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ON THREE DIMENSIONAL PSEUDO-UMBILICAL
ISOTROPIC SUBMANIFOLDS

1. Introduction

A submanifold M in a Riemannian manifold N is said to be
isotropic (or A-isotropic) if for each point p in M and each
unit vector t tangent to M at p, the length A of the normal
curvature vector h(t,t) depends only on p, not on t at p. In
particular, when A is also independent of the point p in M,
then M is said to be constant isotropic. It is known (see
[2]) that M is isotropic at p if and only if the second

fundamental form h satisfies
(1.1) <h(x,x),h(x,y)> = 0

for any orthonormal vectors x and y of the tangent space
Tp(M), where <,> is the scalar product on N.

Let H be the mean curvature vector of M in N. M is said
to be pseudo-umbilical if there exists a function p on M
such that <h(x,y),H> = p<x,y> for all vectors x and y
tangent to M. Recently, B. Y. Chen and P. Verheyen (1]
proved that an isotropic surface in a Riemannian manifold
must be pseudo-umbilical.

In this paper, we study 3-dimensional isotropic

submanifolds. We shall prove the following theorems.
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Theorem 1. Let M be a 3-dimensional A-isotropic
submanifold in a space form N. If M is pseudo-umbilical,
then the mean curvature H of M satisfies [H| = A, the
equality holds if and only if M is totally umbilical.

Theorem 2. Let M be a 3-dimensional A-isotropic
submanifold in a space form N. If M is pseudo-umbilical,
then M has constant mean curvature if and only if M is
constant isotropic.

The author wishes to express his hearty to Professor B.
Y. Chen for his valuable suggestions and to the referee for

his corrections and several improvements.

2. Preliminaries

Let M be an n-dimensional submanifold in an m-dimensio-
nal Riemannian manifold N. We choose a 1local field of

orthogonal frames (ev...,en; e ,...,em) in N such that,

restricted to M. We denote by (6',...,8™) the field of dual

frames. The structure equations of N are given by

(2.1) ae* = -y e* 2 6%, 6 +6°=0,
B B A
(2.2) do* = -F " 6%+ ¢*, o' = Lyt 6% 6° K + K* =0,
B c B B B 2 BCD BCD ~ BDC
A,B,C,D,... =1,...,m Restricting these forms on M, we have
" = 0, r,s,t,... = n+l,...,m. Since
(2.3) 0 =de" = -L ela o', i,4.k,...=1,...,n.

Cartan’s lemma implies
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ro_ r _J T _ 4T
(2.4) 91 =Y hlJe R hlj hjl.
If we denote by V and V the covariant derivatives of M
and"N; espectively, then for any two vector flelds x,y

tangent to M and any vector field £ normal to M, we have

(2.5) ny = ny + h(x,y) ,
(2.6) ng = -AEX + DxE ,

where -A.x and Dx§ denote the tangential and normal

3
components of Gxg respectively. AE is called the Weingarten

map in the direction of € and D gives a connection in the

normal bundle. We have

(2.7) < Agx,y > = < h(x,y),€ >.

We define the covariant derivative Vh of h by
(2.8) (Vxh)(y,Z) = th(y,z) - h(ny,z) - h(Y.sz) .

for any vector fields x,y,z tangent to M, then if N is a

space form, the equation of Codazzi becomes
(V;h)(y.z) = (V;h)(x,z).

For later use, we recall the following lemma due to B.
O’Neill [2].

Lemma A If a submanifold M in a Riemannian
manifold N is A-isotropic, then for any orthogonal vectors
X,¥,Z in Tp(M)'

(2.10) (1) < h(x,x),h(y,y) > + 2|h(x,y) | = A%,
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(2.11) (i1) < h(x,x),h(y,z) > + 2 < h(x,y),h(x,2) > = 0.

We define the discriminant A of the second fundamental
form h, a real-valued function on planes (through p) in

Tp(M), such that if x and y span n, then

(2.12)  A(m) = A = [< h(x,x),h(y,y) >—Hh(x.y)“2]/“x A y]?.

3. Weingarten map

Let M be an n-dimensional A-isotropic submanifold in an

m-dimensional Riemannian manifold N and (er...,en) be an

1

n
orthogonal frame tangent to M. Then H = ) h(el,eiL
1=1

Since M is A~ isotropic, we may use (1.1) and Lemma A to

compute AH as follows.

1 n
(3.1) <A e ,e> = <H,h ,e )> = = <h(e ,e ),h(e ,e }> =
W, (e e ) “1;(“)(11)
2 2 & 2
= A" - H ‘Zluh(el,ej)" ’
1#]
1 n
“ = = — > =
(3.2) <AHeJ,ek> <H,h(ej,ek)> = izl<h(el,el),h(ej,ek)
2 n
=-% ] <hleed.hlee)> 1,4k=1,...,n, j #k

1=1

The following lemma is similar to a lemma obtained by B. Y.
Chen and P. Verheyen [1].

Lemma 1. Let M be a 3-dimensional A-isotropic
submanifold in an m-dimensional Riemannian manifold N. If M

is pseudo-umbilical, then with respect to a suitable
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orthonormal frame (e ,e ,e; e ,...,e ), where e, e, e
1’ 2’73 4 m 1 2 3
are tangent to M and €,-:-,€, are normal to M, we have
0Ob O 00D 00O
(3.3) A4 = b0O0O , A5 = 000 , AS = 00b
000 bO0O 0O0boO
c 0 0 b 0 O c 0 o0
A7— 0 ¢ 2O | A3= 0 -b ’ Ag= 0] 0 0 '
0 0% =® 0 0 o o Yalav
Lo} c
A =...=A =0,
10 m

for some functions a,b,c on M, where A = A
1 r e
r

Prioof. Let M be a 3-dimensional A-isotropic subma-
nifold in an m-dimensional Riemannian manifold N. If M is

pseudo-umbilical, then from (3.1) and (3.2), we have
(3.4) "h(ei,ej)" =b, foranyi = j,
where b is a function on M, and

(3.5) <h(el,ei),h(ej,ek)> =0,

(3.8) <h(e1,ej),h(e‘,ek)> =0, forany i # j= k # i,
Consider (3.4), if b = 0, by (2.10), we have

(3.7) h(el,el) = h(ez,ez) = h(ea,ea).

Thus we may choose e, in the direction of h(el,el) and

obtain (3.3) with b = 0 immediately. From now we assume that

b # 3. Then by (3.4)-(3.6), we may choose e, e, e, as

follows.
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(3.8) h(el,ez) = be4 , h(el,es) = be5 . h(e2,e3) = bes.

Since h(e ,e ) + h(e_,e)) and h(e ,e.) - h(e_,e ) are

1’1 2' 73 1’1 2" "2
perpendicular to each other and do not vanish, we may put,
with the help of (3.5),

(3.9) h(el,ei) + h(e2,e2)' 2ce., c >0,

7

(3.10) h(el,el) - h(ez.ez) 2qe,, q > 0.

Then by (2.10) and (3.4), we have c? = A% v? and q2 = b2,

i.e., c = Ja?~ b2 and q = b. Consequently, we have

(3.11) : h(el.el) =ce_+ be8 R

(3.12) h(ez,ez)

ce_ - be
7 8

Let a = |Hf and M = {p € M| a(p) = 0}. On M, we have

2 2 2 2
(3.13) A% = nh(es’ea)" = “_h(el’el) - h(e2,e2)" = 4c”.

Then since c2 = Aa— b2 , We have 312 - 4b2 = 0 and

(3.14) h(es,ea) = —Zce7 = e

Combining these with (3.8), (3.11) and (3.12), we obtain

(3.3) with a® = (322 - 4b%)/3 = 0 on M, .

On M \ Ml, we may still have (3.8), (3.11) and (3.12),
but we claim that h(el,el), i= 1,2,3, are linear independent.
Suppose that it is not true and let

(3.15) h(es,ea) = fh(el,el) + gh(ez,ez) ,
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for some functions f and g on M \ M1'
Compute <h(e3,e3).h(ei,el)> , 1 =1,2,3, we would have, with

the help of (2.10),

(3. 16) A%f + (A% 2v%)g = a%- 2%,
(3.17) (A%- 2b2)f + A%g = A% 2%,
(3.18) (%= 20%)(f + g) = A% .

Then from (3.16)-(3.18), we would have f =g = -1 and
32%- 4b® = 0. These contradict a° = (3A%- 4b%)/3 # 0. Now

wemay choose ey in the following way

(3.19) we = h(es,es) + k[h(el,el) + h(ez,ez)]. w>0,
where k is an undetermined function. We shall choose a
suitable value of k in order that ey is really perpendicular
to e, and e, By (2.10), (3.11) and (3.12), we have

(3.20) 0 =< weg,h(e1.e1)+h(e2,e2)> =

= <h(e_,e_),h(e ,e )+h(e_,e )> + kfh(e ,e )+h(e ,e)|" =

= 2(a%- 2b%) + 4k(A%- b?).

Thus k = -(A%- 2b%)/2(a% b?%) = -(c%-b%)/2c%. Substituting
it into (3.19), we have w° = b2(3A%- 4b%)/(A%- b?) = 3a%b°/c?
and
2 2
(3.21) h(e ,e ) = c-b e + {3'ab e ,
3 3 C 7 Cc <]

since a° = (3a%- 4b%)/3 > 0 and ¢ = A% bZ > 0. Combining

(3.21) with (3.8), (3.11) and (3.12), we obtain (3.3) on M \

M .
1
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4. Proofs of Theorems

Let M be a 3-dimensional A-isotropic submanifold in an
m-dimensional space form N. If M is pseudo-umbilical, then
by Lemma 1, we have (3.8), (3.11) and (3.21), from which we

may compute (V; h)(eJ,ek), 1,J,k = 1,2,3, on the subset of M
1
on which ¢ > 0. Since N is a space form, we may use the

equation (2.9) of Codazzi and have the following three
groups of equations, (4.1) - (4.10), (4.11)-(4.20) and
(4.21)- (4.27).

4 4 2 _
(4.1) ce7(e2) + bee(ez) - 2b91(e2) = ei(b) ,

5 5 3 _
(4.2) co_(e)) + be _(e)) - 2bo (e )) = e (b) ,

7 A7

(4.3) el(c) - bes(el) = be‘(ez) ,

8 _ 4 2
(4.4) cel(e) - e (b) = blei(e,) + 20%(e )],

9 9 9
(4.5) ce7(e1) - bes(el) = be4(ez) ,

5 5 _ 5 a1
(4.86) c97(e3) - bes(ea) = b[96(e2) 92(e2)] R

2 .2

c-b 3'ab 7 7 b 3

(4.7) el[ - ] N c' 67(e,) = blo7(e )+ 2 6%(e )1,
2 .2
c-b 8 {3lab s 8 1
(4.8) S 67(e1)+ S eg(el) = b[es(es)- 93(e3)],
2 .2
c’- b° _a {3lab _a _ 4 1

(4.9) S 97(e2)+ S eg(ez) = b[es(es)- Ga(es)].

6 3 _ 6 - _ )
(4.10) b[e4(e3)— 91(83)] = b[es(ez) 91(e2)] = el(b),
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(4.

(4.

(4.

(4.

(4.

(4.

(4.

(4.

(4.

(4.

(4.

(4.

(4.

(4.

(4.

(4.

11)

12)

13)

14)

15)

16)

17)

18)

19)

20)

21)

22)

23)

24)

25)

26)

ez(c) + bGZ(ez) = be:(el) ,

c3(e,) + e (b) = blei(e ) + 207(e )],

ce>(e,) + boS(e) = bOS(e ) ,

c6>(e ) + bos(e ) = blej(e ) - 02(e )] ,

ce (e ) - be (e ) - 2b8(e ) = e (b) ,

cej(es) - Do (e ) - 2b83(e,) = e (b) ,

°2; b* 8)(e )+ {—1ab o (e,) = blo (e )- 83(e )],

e2[°2‘ bz] + 3080 g7 ) = bleT(e )+ 2 02(e )T,
°2; b° 63(e,)+ J_jab 65(e,) = bleS(e )+ 82(e )],

5 3 _
b [6, (e )- 6 (e )] = e (b)

7 7
es(C) + bee(es) = b[es(el)
ce:(ea) + e (b) = b[e:(el)

S S S
c97(e1) - bea(el) = b[e4(e

7
es(c) - bee(ea)

8
097(e3)

e3(b)

_ 7
= b[es(ez)

8
- es(b) b[ee(ez)

_ 1 a2
= ble_(e ) - be_(e )
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8 ) _ 6 a3
(4.27) ce7(e2) + bea(ez) = b[94(e1) ex(ex)]’

where a = |H} = J3A2— b2 /{3 and c = le- b° (# 0). Now

we claim that (Az- 3b2) is constant on M. First observe the
first group of the equations. Comparing (4.1) with (4.4), we

have
4.28 8 =o'
( ) 97(e1) 07(e2) ,
and substituting (4.28) into (4.3), we get
7

(4.29) e1(c) = 2b94(e2).
From (4.6) and (4.10), we have

7 08
(4.30) el(b) = ces(ea) bes(ea) ,
comparing it with (4.2), we get

7 3
(4.31) ces(esl = —bel(es).

 vraB 3
(4.32) el(b) = b[es(ea) + 91(e3)]'

Then substituting (4.28), (4.32) into (4.8) ; and (4.10)

into (4.9), and then from comparing the results, we have
9 - 9
(4.33) abea(el) = abe‘(ez) .

Substituting (4.33) into (4.5), we get

9 _ 9
(4.34) ace7(e1) = 2ab64(e2).

Using (4.29), (4.31) and (4.34), (4.7) becomes

(c

(oY )
b

2 .2
2_ b2y - 2b [ c“- b o’te ) + {3lab 6%(e )] -0,
c c 4 2 c a2
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then by (4.9) and (4.10), we obtain

(4.36) el(xz_ 2b%) - 2be (b) = 0,

i.e., el(A2~ 3b%) = 0.

Similarly, from the second group of the equations, we

have
(4.37) o(e,) = -0)(e) ,

(4.38) e (c) = 2b8 (e ) ,
(4.39) ceg(es) = —bOZ(es) ,

(4.40) e, (b) = col(e) + bol(e ) = blel(e ) - 63(e )] ,

(4.41) abe:(ez) = —abei(el) ,
9 _ 9
(4.42) ace7(e2) = 2abe4(e1) ,
(4.23) 1 (c2- p2)- 2P c?- b? o’(e )+ {37ab 6% )] = o
: c %2'¢ ) c s € LT B

Then by (4.17) and (4.20), (4.43) becomes
2 2
(4.44) ez(l - 2b7) - 2be2(b) =0,

ie., e (1% 2v%) = 0.
Finally, in the third group of the equations, multipli-
cating (4.21) and (4.22) by c and -b, respectively, and then.

summing up the results, we have

(4.45) ce (c)+ 2b09;(e3)— be,(b) = b[ce;(el) - be:(el)].
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Then by (4.23) and (4.26), (4.45) becomes

_ 8
(4.46) ces(c) - 2be3(b) = 2bc07(e3).

On the other hand, from (4.21) and (4.24), we have

2 2
b 3 7 b” 3
o 61(e1) boe(ez) — 92(e2).

7 N
(4.47) 2b98(e3)— bes(ei) + c

And from (4.22) and (4.45), we have
8 R oyl 8 2
(4.48) 2ce7(e3) = st(el) bea(e1) + bes(e2)+ bea(ez)'

Combining (4.47) and (4.48), we get, with the help of
(4.23), (4.26) and (4.27),

8 _ 7 2 8 _ 7 _,2.8 -
(4.49) 4bce7(e3)— [bcee(e2)+ b es(ez)] [bces(el) b Gs(el)]
= ea(b) - es(b) = 0.

Thus we obtain, from (4.46) and (4.49),

(4.50) eS(AZ_ 3b%) = 0.

The claim is proved by (4.36), (4.44) and (4.50). Next, we
use this result to prove the following.

Lemma 2. Let M be a 3-dimensional isotropic
submanifold in an m-dimensional space N. If M is pseudo-
umbilical, then the descriminant A of h on M is constant.

Pr oof. We have proved above that Az— 3b2 is
constant on M. Now we are going to prove A = A% - 3% Let

m be an arbitrary plane through p in TpM determined by

' 3 3

x =Y aleland y= X b!e1 which are two arbitrary orthonormal
i=1 1=1
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3 3
vectors tangent to M at p, where ¥ af =1, } bf = 1 and
1=1 1=1
3
Y albl= 0. Then we have
1=1 '
(4.51) Ax) = &_ = <h(x,%),h(y,y)> - |h(x,y)]* =
3 3 3 3
=<h(} ae, L ajej). h( Ebe., L be )> +
1=1 J'—'l k=1 u=1
_ 3 3 3 3
< h( ¢ ae., ) bjej), h( } ae., r bueu)> =
1=1 j=1 =1 u=1
3
=‘25 (aiajbkbu-albjakbu)<h(el,ej).h(ek,e“)>=
k, u=1

=Y aibu(ajbk- bjak)<h(e‘.ej),h(ek,eu)> =
1 #u
, J*k .
{by (1.1) and (3.6))
=12La‘bk(albk- b a )<h(e ,e ),h(e ,e )> +
+izjalbj(ajbl- bja1)<h(¢1’e,)'h(e1’e1)> =
(by (3.5))

2 2 2
= ab(ab ~-ba A =-2b )+ b b -b b=
1?1 Py (3,by~ba ) ( ) Eai ;P 7by3,)

(by (3.8), (3.11), (3.12) and (3.21))
_ 2.2 2_ a2, _
= ,?,(a‘b’ alblajbj)(h 3b°)
= A% 3p? .,

Since m is arbitrary, we obtain the Lemma.
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Proof of Theorem 1. Since ||H||2 =a? =

= (3% 4b2)/3, we have 0 = |H| = A. If |H| = A, then b = O.
Thus by (3.3), M is totally umbilical. The converse is also
true.

Proof of Theorem 2. Since by Lemma 2, we
have A = A%-3b°= const. on M, it implies 9“H"2- 52% = const.

Thus, |H| = const. if and only if A = const.

5. Application

Let M be a 3-dimensional pseudo-umbilical isotropic
submanifold in a 9-dimensional space form NQ(C), where C
denotes the sectional curvature of NQ(C). If M is constant
isotropic, we may apply Theorem 2 to it and have both b and
c constant. And then using the same method as in Section 4,

we may find that if b # 0, then

(5.1) 8> =0, 6°=-0-=8°,
4 2 4 S 1
0°=-16"-062, 6"=0"=0.
S 2 a4 1 4 4

(5.2) 8°=6°=1b8>, 0*=0%=100%, 0 =c6®,
1 2 1 3 2
7 c - b2 3 4 5 8 9
6 = 80, et =06"=062=98"=0
3 C 3 2 3 2

I
[+]

Take the exterior differentiation of 64

(5.1), (5.2), (2.2) and (2.4), we have

5 then by using

(5.3) A- P +c=0,

which implies
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(5.4) 3H|? - 22> + c =0 .

This equation gives us some information on M and NQ(C).
Namely, with the help of the formula (5.4) and the
assertions of Theorem 1 one can easily deduce the following:
Let M be a 3-dimensional pseudo-umbilical and constant
A-isotropic submanifold in a space form NQ(C), then M must

be totally geodesic, or totally umbilical, or
2

i) when C = 0, M is a submanifold in E° with |H|?= £ A%

ii) when C > 0, M is a submanifold in S° with A = = C ,

the equality holds if and only if M is minimal ;

- N WIN

11i) when C < 0, M is a submanifold in H(C) with A% -C.
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