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ON THREE DIMENSIONAL PSEUDO-UMBILICAL 
ISOTROPIC SUBMANIFOLDS 

1. Introduction 
A submanifold M in a Riemannian manifold N is said to be 

isotropic (or A-isotropic) if for each point p in M and each 
unit vector t tangent to M at p, the length X of the normal 
curvature vector h(t,t) depends only on p, not on t at p. In 
particular, when A is also independent of the point p in M, 
then M is said to be constant isotropic. It is known (see 
[2]) that M is isotropic at p if and only if the second 
fundamental form h satisfies 

(1.1) <h(x, x),h(x,y)> = 0 

for any orthonormal vectors x and y of the tangent space 
T (M), where <,> is the scalar product on N. p 

Let H be the mean curvature vector of M in N. M is said 
to be pseudo-umbilical if there exists a function p on M 
such that <h(x,y),H> = p<x,y> for all vectors x and y 
tangent to M. Recently, B. Y. Chen and P. Verheyen [1] 
proved that an isotropic surface in a Riemannian manifold 
must be pseudo-umbilical. 

In this paper, we study 3-dimensional isotropic 
submanifolds. We shall prove the following theorems. 
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T h e o r e m 1. Let M be a 3-dimensional A-isotroplc 
submanifold in a space form N. If M is pseudo-umbilical, 
then the mean curvature H of M satisfies JH| =s X, the 
equality holds if and only if M is totally umbilical. 

T h e o r e m 2. Let M be a 3-dimensional A-isotropic 
submanifold in a space form N. If M is pseudo-umbilical, 
then M has constant mean curvature if and only if M is 
constant isotropic. 

The author wishes to express his hearty to Professor B. 
Y. Chen for his valuable suggestions and to the referee for 
his corrections and several improvements. 

2. Preliminaries 
Let M be an n-dimensional submanifold in an m-dimensio-

nal Riemannian manifold N. We choose a local field of 
orthogonal frames (© ••»•j© f © * • • • > © ) in N such that, 

1 n n+l m 
restricted to M. We denote by (01 0m) the field of dual 
frames. The structure equations of N are given by 

A, B,C,D,... = 1 m. Restricting these forms on M, we have 

( 2 . 2 ) d e * 

( 2 . 1 ) 

0r = 0, r,s,t,... = n+l,...,m. Since 

( 2 . 3 ) 0 = d 0 r = ~Y, 0jA 8 1 , i , j , k , . . . = 1 , . . , n. 

Cartan's lemma implies 
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(2.4) 6r = V hr GJ , hr = hr . i u ij ' ij ji 

If we denote by V and 7 the covariant derivatives of M 
and" N, espectively, then for any two vector fields x,y 
tangent to M and any vector field £ normal to M, we have 

(2.5) V y = 7 y + h(x,y) , 
X X 

(2.6) = -A^x + DxC , 

where -A^x and D ^ denote the tangential and normal 

components of 5 ? respectively. is called the Weingarten 
* s 

map in the direction of £ and D gives a connection in the 

normal bundle. We have 

(2.7) < A^x.y > = < h(x,y),£ >. 

We define the covariant derivative Vh of h by 

(2.8) (V h)(y,z) « D h(y,z) - h(V y,z) - h(y,7 z) , 
X X X X 

for any vector fields x,y, z tangent to M, then if N is a 
space form, the equation of Codazzi becomes 

(7h)(y,z) = (V h)(x,z). 
x y 

For later use, we recall the following lemma due to B. 
O'Neill [2]. 

L e m m a A. If a submanifold M in a Rlemannian 
manifold N is A-isotropic, then for any orthogonal vectors x,y,z in T (M), p 
(2.10) (i) < h(x,x),h(y,y) > + 2||h(x,y)||2 = X2 , 
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(2.11) (ii) < h(x,x),h(y,z) > + 2 < h(x,y),h(x,z) > = 0. 

We define the discriminant A of the second fundamental 
form h, a real-valued function on planes (through p) in 
T (M), such that if x and y span tt, then p 

(2. 12) A(TT) = A = xy < h(x, x), h(y, y) >-||h(x,y) |2J/|x a y||2 

3. Weingarten map 
Let M be an n-dimensional A-isotropic submanifold in an 

m-dimensional Riemannian manifold N and (e e ) be ail 
1 n 

1 n orthogonal frame tangent to M. Then H = - J] h(e ,e ). i = i 
Since M is A- isotropic, we may use (1.1) and Lemma A to 
compute A^ as follows. 

1 n 
(3. 1) <A e ,e > = <H,h(e ,e )> = - V <h(e ,e ),h(e ,e )> = H ] J J J n iL i l' i j' j 

n 
= x2~n 5 > < W | 8 ' 

ISl 
1 n 

(3.2) <A e ,e > = <H,h(e ,e )> = - 7 <h(e ,e ),h(e ,e )> = h j k j k n L 1 1 j k 1=1 
2 n 

= " n I <h(e ,e ),h(e ,e )>, i, j,k = 1 n , j * k. 
1 = 1 

The following lemma is similar to a lemma obtained by B. Y. 
Chen and P. Verheyen [1], 

L e m m a 1. Let M be a 3-dimensional A-isotropic 
submanifold in an m-dimensional Riemannian manifold N. If M 
is pseudo-umbilical, then with respect to a suitable 
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orthonormal frame (e ,e ,e ; e , l 2 3 4 , e ), where e , e , er 
are tangent to M and e , . . . , e are normal to M, we have 4 n 

(3.3) A = 4 

A = 7 

C 
0 

0 
c 

0 0 

0 b 0 " 0 0 b 0 0 0 
b 0 0 . A 0 0 0 . A = 0 0 b 
0 0 0 5 b 0 0 6 0 b 0 

0 " b 0 0 ' " 0 0 0 
0 0 - 0 0 0 0 , A = 0 --b 0 A = 0 0 

2 2 c -b 8 
0 0 0 

9 
0 JT1 ab 0 0 0 0 0 

A = . 
10 

= A = 0 m 
for some functions a,b,c on M, where A = A j r e r 

P r ¡o o f. Let M be a 3-dimensional A-isotropic subma-
nifold in an m-dimensional Riemannian manifold N. If M is 
pseudo-umbilical, then from (3.1) and (3.2), we have 

(3.4) |h(e|fe )| = b, for any i * j , 

where b is a function on M, and 

(3.5) <h(e ,e ),h(e ,e )> = 0 , 

1 1 J k 

(3.6) <h(ei,ej),h(ei>ek)> = 0 , for any i * j * k * i. 

Consider (3.4), if b s 0, by (2.10), we have 

(3.7) h(e ,e ) = h(e ,e ) = h(e ,e ). 1 1 2 2 3 3 
Thus we may choose e ? in the direction of h(e ,e ) and 
obtain (3.3) with b s 0 immediately. From now we assume that 
b i 0. Then by (3.4)-(3.6), we may choose e , e , e as 4 5 6 follows. 
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(3.8) h(e ,e ) = be , h(e ,e ) = be , h(e ,e ) = be . 1 2 4 1 3 5 2 3 6 

Since h(e ,e ) + h(e , e ) and h(e ,e ) - h(e ,e ) are 1 1 2 3 1 1 2 2 
perpendicular to each other and do not vanish, we may put, 
with the help of (3.5), 

(3.9) h(e ,e ) + h(e2,ea) = 2ce?, c > 0 , 

(3.10) h(e ,e ) - h(e ,e ) = 2qe , q > 0. 
1 1 2 2 8 

Then by (2.10) and (3.4), we have c 2 = A2- b2 and q2 = b2, 
r i — ? i.e. , c = <la - b said q = b. Consequently, we have 

(3.11) h(e ,e ) = ce + be , 1 1 7 8 

(3.12) h(e ,e ) = ce - be . 2 2 7 8 

Let a = ||H|| and M = {p € M | a(p) = 0>. On M , we have 

(3.13) A2 = ¡h(e3,e3)||2= f-hie^e^ - h(e2,e2)||2= 4c2. 

2 2 2 2 2 Then since c = A - b , we have 3A - 4b = 0 and 
2 2 

(3.14) h(e ,e ) = -2ce = C e . 3 3 7 C 7 

Combining these with (3.8), (3.11) and (3.12), we obtain 
(3.3) with a 2 = (3A2 - 4b2)/3 = 0 on H . 

On M \ M , we may still have (3.8), (3.11) and (3.12), 
but we claim that h(e ,e ), i= 1,2,3, are linear independent. 
Suppose that it is not true and let 

(3.15) h(e ,e ) = fh(e ,e ) + gh(e ,e ) , 

3 3 1 1 2 2 
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for some functions f and g on M \ M . & 1 
Compute <h(e ,e ),h(e ,e )> , i = 1,2,3, we would have, with 3 3 i 1 

the help of (2.10), 

(3.16) X2f + (X2- 2b2)g = A2- 2b2 , 

(3.17) (X2- 2b2)f + X2g = X2- 2b2 , 

(3.18) (X2- 2b2)(f + g) = X2 . 

Then from (3.16)-(3.18), we would have f = g = -1 and 
3X2- 4b2 = 0. These contradict a2 = (3X2- 4b2)/3 * 0. Now 
wemay choose eg in the following way 

(3.19) we = h(e ,e ) + k[h(e ,e ) + h(e ,e )], w > 0 , 9 3 3 1 1 2 2 

where k is an undetermined function. We shall choose a 
suitable value of k in order that eg is really perpendicular 
to e and e . By (2.10), (3.11) and (3.12), we have 7 8 

(3.20) 0 = < we ,h(e ,e )+h(e ,e )> = 
9 1 1 2 2 

= <h(e ,e ),h(e ,e )+h(e ,e )> + k|h(e ,e )+h(e ,e ) J2 = 3 3 1 1 2 2 " 1 1 2 2 " 

= 2(X2- 2b2) + 4k(X2- b2). 

Thus k = -(X2- 2b2)/2(X2- b2) = -(c2-b2)/2c2. Substituting 
it into (3.19), we have w2 = b2(3X2- 4b2)/(X2- b2) = S a W c 2 

and 
2 2 

rr, •> , , » c - b . 31 ab (3.21) h(e ,e ) = e + e , 3 3 c 7 c 9 

since a 2 = (3X2- 4b2)/3 > 0 and c 2 = X2- b2 > 0. Combining 
(3.21) with (3.8), (3.11) and (3.12), we obtain (3.3) on M \ 
M . 
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4. Proofs of Theorems 
Let M be a 3-dlmenslonal A-lsotroplc submanlfold In an 

m-dlmenslonal space form N. If M is pseudo-umbilical, then 
by Lemma 1, we have (3.8), (3.11) and (3.21), from which we 
may compute (7 h)(e ,e ), i,j,k = 1,2,3, on the subset of M 

ei J k 

on which c > 0. Since N is a space form, we may use the 
equation (2.9) of Codazzi and have the following three 
groups of equations, (4.1) - (4.10), (4.ll)-(4.20) and 
(4.21)- (4.27). 
(4.1) ce4(e ) + b84(e ) - 2be2(e ) = e (b) , 7 2 8 2 1 2 1 
(4.2) c05(e ) + bGS(e ) - 2b83(e ) = e (b) , 7 3 8 3 1 3 1 

(4.3) e (c) - be7(e ) = be7(e ) , 1 8 1 4 2 

(4.4) ce8(e ) - e (b) = b[04(e ) + 282(e )], 7 1 1 8 2 1 2 

(4.5) ce9(e ) - be9(e ) = be9(e ) , 7 1 8 1 4 2 

(4.6) c9S(e ) - b6S(e ) = b[05(e ) - G ^ e )] , 7 3 8 3 6 2 2 2 

(4.7) e I + ^ 67(e ) = b[el(ej+ > 0?(ej], !;[T] 
/ A C - b - 8 , x "Ì3^ab „8, » , r „8. . 1, ,, (4.8) 9 (e )+ 9 (e ) = b[G (e )- 6 (e )], C 7 1 C 9 1 5 3 3 3 

(4.9) C " b e4(e )+ 64(e ) = b[94(e )- G ^ e )], 

(4.10) b[G6(e )- 03(e )] = b[06(e ) - G2(e )] = e (b); 4 3 1 3 5 2 1 2 1 
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( 4 . 1 1 ) e ( c ) + b e 7 ( e ) = b e 7 ( e ) , 
2 8 2 4 1 

( 4 . 1 2 ) C 0 8 ( e ) + e ( b ) = b [ e 4 ( e ) + 2 0 2 ( e ) ] , 
7 2 2 8 1 1 1 

( 4 . 1 3 ) C 0 9 ( e ) + b S 9 ( e ) = b 9 9 ( e ) , 
7 2 8 2 4 1 

( 4 . 1 4 ) c 0 6 ( e ) + b e 6 ( e ) = b [ 0 6 ( e ) - 9 2 ( e )] , 
7 3 8 3 S I 1 1 

( 4 . 1 5 ) C 0 4 ( e ) - b 0 4 ( e ) - 2 b 0 1 ( e ) = e ( b ) , 
7 1 8 1 2 1 2 

( 4 . 1 6 ) c 0 6 ( e ) - b 0 6 ( e ) - 2 b 0 3 ( e ) = e ( b ) , 
7 3 8 3 2 3 2 

2 - b 2 

C 7 1 ' C 9" 1' " 5* 3 ' 3 * 3* 

2 , 2i 

2 2 
( 4 . 17) e 4 ( e ) + ^ ^ 9 4 ( e ) = b [ 0 4 ( e ) - 0 2 ( e ) ] , 

( 4 . 1 8 ) e [ i l l - * . ] + i H ^ e 7 ( e ) = b [ 0 7 ( e ) + * 9 3 ( e ) ] , 
2 ^ C J C 9 2 6 3 C 2 3 ' 

2 2 
( 4 . 1 9 ) 0®(e ) + ^ ^ 0 ® ( e ) = b [ 9 * ( e ) + 0 2 ( e ) ] , 

C 7 2 C 9 2 6 3 3 3 

( 4 . 2 0 ) b [9®(e J - 9 3 ( e ) ) = e ( b ) = b [ 0 S ( e ) - O ^ e ) ] ; 
4 3 2 3 2 6 1 2 1 

( 4 . 2 1 ) e ( c ) + b 0 7 ( e ) = b [ 9 ? ( e ) + - 9 3 ( e ) ] , 
3 8 3 5 1 C 1 1 

( 4 . 2 2 ) c 9 ® ( e 3 ) + e ^ b ) = b [ 0 ® ( e ) ~ e * ^ ) ] , 

( 4 . 2 3 ) c e ^ ) - b G g f e ^ = b [ 9 ® ( e 2 ) - O ^ ) ] , 

( 4 . 2 4 ) e ( c ) - b 0 7 ( e ) = b [ 9 7 ( e ) + - 9 3 ( e ) ] , 
3 8 3 6 2 C 2 2 

( 4 . 2 5 ) c 9 9 ( e ^ ) - e 3 ( b ) = b [ 9 ® ( e z ) + O ^ ) ] , 

( 4 . 2 6 ) e ( b ) = b [ 9 4 ( e ) - b 9 2 ( e ) = b [ 9 4 ( e ) - 9 * ( e ) ] , 
3 5 2 3 2 6 1 3 1 
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(4.27) c06(e ) + bG6(e ) = bte8(e ) - 03(e )], 7 2 8 2 4 1 1 1 

where a = |Hj = J 3 A2- 4b2'/«Hf and c = J A2- b2' (* 0). Now 
2 2 

we claim that (A - 3b ) is constant on H. First observe the 
first group of the equations. Comparing (4.1) with (4.4), we 
have 
(4.28) 0®(e ) = e!(e) , 

7 1 7 2 
and substituting (4.28) into (4.3), we get 
(4.29) e (c) = 2b07(e ). 1 4 2 
From (4.6) and (4.10), we have 

(4.30) e (b) = c07(e ) - be8(e ) , 
1 5 3 S 3 

comparing it with (4.2), we get 
(4.31) c07(e ) = -b03(e ) , 5 3 1 3 
(4.32) e (b) = -b[08(e ) + 03(e )]. 1 5 3 1 3 

Then substituting (4.28), (4.32) into (4.8) ; and (4.10) 
into (4.9), and then from comparing the results, we have 

(4.33) ab09(e ) = ab09(e ) . 

8 l 4 2 

Substituting (4.33) into (4.5), we get 

(4.34) ac09(e ) = 2ab09(e ). 

7 1 4 2 

Using (4.29), (4.31) and (4.34), (4.7) becomes 

1 , 2 ,2, 2b T c2- b2 „7, , •iT'ab „9, _ -e (c - b ) - — 0 (e ) + 0 (e ) = 0 , c i c [ c 4 2 c 4 2 J 
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t h e n b y ( 4 . 9 ) a n d ( 4 . 1 0 ) , w e o b t a i n 

( 4 . 3 6 ) e ^ A 2 - 2 b 2 ) - 2 b e i ( b ) = 0 , 

I . e . , e ^ A 2 - 3 b 2 ) = 0 . 

S i m i l a r l y , f r o m t h e s e c o n d g r o u p o f t h e e q u a t i o n s , w e 

h a v e 

( 4 . 3 7 ) 0 8 ( e ) = - 9 4 ( e ) , 
7 2 7 1 

( 4 . 3 8 ) e 2 ( c ) = 2 b 9 ^ ( e i ) , 

( 4 . 3 9 ) c 0 7 ( e ) = - b 0 3 ( e ) , 
6 3 2 3 

( 4 . 4 0 ) e ( b ) = c 0 7 ( e ) + b e 8 ( e ) = b [ 0 8 ( e ) - 0 3 ( e ) ] , 
2 6 3 6 3 6 3 2 3 

( 4 . 4 1 ) a b 0 9 ( e ) = - a b 0 9 ( e ) , 
8 2 4 1 

( 4 . 4 2 ) a c e 9 ( e ) = 2 a b 0 9 ( e ) , 
7 2 4 1 ' 

t , i /io•> 1 t 2 , 2 , 2 b f c 2 - b 2 - i . . « i 3 ^ a b „ 9 , ( 4 . 4 3 ) - e ( c - b ) 0 ( e ) + 0 ( e ) = 0 . 

C 2 C ^ C 4 1 C 4 1 J 
T h e n b y ( 4 . 1 7 ) a n d ( 4 . 2 0 ) , ( 4 . 4 3 ) b e c o m e s 

( 4 . 4 4 ) e ( X 2 - 2 b 2 ) - 2 b e ( b ) = 0 , 
2 2 

i . e . , e 2 ( X 2 - 2 b 2 ) = 0 . 

F i n a l l y , i n t h e t h i r d g r o u p o f t h e e q u a t i o n s , m u l t l p l i -

c a t i n g ( 4 . 2 1 ) a n d ( 4 . 2 2 ) b y c a n d - b , r e s p e c t i v e l y , a n d t h e n -

s u m m i n g u p t h e r e s u l t s , w e h a v e 

( 4 . 4 5 ) c e 3 ( c ) + 2 b c 0 7 ( e 3 ) - b e ^ b ) = b f c O ^ e ^ - b © 8 ^ ) ] . 
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Then by (4.23) and (4.26), (4.45) becomes 

(4.46) ce (c) - 2be (b) = 2bc98(e ). 3 3 7 3 

On the other hand, from (4.21) and (4.24), we have 
,2 .2 

(4.47) 2bG7(e )= bG?(e ) + — G3(e ) - be7(e )- — 0
3( e ). 

8 3 5 1 C l l 6 2 C 2 2 

And from (4.22) and (4.45), we have 

(4.48) 2c68(e ) = be8(e )- be^e ) + be8(e )+ bG2(e ). 7 3 5 1 3 1 6 2 3 2 
Combining (4.47) and (4.48), we get, with the help of 
(4.23), (4.26) and (4.27), 

(4.49) 4bc08(e )= [bc97(e )+ b2e8(e )]-[bc97(e )-b208(e )] = 7 3 6 2 6 2 5 1 5 1 

= e (b) - e (b) = 0. 

3 3 

Thus we obtain, from (4.46) and (4.49), 

(4.50) e (X2- 3b2) = 0. 3 
The claim is proved by (4.36), (4.44) and (4.50). Next, we 
use this result to prove the following. 

L e m m a 2. Let M be a 3-dimensional isotropic 
submanifold in an m-dimensional space N. If M is pseudo-
umbilical, then the descriminant A of h on M is constant. 

2 2 P r o o f . We have proved above that A - 3b is 
2 2 constant on M. Now we are going to prove A = A - 3b . Let 

ii be an arbitrary plane through p in T M determined by 
3 3 P 

x = J] a e and y = J] b e which are two arbitrary orthonormal 
1 = 1 1 = 1 
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3 3 
2 2 v e c t o r s t a n g e n t to M a t p, where £ a = 1 , J] b = 1 and 

3 

T a b = 0. Then we have u i i 1 = 1 

( 4 . 5 1 ) A(w) = Ax = < h ( x , x ) , h ( y , y ) > - | h ( x , y ) | | 2 = 

3 3 3 3 
= < h( E a e , £ a e ) , h( £ b e , £ b e )> + 

1 1 I I k k u u 1 = 1 J = 1 k = 1 u = l 

3 3 3 3 
- < h( £ a e , £ b e ) , h( £ a e , £ b e )> = 1 1 J J k k u u 1 = 1 J = 1 k = l u = l 

3 
= E i a . a . b ^ b ~ a . b . a . _ b ) < h ( e , , e ) , h ( e . e )>= 

l j k u l j k u 1 J k u 
1 »J» 

k , u=l 

= £ a . b ( a b - b a ) < h ( e . e , ) , h ( e . e )> = 
£ 1 u J k J k 1 J k u 

J*k 
( b y ( 1 . 1 ) and ( 3 . 6 ) ) 

= [ a b ( a b - b a ) < h ( e t , e t ) , h ( e . e )> + " 1 k 1 k l k 1 1 k k » »k 

+ J a t b ( a b ^ b a ^ M e ^ e h h t e ^ e )> = 
i » J 

(by ( 3 . 5 ) ) 

= £ a b ( a b - b a ) ( X 2 - 2 b 2 ) + J a b ( a b - b a ) b 2 = 
i , J l . J 

( b y ( 3 . 8 ) , ( 3 . 1 1 ) , ( 3 . 1 2 ) and ( 3 . 2 1 ) ) 

= £ ( a 2 b 2 - a b a b ) U 2 - 3 b 2 ) = 
, , i J i i J J 1 » J 

= X 2 - 3 b 2 . 

S i n c e H i s a r b i t r a r y , we o b t a i n t h e Lemma. 
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P r o o f o f T h e o r e m 1. Since ||H||2 = a2 = 
= (3A2- 4b2)/3, we have 0 s ||H|| s A. If ||H| = A, then b = 0. 
Thus by (3.3), M is totally iambilical. The converse is also 
true. 

P r o o f o f T h e o r e m 2. Since by Lemma 2, we 
2 2 i 2 2 have A = A -3b = const, on M, it implies 9||H|| - 5A = const. 

Thus, ||H|| = const, if and only if A = const. 

5. Application 
Let M be a 3-dimensional pseudo-umbilical isotropic 

g 
submanifold in a 9-dimensional space form N (C), where C 

g 
denotes the sectional curvature of N (C). If M is constant 
isotropic, we may apply Theorem 2 to it and have both b and 
c constant. And then using the same method as in Section 4, 
we may find that if b * 0, then 

(5.1) e5 = e3 , e6 = -e8 = e3 , 
4 2 4 5 1 

6 1 8 2 7 9 ^ e = - ¿r e = e , e = e = o . 
5 2 4 1 * 4 4 

On the other hand, from (3.3) and (2.4), we have 

5.2) e = e = be , e = e = be , e = ce , 
1 2 1 3 2 

2 2 
7 C — b 3 4 5 8 9 0 = — 0 , 0 = 0 = 0 = 0 = 0 . 
3 C 3 2 3 2 

Take the exterior differentiation of 8 = 6 , then by using 
4 2 

(5.1), (5.2), (2.2) and (2.4), we have 

(5.3) A2- 4b2 + C = 0 , 

which implies 
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(5.4) 3||H||2 - 2A2 + C = 0 . 
g 

This equation gives us some information on M and N (C). 
Namely, with the help of the formula (5.4) and the 
assertions of Theorem 1 one can easily deduce the following: 

Let M be a 3-dimensional pseudo-umbilical and constant g A-isotropic submanifold in a space form N (C), then M must 
be totally geodesic, or totally umbilical, or 

9 2 2 2 i) when C = 0, M is a submanifold in E with ||H[| = ^ \ ; 
9 2 1 ii) when C > 0, M is a submanifold in S with A - 2 ^ ' 

the equality holds if and only if M is minimal ; 
9 2 iii) when C < 0, M is a submanifold in H (C) with A > -C. 
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