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DENSITY TOPOLOGY INVOLVING MEASURE AND CATEGORY 

In their papers 13], [4] Poreda, Wagner and Wilczyriski 
introduced and examined a categorial equivalent of measure 
density on real line. Let us recall their definition, 
restricted £0 sets 2, having the Baire property : 

D e f i n i t i o n 1. [3] We shall say that 0 is an 
I-density point of a set A e S if and only if 
X. „ r ,—-—» 1. By I we denote <r-ideal of sets of the 
(nA)n[ -1,1 ] n — J 

first category ; see [3] for other denotations. 
It follows from Theorem 2 in [3] that in the definition 

mentioned above we can replace the set A with any of the open 
sets G, which occur if we present A in the form A = G A P; 
where G is open and P is of the first category. Especially 
we can require G to be the biggest of them, i.e. regular 
open. This leads us in natural way to the following 
definitions. 

D e f i n i t i o n 2. We shall say that a set A e 2 has 
4. . i , .. .„ , m(G n [x-h,x+h]) at point x c-density g if and only if lim — 2 h 

h—» 0 
exists and is equal to g. The set G is here regular open and 
such that A = G A P ; where P is of the first category, m is 
Lebesgue measure. 
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It means that a set A € 2 has at point x c-density g iff 

the regular open set G = A A P, where P is of the first 

category, has the usual measure density equal to g at point x 

D e f i n i t i o n 3. We shall say that x is a 

c-density point of A e SB if and only if A has at point x the 

c-density, equal to 1. 

By A ~ B we mean A A B € I and, to simplify the notation 

for A e 2, we shall use frequently G(A) for the regular open 

set in the unique representation A = (G \ P ) u P^ or 

A = G A P where P , P , P e l . 1 2 
Now we shall show that c-density as defined above is 

really a density, i.e. the operation <p : S > 2 defined c 

<p (A) = {x e R : x is a c-density point of A} for A e S is 
c 

so called "lower density" (see [2]). Observe first that 

R e m a r k 1. For every A € 2 we have <p (A) = 
c 

<p (G(A)) where <p is usual measure lower density, 
d d 

We need also the following 

L e m m a 1. For A,B € S we have 

a) If A ~ B, then G(A) = G(B), 

b) G(A n B) = G(A) n G(B) in particular G(R \ A) n G(A) = a. 

P r o o f . We can present the sets A,B and A n B in a 

unique form A = G A P , B = G A P , A n B = G A P , where 1 1 2 2 3 3 
G = G(A), G = G(B), G = G(A n B) and P , P , P are from I. 
1 2 3 1 2 3 

To prove a) let us notice that A ~ B implies B = A A P where 

P is from I and from B = A A P = (G A P ) A P = G A (P^ P) 

we have G = G 
1 2 

To prove b) we have A n B = (G A P ) n (G A P ) = 
1 1 2 2 

[ (G A P ) n G ] A [ ( G A P ) n P ] = [ ( G n G ) A (P n G )] A 1 1 2 1 1 2 1 2 1 2 
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A [ (G A P ) A (P A P )] = (G A G ) A { (P A G ) A 1 2 1 2 1 2 1 2 
[ (G A P ) A (P A P )]>. The sets P A P , G A P , P A G 1 2 1 2 1 2 1 2 1 2 
are from I hence { (P A G ) A [ (G A P ) A (P n P )]} is 1 2 1 2 1 2 
from I, too. As G n G Is a regular open set (se [2]) we 1 2 
have G = G A G . 3 1 2 

T h e o r e m 1. For every A,B e S 
1) <p (A) ~ A , 

C 

2) if A ~ B then <p (A) = <p (B) , 
c c 

3) <p (0) = 0, tp (R) = R , 
c c 

4) <p (A N B) = <p (A) A <p (B) . 
c c c 

P r o o f . We shall start with 1). The set A = (G \ P ) 
v P where G = G(A) and P , P arte from I. It is clear that 2 1 2 
G c <p (A) ; hence A \ <p (A), as a subset of A \ G c P , is 

c c 2 
from I. On the other hand, <p (A) c CI G, and therefore <p (A)YA 

c c 

is a subset of C1(G)\ A and hence of C1(G)\ (G\ P ). The 
last set is a union of nowhere dense set C1(G) \ G and 
C1(G) n P of the first category, which implies that <p (A)\A c 
is of the first category too. 

To prove 2) let us notice that from A ~ B we have G(A) = 
= G(B) by a) of Lemma 1 and consequently <p (A) = <p (B), c c 
directly from Remark 1. 

As 3) is simply the consequence of the definition of <p , 
c 

we come to 4). From b) of Lemma 1 we have G(A n B) = G(A) r\ 
n G(B), hence <p (A n B) = <p [G(A A B)] = <p [G(A) A G(B)] = c d d 
® [G(A)] A <p [G(B) ] = <p (A) A <p (B) in view of Remark 1 and 
d d c c 

according to properties of <p . 
d 

- 799 -



W. Wojdowskl 

It is not difficult to prove the following 

T h e o r e m 2. If x q is a c-density point of a set 

A e B, then the c-density of a set R\ A at Xq is equal to 0. 

P~r o o f. Since Xq is a d-density point of G(A) and 

from b) of Lemma 1 G(R \ A) c R \ G(A) we have d-density of 

G(R \ A) at x q equal to 0 - which was required. 

R e m a r k 2. It is worth noticing that the above 

theorem cannot be converted. Let C be the Cantor set of 

positive measure in closed interval [0,1] and {(a ,b )> 
n n n€N 

the family of components of [0,1]\ C. It is not difficult to 

0 9 < - a + b > » «a + b > 
see that both sets A = U a^, " " and B = U I " ° , b I 

n= 1 n J n= 1 "J 

are regular open and A r\ B = 0. Let x q be a d-density point 

of C. It can be easily seen that G(R \ A) = B, hence 

C n [G(A) u G(R \ A)] = 0 ; so c-density of A, as well as of 

R \ A at point Xq, is equal to 0. 

One can ask now if we obtained something really 

different from well known concept of d-density (measure 

density) and I-density (category density). The following 

examples will give positive answer to this question. 

E x a m p l e 1. There exists a set A € 2 such that 0 l 
is a d-density point of A^but not a c-density point of Ai . 

As a set At we can take the set A from Theorem 1.6. in [2]. 

A is there a set of the first category such that m(R\A) = 0. 

E x a m p l e 2. There exists a set A 6 2 such that 0 2 
is a c-density point of A b u t not a d-density point of A . 

As a set A we can take the set R \ A where A is from 
2 1 1 

Example 1. 
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E x a m p l e 3. There exists a set A e S such that 0 K 3 
is a c-density point but not an I-density point of A . The 

1 3 
sequence , n € N converges to 0 from the right side. 
Let e be a given monotone sequence of positive reals, 

n f i l l convergent to 0. From each interval "fn+TTT' nf U S 

remove the open set B of the form n 
n f i i + a 

Bn = etthtit ! nTTrvnr J • w h e r e 5n i s a p ° s i t i v e 

number small enough to ensure m(B ) < e | ̂-r- - , * i, 1. As n n(_n! I n+1J ! J 

a set A we can take R \ CI U B I. Really, it is not 
n=l n J 

difficult to notice that is regular open and for each h e 

[ Tn+TTT ' nT ) w e h a v e 

mf U Bn n [0,h] 1 1 
n=l n J ,, e + ô e + S (n+1)! In+1J ! n n _ n n 

1 ^ » 1 + Ô (n+1)! • 
n 

0 s — < J! < 2 e 1 n n+i j ! n 00 

In view of Ô (n+1)! < e we have also n n 
c + ô (n+1)! e + S (n+1)! n n 
1 + ô (n+1)! n 

which implies that 0 is d-dispersion point of U B n 
oo oo n = 1 

As m |ci £ U B J J = m £ U B n j , 0 is a d-density point of 

Ag ; hence 0 is a c-density point of Ag . 
Now we shall show that 0 is not an I-density point of 
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A . It is enough to point out a subsequence m of natural 3 n 
numbers such that r does not converge I-almost (m A )A[-l,1] 6 

n 3 
every- where to 1. A subsequence m = n! is good here. In 

n n r i+5 . 
fact, we have n! (R \ A ) d n! • B = U - V , — 3 n n+1 n+1 I 

1 = 1 J 

n f i+5 , 
Let D = U - V » — . We have n I n+1 ' n+1 I 

1 = 1 J 

CO CO 

I n lim sup n! (R \ Ag) d fl U D^ . It is not difficult to 
n n=1 m=n 

CO 
observe that the set U D is open and dense in [0,1] for n m=n 

00 oo 
every m and we have n U D to be a residual on [0,1] and 1 1 n n=1 m=n 
G_ set. That implies lim inf (n!• A ) to be a subset of the o 3 n 
first category set and hence 0 is not an I-density point of A 

E x a m p l e 4. There exists a set A € S such that 0 ^ 4 
is an I-density point but not a c-density point of A . As a 4 
set A we can take the set R \ E where E is the set from 4 4 4 
Theorem 1 d) in [6]. 

Let us now list some properties of operation ip . c 
T h e o r e m 3. For any A € S we have 

a) Int (<p (A)) = 0 if and only if A is of the first 
C 

category, 
b) <p (A) \ G(A) is a nowhere dense set of measure 0 , c 
c) G(A) = Int <p (A) = Int C1(G(A)). c 

P r o o f . a) If A 6 I we have Int <p (A) = 0 directly c 
from Theorem 1.2). If A t I then G(A) * 0 and in view of 

3 
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G(A) c <p (A) we have Int <p (A) d G(A) * 0. 
C C 

b) As <p (A) c CI G(A) we have <p (A) \ G(A) c CI c c 
G(A)\G(A) and the last set is nowhere dense. The fact that 
<p (A)\ G(A) is a set of measure zero comes directly from the c 
Lebesgue density theorem. 

c) Is obvious in view of G(A) = Int C1(G(A)) and G(A) c 
c <p (A) c CI G( A). c 

We shall introduce now the topology related to the 
concept of c-density. Put V = { <p (A)\ P : A € 2 , P e l } . c c 

T h e o r e m 4. & is the topology on the real line. c 
P r o o f . Dealing with the same <r-ideal I and in view 

of the fact that operation <p is the lower density we can c 
carry out the proof exactly the same way as proof of Theorem 
3 in [3]. 

Let us now list some properties of 9" -topology. c 
T h e o r e m 5. The following conditions on a subset 

A of space (R,Ü ) are equivalent : 
c 

a) A is of the first category , 
b) A is U - nowhere dense , c c) A is 7 - of the first category , c 
d) A is U - closed discrete . c 

P r o o f . a) <=> b) can be proved in an analogous way 
to the proof of Theorem 22.6 in [2]. 

b) <=» c) comes directly from a) <=» b). 
a) => d) any set of the first category P is 7 - closed 

c 
since we have P = R \ (R \ P) where R \ P is ? - open. 

c 
Any subset of P being of the first category is J - closed, 

c 
too. 
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d) =» a ) i f c l o s e d d i s c r e t e s e t were not a f i r s t c a t e g o r y 

s e t i t would i n c l u d e a s e t not hav ing t h e B a i r e p r o p e r t y 

hence not ¡7 - c l o s e d . c 
C o r o l l a r y 1. (R,9" ) i s n e i t h e r s e p a r a b l e nor c 

l o c a l l y s e p a r a b l e a t any p o i n t . 

P r o o f . I t i s c l e a r s i n c e we have f rom Theorem 5 

t h a t c o u n t a b l e s e t s a r e c l o s e d and no p o i n t of (R, 3" ) ha s c 
c o u n t a b l e ne ighbourhood. 

C o r o l l a r y 2. Any 7 - compact s u b s e t of (R, 5 ) c c 
i s f i n i t e . 

P r o o f . Let K be any 7 - compact s u b s e t of R. c 

Suppose A = U {x > i s t h e s e t of a l l p o i n t s of t h e f i r s t 
a<(<> o 

c a t e g o r y s e t which has t h e c a r d i n a l i t y and i s a s u b s e t of 

K. We have ( R \ A ) u { x > , a < w t o b e ? - open cove r of K a O c 
which has no f i n i t e subcover - t h a t c o n t r a d i c t s t h a t K i s 

9" - compact . c 
C o r o l l a r y 3. In (R, 9" ) each sequence of c 

d i f f e r e n t p o i n t s c o n t a i n s no convergen t subsequence . 

T h e o r e m 6. (R, J ) i s not r e g u l a r . c 
P r o o f . Let Q be atny dense i n R and J - c l o s e d s e t c 

and a p o i n t x f rom R \ Q. Let Q be a s u b s e t of (p (A) \ P, 0 c 
where A € S and P e l . As Q c y (A) we have <p (A) dense i n R c c 
and t h e r e f o r e G(A) dense i n R, i n view of Theorem 3 b ) . The 

s e t G(A) b e i n g r e g u l a r open and dense i n R must be equa l t o 

R - hence <p (A) = R. The s e t R \ (qp (A) \ P) = P c o n t a i n s no c c 
nonempty s e t f rom ? , so x and Q cannot be s e p a r a t e d by ? -c 0 c 
open s e t s . 
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T h e o r e m 7. The family of J - Borel sets coincide 
c 

with the family of sets having the Baire property. 

P r o o f . Let A be any J - open set then it has the 
c 

Baire property, in view of Theorem 1 1). Hence every 

3" -Borel set has the Baire property. Conversely, if a set A c 
has the Baire property we can present it in a form A = (G\ 

P ) u P , where G = G(A) and P , P € I. We have G = <p (A) \ 1 2 1 2 c 
(<p (A) \ G) and <p (A) \ G is of the first category, 
c c 

according to Theorem 3 b). Hence G \ P is 3" - open set. As c 
P is J - close'd we have A to be 3" - Borel set. 2 c c 

C o r o l l a r y 4. Every 3" - Borel set is the union 
1 c 

of J - open set and 3" - closed set. 
c c 
T h e o r e m 8. 

1) The set A € S is J - regular open if and only if 
C 

A = <p (D) for some D € 2. 
c 

2) Every 3" - regularopen set is F . . 
c o*o 

P r o o f . 1) analogous to the proof of Theorem 22.8 in 

[2], 

2) follows from the fact that every ff - regular open set is d 
F ^ (see [5]). 

T h e o r e m 9. (R, 3" ) satisfies countable chain 
c 

condition. 

P r o o f . It follows from the fact that every 3" - open 
c 

set has the Baire property and the family of Baire sets 

satisfies countable chain condition. 

T h e o r e m 10. (R,5 ) is a Baire space. c 
P r o o f . Comes directly from Theorem 5. 

T h e o r e m 11. (R,3) is connected. 
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P r o o f . Suppose R is a union of two nonempty 
disjoint sets A and B, both J - open. We have A = <p (G) \ P c d 
and B = <p (Q)\ S, where G = G(A), Q = G(B) and P, S are of d 
the first category. We can assume here P c q> (G) and S c d 
c <p (Q) and as A u B = R and A n B = 0 we have also P c d 
<p (Q) and S c <p (G), hence P v S c <p (G) a <p (Q). The sets G d d d d 
and Q are regular open - thus <p (G) = <p (G) and <p (Q) = d c d 
= <p (Q). 

C 

Suppose that P u S is nonempty. This implies <p (G)n <p (Q)*0, c c 
hence from Theorem 1 4) and 1) G n Q is nonempty, hence of 
the second category. As G n Q c <p (G) r\ <p (Q) we have <p (G)n c c c 
n <p (Q), as well as (<p (G) \ P) r> (<p (Q) \ S) to be of the 

c c c 
second category. The last is in contradiction with earlier 
supposition, that A n B = 0, so we have P u S to be empty. 
Thus R = <p (G) v <p (Q) and ©(G) n w (Q) = 0. Which in view c c c c 
of <p (G), <p (Q) e U is in contradiction with the fact that c c d 
(R, J ) is connected space, d 

T h e o r e m 12. (R,57 ) is not locally connected at c 
any point. 

P r o o f . The set [0,1] \ Q, where Q is the set of 
<[2"! 

rationals is the neighbourhood of the point x = in the 
J - topology, and no subset of it is 7 - open and J -c c c 
connected. Indeed, suppose that there exists B c [0,1] \ Q, 
J - open and 3" - connected and containing x. Let a be any c c 
element of the set (infB, supB) n Q. We have the sets 
(0,a)nB and (a, 1) n B to be J - open and as B is a subset of c (0,a) u v (a, 1) it cannot be J - connected. As c-algebras c 
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and <r-ideals, we are dealing with, are invariant in respect 
to linear transformation the property holds at any point 
from R. 

T h e o r e m 13. Every set of measure zero is 
contained in 7 - open set of measure zero. Every set of the c 
first category is contained in J - open set of the first d 
category. 

P r o o f . We can represent R as the union of two 
disjoint sets A a n d , where A i s of the first category 
and A is of measure zero. If A is a set of measure zero 

2 
then Ag u A is the required 9" - open set of measure zero. If 
A is a set of the first category, then u A is the 
required J - open set of the first category, d 

Let us consider now some properties of continuous 
functions from (R, "3 ) into R equipped with the natural c 
toplogy. 

D e f i n i t i o n 4. We shall say that a function 
f : R > R is c-approximately continuous at xq if and only 
if for every e > 0 the set f_1((f(x )-e, f(x )+e)) has x as o o o 
a c-density point. 

D e f i n i t i o n 5. We shall say that a function 
f :R » R is c-approximately continuous if and only if 
for every interval (yj, yg) the set f-1((y ,y )) belongs to 
J . c 

From the above definitions we obtain immediately the 
following theorem. 

T h e o r e m 14. A function f : R » R is c-appro-
ximately continuous if and only if it is c-approximately 
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continuous at every point. 

We have also 

T h e o r e m 15. A function f : R » R has a Baire 

property if and only if it is c-approximately continuous I -

a. e. 

P r o o f . We shall start with the following lemma. 

L e m m a 2. If the function f :R » R is c-approxi-

mately continuous at point Xq , then for every e > 0 the set 

f ((f(x )-e, f(x )+e)) includes a neighbourhood of x in o o o 
the 9" - topology, which has the Baire property. c 

P r o o f of the lemma. Let f : R » R be c-approxi-

mately continuous at point Xq and e be an arbitrary positive 

real number. According to Def. 4. the set D = f-1( (f (xo)-e, 

f(x )+ e)) has x as a c-density point i.e. x e <t> (D). 0 0 0 c 
Obviously, x e D r\ <p (D) which is J - open since D n <p (D) = 

0 c c c 
<p (D) \ {<p (D) \ D) , where <p (D) \ D , is from I. From c c c 
Theorem 7 we have D n <p (D) to have the Baire property. This c 
ends the proof of the lemma. 

The theorem can be now be proved in a way similar to the 

proof of Theorem 7 in [3]. 

T h e o r e m 16. If a function f : R » R is 

c-approximately continuous, then it is continuous in a.e.-

topology. 

P r o o f . Suppose f : R » R is c-approximately 

continuous function. 

Let (a, b) c R. We have f-1((a,b)) = (G \ H) \J P where G 

is regular open, P c <p (G) = <p (G) and H, P e I and we can c d 
assume H c G and P n G = a. From Theorem 3.b it is clear 
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that P is nowhere dense set of measure zero. Let x e H. We 

shall show that f(x) e [a,b]. Really, as f is 

c-approximately continuous we have from Theorem 2 that the 

set f-1((f(x)-e, f(x)+e)) has common points with f_1((a, b)) 

for every e since the last set is residual in G. Hence for 

every e the set (a,b) intersects with (f(x)-e, f(x)+e) and 

therefore f(x) e [a,b]. This implies that G is a subset'of 

f-1( [a, b]). 

We can repeat the above considerations for every set of 

the form (a + —, b - -), where n € N and we have f_1((a + i, 
n n n 

b - - ) ) = ( G \ H ) u P , where G is regular open, P c 
n n n n n n 

<p (G ) = <p (G ), H and P are from I, H c G , P n G = 0 , 
c n d n n n n n n n 

P is nowhere dense set of measure zero and G c f_1([a + — , 
n n n 

1 00 1 1 
b - ±]). Hence we have f_1((a,b)) = U f_1((a + - , b - -)) c 

n n n n= 1 
00 00 

c U G u P C U f-1( ta + - , b - -]) = f-1( (a, b)), thus n n n n 
n=1 n=1 

oo 
U G u P = f-1 ((a, b)). 

n n n= 1 oo oo oo oo 
We have U G u P = U G u U p where U G is open 

n n n n n 
n=1 n=l n=l n=1 

oo 
and U P is of the first category and of measure zero. 

n= 1 n 
oo oo 

Since for every n e N P c « (G ) c » ( U G ) then U P c 
n d n d n n 

n= 1 n=l 
oo oo 

c® ( U G ) and we have U G u P = f_1((a,b)) to be an a. e.-
d n n n 

n=1 n=l 
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open set. 
C o r o l l a r y 5. The a.e.- topology is the 

coarsests topology, for which every c-approximately 
continuous function is continuous. 

C o r o l l a r y 6. Every c-approximately continuous 
function is d-approximately continuous. 

C o r o l l a r y 7. Every c-approximately continuous 
function is of the first class of Baire and has the Darboux 
property. 

T h e o r e m 17. There is a function f : R > R 
which is d-approximately continuous d-almost everywhere ; 
but the set of c-approximate discontinuity of f is of 
positive measure. 

P r o o f . Let C be a Cantor set of positive measure in 
[0,1]. We put f(x) = 0 for x € R \ ([0,1] \ C) and to be a 
"hat" function of altitude 1 on every component (a , b ) of 

n n 

[0,1] \ C , i.e. f(a ) = f(b ) = 0 , f( i (a + b )) = 1 and f n n d. n n 

is linear on [a , ^ (a + b )] and on [ ^ (a + b ), b ]. 
n £ n n d n n n 

Then, obviously, f is d-approximately continuous at any 
point of the set (Cnji(C)) u (R\C). Now let x € C n <p (C). d 0 d 
We shall show that f is not c-approximately continuous at 

Xq. Indeed, the set {x : f(x) < has not c-density 1 at 

XQ. It is not difficult to see, as G({x : f(x) < ), equal 
oo b - a oo b - a 

to (-oo,0) u U (a , a + ———jj—— ) u U (b - n . " ,b (l.oo), n n 4 n 4 n n= 1 n=1 

being disjoint with C, has not d-density 1 at x . 
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T h e o r e m 18. In (R, 57 ) space a set is connected 
c 

i f f it has the form (a ,b ) , ( a ,b ] , [ a , b ) , [ a ,b ] (a s b, 

a ,b € R), or ( - 0 0 , 0 0 ) , ( - 0 0 , a ) , (-co,a], (a ,0 0 ) , [a,00) (a e R). 

P r o o f . As Euclidean continuous functions are 

c-approximately continuous and 9" - connected sets are c 
Euclidean connected we can fol low proof of (10.1.16) from 

[1] . 

Author was recently informed that J - topology can be 
c 

also defined ELS a *-modification of a . e . - topology (see [7] 

fo r def in it ion) . 
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