

Shi-jie Li

ON THREE DIMENSIONAL PSEUDO-UMBILICAL
ISOTROPIC SUBMANIFOLDS1. Introduction

A submanifold M in a Riemannian manifold N is said to be isotropic (or λ -isotropic) if for each point p in M and each unit vector t tangent to M at p , the length λ of the normal curvature vector $h(t, t)$ depends only on p , not on t at p . In particular, when λ is also independent of the point p in M , then M is said to be constant isotropic. It is known (see [2]) that M is isotropic at p if and only if the second fundamental form h satisfies

$$(1.1) \quad \langle h(x, x), h(x, y) \rangle = 0$$

for any orthonormal vectors x and y of the tangent space $T_p(M)$, where \langle , \rangle is the scalar product on N .

Let H be the mean curvature vector of M in N . M is said to be pseudo-umbilical if there exists a function ρ on M such that $\langle h(x, y), H \rangle = \rho \langle x, y \rangle$ for all vectors x and y tangent to M . Recently, B. Y. Chen and P. Verheyen [1] proved that an isotropic surface in a Riemannian manifold must be pseudo-umbilical.

In this paper, we study 3-dimensional isotropic submanifolds. We shall prove the following theorems.

Theorem 1. Let M be a 3-dimensional λ -isotropic submanifold in a space form N . If M is pseudo-umbilical, then the mean curvature H of M satisfies $\|H\| \leq \lambda$, the equality holds if and only if M is totally umbilical.

Theorem 2. Let M be a 3-dimensional λ -isotropic submanifold in a space form N . If M is pseudo-umbilical, then M has constant mean curvature if and only if M is constant isotropic.

The author wishes to express his hearty to Professor B. Y. Chen for his valuable suggestions and to the referee for his corrections and several improvements.

2. Preliminaries

Let M be an n -dimensional submanifold in an m -dimensional Riemannian manifold N . We choose a local field of orthogonal frames $(e_1, \dots, e_n; e_{n+1}, \dots, e_m)$ in N such that, restricted to M . We denote by $(\theta^1, \dots, \theta^m)$ the field of dual frames. The structure equations of N are given by

$$(2.1) \quad d\theta^A = -\sum_B \theta^A_B \wedge \theta^B, \quad \theta^A_B + \theta^B_A = 0,$$

$$(2.2) \quad d\theta^A_B = -\sum_C \theta^A_C \wedge \theta^C_B + \Phi^A_B, \quad \Phi^A_B = \frac{1}{2} \sum_{BCD} K^A_{BCD} \theta^C \wedge \theta^D, \quad K^A_{BCD} + K^A_{BDC} = 0,$$

$A, B, C, D, \dots = 1, \dots, m$. Restricting these forms on M , we have $\theta^r = 0$, $r, s, t, \dots = n+1, \dots, m$. Since

$$(2.3) \quad 0 = d\theta^r = -\sum_i \theta^r_i \wedge \theta^i, \quad i, j, k, \dots = 1, \dots, n.$$

Cartan's lemma implies

$$(2.4) \quad \theta_i^r = \sum h_{ij}^r \theta^j, \quad h_{ij}^r = h_{ji}^r.$$

If we denote by ∇ and $\tilde{\nabla}$ the covariant derivatives of M and N , respectively, then for any two vector fields x, y tangent to M and any vector field ξ normal to M , we have

$$(2.5) \quad \tilde{\nabla}_x y = \nabla_x y + h(x, y),$$

$$(2.6) \quad \tilde{\nabla}_x \xi = -A_x x + D_x \xi,$$

where $-A_x x$ and $D_x \xi$ denote the tangential and normal components of $\tilde{\nabla}_x \xi$ respectively. A_x is called the Weingarten map in the direction of ξ and D gives a connection in the normal bundle. We have

$$(2.7) \quad \langle A_x x, y \rangle = \langle h(x, y), \xi \rangle.$$

We define the covariant derivative $\bar{\nabla} h$ of h by

$$(2.8) \quad (\bar{\nabla}_x h)(y, z) = D_x h(y, z) - h(\nabla_x y, z) - h(y, \nabla_x z),$$

for any vector fields x, y, z tangent to M , then if N is a space form, the equation of Codazzi becomes

$$(\bar{\nabla}_x h)(y, z) = (\bar{\nabla}_y h)(x, z).$$

For later use, we recall the following lemma due to B. O'Neill [2].

L e m m a A. If a submanifold M in a Riemannian manifold N is λ -isotropic, then for any orthogonal vectors x, y, z in $T_p(M)$,

$$(2.10) (i) \quad \langle h(x, x), h(y, y) \rangle + 2\|h(x, y)\|^2 = \lambda^2,$$

$$(2.11) \text{ (ii)} \quad \langle h(x, x), h(y, z) \rangle + 2 \langle h(x, y), h(x, z) \rangle = 0.$$

We define the discriminant Δ of the second fundamental form h , a real-valued function on planes (through p) in $T_p(M)$, such that if x and y span π , then

$$(2.12) \quad \Delta(\pi) = \Delta_{xy} = \left[\langle h(x, x), h(y, y) \rangle - \|h(x, y)\|^2 \right] / \|x \wedge y\|^2.$$

3. Weingarten map

Let M be an n -dimensional λ -isotropic submanifold in an m -dimensional Riemannian manifold N and (e_1, \dots, e_n) be an orthogonal frame tangent to M . Then $H = \frac{1}{n} \sum_{i=1}^n h(e_i, e_i)$. Since M is λ -isotropic, we may use (1.1) and Lemma A to compute A_H as follows.

$$(3.1) \quad \langle A_H e_j, e_j \rangle = \langle H, h(e_j, e_j) \rangle = \frac{1}{n} \sum_{i=1}^n \langle h(e_i, e_i), h(e_j, e_j) \rangle = \\ = \lambda^2 - \frac{2}{n} \sum_{\substack{i=1 \\ i \neq j}}^n \|h(e_i, e_j)\|^2,$$

$$(3.2) \quad \langle A_H e_j, e_k \rangle = \langle H, h(e_j, e_k) \rangle = \frac{1}{n} \sum_{i=1}^n \langle h(e_i, e_i), h(e_j, e_k) \rangle = \\ = - \frac{2}{n} \sum_{i=1}^n \langle h(e_i, e_j), h(e_i, e_k) \rangle, \quad i, j, k = 1, \dots, n, \quad j \neq k.$$

The following lemma is similar to a lemma obtained by B. Y. Chen and P. Verheyen [1].

Lemma 1. Let M be a 3-dimensional λ -isotropic submanifold in an m -dimensional Riemannian manifold N . If M is pseudo-umbilical, then with respect to a suitable

orthonormal frame $(e_1, e_2, e_3; e_4, \dots, e_m)$, where e_1, e_2, e_3 are tangent to M and e_4, \dots, e_m are normal to M , we have

$$(3.3) \quad A_4 = \begin{bmatrix} 0 & b & 0 \\ b & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \quad A_5 = \begin{bmatrix} 0 & 0 & b \\ 0 & 0 & 0 \\ b & 0 & 0 \end{bmatrix}, \quad A_6 = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & b \\ 0 & b & 0 \end{bmatrix}$$

$$A_7 = \begin{bmatrix} c & 0 & 0 \\ 0 & c & 0 \\ 0 & 0 & \frac{c^2 - b^2}{c} \end{bmatrix}, \quad A_8 = \begin{bmatrix} b & 0 & 0 \\ 0 & -b & 0 \\ 0 & 0 & 0 \end{bmatrix}, \quad A_9 = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & \frac{\sqrt{3}ab}{c} \end{bmatrix},$$

$$A_{10} = \dots = A_m = 0,$$

for some functions a, b, c on M , where $A_r = A_{e_r}$.

P r o o f. Let M be a 3-dimensional λ -isotropic submanifold in an m -dimensional Riemannian manifold N . If M is pseudo-umbilical, then from (3.1) and (3.2), we have

$$(3.4) \quad \|h(e_i, e_j)\| = b, \quad \text{for any } i \neq j,$$

where b is a function on M , and

$$(3.5) \quad \langle h(e_i, e_j), h(e_j, e_k) \rangle = 0,$$

$$(3.6) \quad \langle h(e_i, e_j), h(e_i, e_k) \rangle = 0, \quad \text{for any } i \neq j \neq k \neq i.$$

Consider (3.4), if $b \equiv 0$, by (2.10), we have

$$(3.7) \quad h(e_1, e_1) = h(e_2, e_2) = h(e_3, e_3).$$

Thus we may choose e_7 in the direction of $h(e_1, e_1)$ and obtain (3.3) with $b \equiv 0$ immediately. From now we assume that $b \neq 0$. Then by (3.4)-(3.6), we may choose e_4, e_5, e_6 as follows.

$$(3.8) \quad h(e_1, e_2) = be_4, \quad h(e_1, e_3) = be_5, \quad h(e_2, e_3) = be_6.$$

Since $h(e_1, e_1) + h(e_2, e_3)$ and $h(e_1, e_1) - h(e_2, e_2)$ are perpendicular to each other and do not vanish, we may put, with the help of (3.5),

$$(3.9) \quad h(e_1, e_1) + h(e_2, e_2) = 2ce_7, \quad c > 0,$$

$$(3.10) \quad h(e_1, e_1) - h(e_2, e_2) = 2qe_8, \quad q > 0.$$

Then by (2.10) and (3.4), we have $c^2 = \lambda^2 - b^2$ and $q^2 = b^2$, i.e., $c = \sqrt{a^2 - b^2}$ and $q = b$. Consequently, we have

$$(3.11) \quad h(e_1, e_1) = ce_7 + be_8,$$

$$(3.12) \quad h(e_2, e_2) = ce_7 - be_8.$$

Let $a = \|H\|$ and $M_1 = \{p \in M \mid a(p) = 0\}$. On M_1 , we have

$$(3.13) \quad \lambda^2 = \|h(e_3, e_3)\|^2 = \| -h(e_1, e_1) - h(e_2, e_2) \|^2 = 4c^2.$$

Then since $c^2 = \lambda^2 - b^2$, we have $3\lambda^2 - 4b^2 = 0$ and

$$(3.14) \quad h(e_3, e_3) = -2ce_7 = \frac{c^2 - b^2}{c} e_7.$$

Combining these with (3.8), (3.11) and (3.12), we obtain

$$(3.3) \quad a^2 = (3\lambda^2 - 4b^2)/3 = 0 \text{ on } M_1.$$

On $M \setminus M_1$, we may still have (3.8), (3.11) and (3.12), but we claim that $h(e_i, e_i)$, $i = 1, 2, 3$, are linear independent. Suppose that it is not true and let

$$(3.15) \quad h(e_3, e_3) = fh(e_1, e_1) + gh(e_2, e_2),$$

for some functions f and g on $M \setminus M_1$.

Compute $\langle h(e_3, e_3), h(e_i, e_i) \rangle$, $i = 1, 2, 3$, we would have, with the help of (2.10),

$$(3.16) \quad \lambda^2 f + (\lambda^2 - 2b^2)g = \lambda^2 - 2b^2,$$

$$(3.17) \quad (\lambda^2 - 2b^2)f + \lambda^2 g = \lambda^2 - 2b^2,$$

$$(3.18) \quad (\lambda^2 - 2b^2)(f + g) = \lambda^2.$$

Then from (3.16)-(3.18), we would have $f = g = -1$ and $3\lambda^2 - 4b^2 = 0$. These contradict $a^2 = (3\lambda^2 - 4b^2)/3 \neq 0$. Now we may choose e_8 in the following way

$$(3.19) \quad w e_8 = h(e_3, e_3) + k[h(e_1, e_1) + h(e_2, e_2)], \quad w > 0,$$

where k is an undetermined function. We shall choose a suitable value of k in order that e_8 is really perpendicular to e_7 and e_8 . By (2.10), (3.11) and (3.12), we have

$$(3.20) \quad \begin{aligned} 0 &= \langle w e_8, h(e_1, e_1) + h(e_2, e_2) \rangle = \\ &= \langle h(e_3, e_3), h(e_1, e_1) + h(e_2, e_2) \rangle + k \|h(e_1, e_1) + h(e_2, e_2)\|^2 = \\ &= 2(\lambda^2 - 2b^2) + 4k(\lambda^2 - b^2). \end{aligned}$$

Thus $k = -(\lambda^2 - 2b^2)/2(\lambda^2 - b^2) = -(c^2 - b^2)/2c^2$. Substituting it into (3.19), we have $w^2 = b^2(3\lambda^2 - 4b^2)/(\lambda^2 - b^2) = 3a^2b^2/c^2$ and

$$(3.21) \quad h(e_3, e_3) = \frac{c^2 - b^2}{c} e_7 + \frac{\sqrt{3}ab}{c} e_8,$$

since $a^2 = (3\lambda^2 - 4b^2)/3 > 0$ and $c^2 = \lambda^2 - b^2 > 0$. Combining (3.21) with (3.8), (3.11) and (3.12), we obtain (3.3) on $M \setminus M_1$.

4. Proofs of Theorems

Let M be a 3-dimensional λ -isotropic submanifold in an m -dimensional space form N . If M is pseudo-umbilical, then by Lemma 1, we have (3.8), (3.11) and (3.21), from which we may compute $(\bar{V}_{e_i} h)(e_j, e_k)$, $i, j, k = 1, 2, 3$, on the subset of M on which $c > 0$. Since N is a space form, we may use the equation (2.9) of Codazzi and have the following three groups of equations, (4.1) - (4.10), (4.11)-(4.20) and (4.21)-(4.27).

$$(4.1) \quad c\theta_7^4(e_2) + b\theta_8^4(e_2) - 2b\theta_1^2(e_2) = e_1(b),$$

$$(4.2) \quad c\theta_7^5(e_3) + b\theta_8^5(e_3) - 2b\theta_1^3(e_3) = e_1(b),$$

$$(4.3) \quad e_1(c) - b\theta_8^7(e_1) = b\theta_4^7(e_2),$$

$$(4.4) \quad c\theta_7^8(e_1) - e_1(b) = b[\theta_8^4(e_2) + 2\theta_1^2(e_2)],$$

$$(4.5) \quad c\theta_7^9(e_1) - b\theta_8^9(e_1) = b\theta_4^9(e_2),$$

$$(4.6) \quad c\theta_7^5(e_3) - b\theta_8^5(e_3) = b[\theta_6^5(e_2) - \theta_2^1(e_2)],$$

$$(4.7) \quad e_1\left(\frac{c^2 - b^2}{c}\right) + \frac{\sqrt{3}ab}{c} \theta_9^7(e_1) = b[\theta_5^7(e_3) + \frac{b}{c} \theta_1^3(e_3)],$$

$$(4.8) \quad \frac{c^2 - b^2}{c} \theta_7^8(e_1) + \frac{\sqrt{3}ab}{c} \theta_9^8(e_1) = b[\theta_5^8(e_3) - \theta_3^1(e_3)],$$

$$(4.9) \quad \frac{c^2 - b^2}{c} \theta_7^4(e_2) + \frac{\sqrt{3}ab}{c} \theta_9^4(e_2) = b[\theta_6^4(e_3) - \theta_3^1(e_3)],$$

$$(4.10) \quad b[\theta_4^6(e_3) - \theta_1^3(e_3)] = b[\theta_5^6(e_2) - \theta_1^2(e_2)] = e_1(b);$$

$$(4.11) \quad e_2(c) + b\theta_8^7(e_2) = b\theta_4^7(e_1) ,$$

$$(4.12) \quad c\theta_7^8(e_2) + e_2(b) = b[\theta_8^4(e_1) + 2\theta_1^2(e_1)] ,$$

$$(4.13) \quad c\theta_7^8(e_2) + b\theta_8^8(e_2) = b\theta_4^8(e_1) ,$$

$$(4.14) \quad c\theta_7^6(e_3) + b\theta_8^6(e_3) = b[\theta_5^6(e_1) - \theta_1^2(e_1)] ,$$

$$(4.15) \quad c\theta_7^4(e_1) - b\theta_8^4(e_1) - 2b\theta_2^1(e_1) = e_2(b) ,$$

$$(4.16) \quad c\theta_7^6(e_3) - b\theta_8^6(e_3) - 2b\theta_2^3(e_3) = e_2(b) ,$$

$$(4.17) \quad \frac{c^2 - b^2}{c} \theta_7^4(e_1) + \frac{\sqrt{3}ab}{c} \theta_8^4(e_1) = b[\theta_5^4(e_3) - \theta_3^2(e_3)] ,$$

$$(4.18) \quad e_2\left[\frac{c^2 - b^2}{c}\right] + \frac{\sqrt{3}ab}{c} \theta_8^7(e_2) = b[\theta_6^7(e_3) + \frac{b}{c} \theta_2^3(e_3)] ,$$

$$(4.19) \quad \frac{c^2 - b^2}{c} \theta_7^8(e_2) + \frac{\sqrt{3}ab}{c} \theta_8^8(e_2) = b[\theta_6^8(e_3) + \theta_3^2(e_3)] ,$$

$$(4.20) \quad b[\theta_4^5(e_3) - \theta_2^3(e_3)] = e_2(b) = b[\theta_6^5(e_1) - \theta_2^1(e_1)] ;$$

$$(4.21) \quad e_3(c) + b\theta_8^7(e_3) = b[\theta_5^7(e_1) + \frac{b}{c} \theta_1^3(e_1)] ,$$

$$(4.22) \quad c\theta_7^8(e_3) + e_3(b) = b[\theta_5^8(e_1) - \theta_3^1(e_1)] ,$$

$$(4.23) \quad c\theta_7^5(e_1) - b\theta_8^5(e_1) = b[\theta_4^5(e_2) - \theta_2^3(e_2)] ,$$

$$(4.24) \quad e_3(c) - b\theta_8^7(e_3) = b[\theta_6^7(e_2) + \frac{b}{c} \theta_2^3(e_2)] ,$$

$$(4.25) \quad c\theta_7^8(e_3) - e_3(b) = b[\theta_6^8(e_2) + \theta_3^2(e_2)] ,$$

$$(4.26) \quad e_3(b) = b[\theta_5^4(e_2) - b\theta_3^2(e_2)] = b[\theta_6^4(e_1) - \theta_3^1(e_1)] ,$$

$$(4.27) \quad c\theta_7^6(e_2) + b\theta_8^6(e_2) = b[\theta_4^6(e_1) - \theta_1^3(e_1)],$$

where $a = \|H\| = \sqrt{3\lambda^2 - 4b^2}/\sqrt{3}$ and $c = \sqrt{\lambda^2 - b^2}$ ($\neq 0$). Now we claim that $(\lambda^2 - 3b^2)$ is constant on M . First observe the first group of the equations. Comparing (4.1) with (4.4), we have

$$(4.28) \quad \theta_7^8(e_1) = \theta_7^4(e_2),$$

and substituting (4.28) into (4.3), we get

$$(4.29) \quad e_1(c) = 2b\theta_4^7(e_2).$$

From (4.6) and (4.10), we have

$$(4.30) \quad e_1(b) = c\theta_5^7(e_3) - b\theta_5^8(e_3),$$

comparing it with (4.2), we get

$$(4.31) \quad c\theta_5^7(e_3) = -b\theta_1^3(e_3),$$

$$(4.32) \quad e_1(b) = -b[\theta_5^8(e_3) + \theta_1^3(e_3)].$$

Then substituting (4.28), (4.32) into (4.8) ; and (4.10) into (4.9), and then from comparing the results, we have

$$(4.33) \quad ab\theta_8^9(e_1) = ab\theta_4^9(e_2).$$

Substituting (4.33) into (4.5), we get

$$(4.34) \quad ac\theta_7^9(e_1) = 2ab\theta_4^9(e_2).$$

Using (4.29), (4.31) and (4.34), (4.7) becomes

$$\frac{1}{c}e_1(c^2 - b^2) - \frac{2b}{c} \left[\frac{c^2 - b^2}{c} \theta_4^7(e_2) + \frac{\sqrt{3}ab}{c} \theta_4^9(e_2) \right] = 0,$$

then by (4.9) and (4.10), we obtain

$$(4.36) \quad e_1(\lambda^2 - 2b^2) - 2be_1(b) = 0 ,$$

i.e., $e_1(\lambda^2 - 3b^2) = 0$.

Similarly, from the second group of the equations, we have

$$(4.37) \quad \theta_7^8(e_2) = -\theta_7^4(e_1) ,$$

$$(4.38) \quad e_2(c) = 2b\theta_4^7(e_1) ,$$

$$(4.39) \quad c\theta_6^7(e_3) = -b\theta_2^3(e_3) ,$$

$$(4.40) \quad e_2(b) = c\theta_6^7(e_3) + b\theta_6^8(e_3) = b[\theta_6^8(e_3) - \theta_2^3(e_3)] ,$$

$$(4.41) \quad ab\theta_8^9(e_2) = -ab\theta_4^9(e_1) ,$$

$$(4.42) \quad ac\theta_7^9(e_2) = 2ab\theta_4^9(e_1) ,$$

$$(4.43) \quad \frac{1}{c} e_2(c^2 - b^2) - \frac{2b}{c} \left[\frac{c^2 - b^2}{c} \theta_4^7(e_1) + \frac{\sqrt{3}ab}{c} \theta_4^9(e_1) \right] = 0 .$$

Then by (4.17) and (4.20), (4.43) becomes

$$(4.44) \quad e_2(\lambda^2 - 2b^2) - 2be_2(b) = 0 ,$$

i.e., $e_2(\lambda^2 - 2b^2) = 0$.

Finally, in the third group of the equations, multiplying (4.21) and (4.22) by c and $-b$, respectively, and then summing up the results, we have

$$(4.45) \quad ce_3(c) + 2bc\theta_8^7(e_3) - be_3(b) = b[c\theta_5^7(e_1) - b\theta_5^8(e_1)] .$$

Then by (4.23) and (4.26), (4.45) becomes

$$(4.46) \quad ce_3(c) - 2be_3(b) = 2bc\theta_7^8(e_3).$$

On the other hand, from (4.21) and (4.24), we have

$$(4.47) \quad 2b\theta_8^7(e_3) = b\theta_5^7(e_1) + \frac{b^2}{c} \theta_1^3(e_1) - b\theta_6^7(e_2) - \frac{b^2}{c} \theta_2^3(e_2).$$

And from (4.22) and (4.45), we have

$$(4.48) \quad 2c\theta_7^8(e_3) = b\theta_5^8(e_1) - b\theta_3^1(e_1) + b\theta_6^8(e_2) + b\theta_3^2(e_2).$$

Combining (4.47) and (4.48), we get, with the help of (4.23), (4.26) and (4.27),

$$(4.49) \quad 4bc\theta_7^8(e_3) = [bc\theta_6^7(e_2) + b^2\theta_6^8(e_2)] - [bc\theta_5^7(e_1) - b^2\theta_5^8(e_1)] = \\ = e_3(b) - e_3(b) = 0.$$

Thus we obtain, from (4.46) and (4.49),

$$(4.50) \quad e_3(\lambda^2 - 3b^2) = 0.$$

The claim is proved by (4.36), (4.44) and (4.50). Next, we use this result to prove the following.

L e m m a 2. Let M be a 3-dimensional isotropic submanifold in an m -dimensional space N . If M is pseudo-umbilical, then the discriminant Δ of h on M is constant.

P r o o f. We have proved above that $\lambda^2 - 3b^2$ is constant on M . Now we are going to prove $\Delta = \lambda^2 - 3b^2$. Let π be an arbitrary plane through p in $T_p M$ determined by $x = \sum_{i=1}^3 a_i e_i$ and $y = \sum_{i=1}^3 b_i e_i$ which are two arbitrary orthonormal

vectors tangent to M at p , where $\sum_{i=1}^3 a_i^2 = 1$, $\sum_{i=1}^3 b_i^2 = 1$ and $\sum_{i=1}^3 a_i b_i = 0$. Then we have

$$\begin{aligned}
 (4.51) \quad \Delta(\pi) &= \Delta_{xy} = \langle h(x, x), h(y, y) \rangle - \|h(x, y)\|^2 = \\
 &= \langle h\left(\sum_{i=1}^3 a_i e_i, \sum_{j=1}^3 a_j e_j\right), h\left(\sum_{k=1}^3 b_k e_k, \sum_{u=1}^3 b_u e_u\right) \rangle + \\
 &\quad - \langle h\left(\sum_{i=1}^3 a_i e_i, \sum_{j=1}^3 b_j e_j\right), h\left(\sum_{k=1}^3 a_k e_k, \sum_{u=1}^3 b_u e_u\right) \rangle = \\
 &= \sum_{\substack{i, j, \\ k, u=1}}^3 (a_i a_j b_k b_u - a_i b_j a_k b_u) \langle h(e_i, e_j), h(e_k, e_u) \rangle = \\
 &= \sum_{\substack{i, u \\ j \neq k}} (a_i b_u (a_j b_k - b_j a_k) \langle h(e_i, e_j), h(e_k, e_u) \rangle =
 \end{aligned}$$

(by (1.1) and (3.6))

$$\begin{aligned}
 &= \sum_{i, k} a_i b_k (a_i b_k - b_i a_k) \langle h(e_i, e_i), h(e_k, e_k) \rangle + \\
 &\quad + \sum_{i, j} a_i b_j (a_j b_i - b_j a_i) \langle h(e_i, e_j), h(e_i, e_j) \rangle =
 \end{aligned}$$

(by (3.5))

$$= \sum_{i, j} a_i b_j (a_i b_j - b_i a_j) (\lambda^2 - 2b^2) + \sum_{i, j} a_i b_j (a_j b_i - b_j a_i) b^2 =$$

(by (3.8), (3.11), (3.12) and (3.21))

$$\begin{aligned}
 &= \sum_{i, j} (a_i^2 b_j^2 - a_i b_i a_j b_j) (\lambda^2 - 3b^2) = \\
 &= \lambda^2 - 3b^2.
 \end{aligned}$$

Since π is arbitrary, we obtain the Lemma.

P r o o f o f T h e o r e m 1. Since $\|H\|^2 = a^2 = (3\lambda^2 - 4b^2)/3$, we have $0 \leq \|H\| \leq \lambda$. If $\|H\| = \lambda$, then $b = 0$. Thus by (3.3), M is totally umbilical. The converse is also true.

P r o o f o f T h e o r e m 2. Since by Lemma 2, we have $\Delta = \lambda^2 - 3b^2 = \text{const.}$ on M , it implies $9\|H\|^2 - 5\lambda^2 = \text{const.}$ Thus, $\|H\| = \text{const.}$ if and only if $\lambda = \text{const.}$

5. Application

Let M be a 3-dimensional pseudo-umbilical isotropic submanifold in a 9-dimensional space form $N^9(C)$, where C denotes the sectional curvature of $N^9(C)$. If M is constant isotropic, we may apply Theorem 2 to it and have both b and c constant. And then using the same method as in Section 4, we may find that if $b \neq 0$, then

$$(5.1) \quad \theta_4^5 = \theta_2^3, \quad \theta_4^6 = -\theta_5^8 = \theta_1^3, \\ \theta_5^6 = -\frac{1}{2}\theta_4^8 = \theta_1^2, \quad \theta_4^7 = \theta_4^9 = 0.$$

On the other hand, from (3.3) and (2.4), we have

$$(5.2) \quad \theta_1^5 = \theta_2^6 = b\theta^3, \quad \theta_1^4 = \theta_3^6 = b\theta^2, \quad \theta_2^7 = c\theta^2, \\ \theta_3^7 = \frac{c^2 - b^2}{c}\theta^3, \quad \theta_3^4 = \theta_2^5 = \theta_3^8 = \theta_2^9 = 0.$$

Take the exterior differentiation of $\theta_4 = \theta_2$, then by using (5.1), (5.2), (2.2) and (2.4), we have

$$(5.3) \quad \lambda^2 - 4b^2 + C = 0,$$

which implies

$$(5.4) \quad 3\|H\|^2 - 2\lambda^2 + C = 0.$$

This equation gives us some information on M and $N^9(C)$. Namely, with the help of the formula (5.4) and the assertions of Theorem 1 one can easily deduce the following:

Let M be a 3-dimensional pseudo-umbilical and constant λ -isotropic submanifold in a space form $N^9(C)$, then M must be totally geodesic, or totally umbilical, or

- i) when $C = 0$, M is a submanifold in E^9 with $\|H\|^2 = \frac{2}{3}\lambda^2$;
- ii) when $C > 0$, M is a submanifold in S^9 with $\lambda^2 \geq \frac{1}{2}C$,
the equality holds if and only if M is minimal;
- iii) when $C < 0$, M is a submanifold in $H^9(C)$ with $\lambda^2 > -C$.

REFERENCES

- [1] B. Y. Chen, P. Verheyen : Submanifolds with geodesic normal sections, Math. Ann., 269(1984), 417-429.
- [2] B. O'Neill : Isotropic and Kaehler immersions, Canadian J. Math., 17 (1965), 905-915.

DEPARTMENT OF MATHEMATICS, SOUTH CHINA NORMAL UNIVERSITY,
GUANGZHOU, CHINA

Received November 10, 1987.

