If(t)dt-o}
(o]

instead of E = (0,1). The point Eo = 0 is an accumulation
point of so changed set E.
Obviously,

X 1 £
I FILK(E,§)dt = 5z 2 I £(t)dt = £(0) if € e E.
-% (o]

However the thesis of Theorem 2 does not hold, because O ¢
D (f).
s

7. Appendix .

Similar résults one can obtain in the non-periodic case
(under modified assumptions on K as in [1] p. 121, 132, [2]
p. 113).

Last of all we observe that every non-negative kernel %
of Fejér's type ([1] p.121) satisfies conditions (3) and
(4). Indeed, there is to> 0 such that x(to) > 0, because

l x(t)dt > 0 and x = 0. Taking § = and £(h) = t /h

we get

h(£(h)-x(§(h)-h)) = to x(to) >0 .

Therefore (4) holds with Eo = o , and (3) holds with A = to-
X(to).

For example, the kernels of Cauchy-Poisson and
Welerstrass ([1] p. 125-126) satisfy (3), (4), thus they are

normsal.
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