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Wo jciech Wo jdowski

DENSITY TOPOLOGY INVOLVING MEASURE AND CATEGORY

In their papers (3], [4] Poreda, Wagner and Wilczynski
introduced and examined a categorial equivalent of measure
density on real 1line. Let us recall their definition,
restricted fo sets B, having the Baire property :

Definition 1. [3] We shall say that 0 is an
I-density point of a set A € 38 if and only if

b4 ——L—a 1. By I we denote o-ideal of sets of the
(nA)N[-1,1In—0

first category ; see [3] for other denotations.

It follows from Theorem 2 in [3] that in the definition
mentioned above we can replace the set A with any of the open
sets G, which occur if we present A in the form A = G A P;
where G is open and P is of the first category. Especially
.Wwe can require G to be the biggest of them, i.e. regular
open. This 1leads us in natural way to the following
definitions.

Definition 2. We shall say that a set A € B8 has
at point x c-density g if and only if lim n(G n [;;h'X+h])

h—> 0
exists and is equal to g. The set G is here regular open and

such that A= G A P ; where P is of the first category, m is

Lebesgue measure.
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It means that a set A € B has at point x c-density g iff
the regular open set G = A A P, where P is of the first
category, has the usual measure density equal to g at point x.

Def inition 3. We shall say that x is a
c-density point of A € B if and only if A has at point x the
c-density, equal to 1.

By A~ B we man A A B e ] and, to simplify the notation
for A € B, we shall use frequently G(A) for the regular open
set in the unique representation A = (G \ P1) v P2 or
A=GAPwhereP1, Pa' Pel.

Now we shall show that c-density as defined above is
really a density, i.e. the operation P B8 — 5 2" defined
¢C(A) = {x € R: x is a c-density point of A} for A € B is
so called "lower density" (see [2]). Observe first that

Remark 1. For every A € B we have q)c(A) =
¢d(G(A)) where ¢ 1is usual measure lower density.

We need also the following

Lemma 1. For A,B € B we have
a) If A ~ B, then G(A) = G(B),

b) G(A n B) = G(A) n G(B) in particular G(R \ A) n G(A) = @.

Proof. We can present the sets A,B and A n B in a
unique form A = G1 A P1’ B = G2 A P2, AnB-= G3 A P3, where

= G(A), G2= G(B), G3= G(A n B) and Px’ P2, Pa are from I.
To prove a) let us notice that A ~ B implies B = A A P where
P is from I and from B = A AP = (G1 A P1) AP=GA (P1A P)
we have G1 = G2 .

To prove b) we have A n B = (G1 A P1) n (G2 A P2) =

[(G1 .} Pl) n G2] A [(G1A P1) n P2] = [(Gln G2) A (Pin G2)] A

- 798 -



Density topology involving measure

A [(G1 n P2) A (P1 n P2)] = (G1 s} Gz) A{ (P1 n Gz) A

[(G1 n P2) A (P1 n Pz)]}. The sets P1 n P2, G1 N P2, P1 n 62

are from I hence { (P1 n Gé) A [(G1 n Pz) A (P1 n Pz)]} is

from I, too. As G1 n G2 is a regular open set (se [2]) we
have G_. = G n G_ .
3 1 2
Theorem 1. For every A,Be B
1) ¢;(A) ~ A,

2) if A ~ B then ¢C(A) = wc(B) ,
3) wc(z) = @, wc(R) =R,
4) wc(A n B) = ¢C(A) n ¢C(B) .

Pr oo f. We shall start with 1). The set A = (G \ Pi)
V) P2 where G = G(A) and P1’ P2 are from I. It is clear that
G c ¢C(A) ; hence A \ ¢C(A), as a subset of A\ G ¢ Pz’ is
from I. On the other hand, wc(A) ¢ Cl G, and therefore ¢C(A)\A
is a subset of Cl(G)\ A and hence of Cl(G)\ (G\ P1)' The
last set is a union of nowhere dense set Cl(G) \ G and
Cl1(G) n P of the first category, which implies that wc(A)\A
is of the first category too.

To prove 2) let us notice that from A ~ B we have G(A) =
= G(B) by a) of Lemma 1 and consequently ¢C(A) = wc(B),
directly from Remark 1.

As 3) is simply the consequence of the definition of P
we come to 4). From b) of Lemma 1 we have G(A n B) = G(A) n
n G(B), hence ¢C(A n B) = wd[G(A n B)] = ¢d[G(A) n G(B)] =
¢d[G(A)] n ¢d[G(B)] = ¢C(A) n ¢C(B) in view of Remark 1 and

according to properties of ®,
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It is not difficult to prove the following
Theorem 2. If X, is a c-density point of a set
A € B, then the c-density of 'a set R\ A at X, is equal to O.
"P“rldgo f. Since X, is a d-density point of G(A) and
from b) of Lemma 1 G(R \ A) ¢ R \ G(A) we have d-density of
G(R \ A) ét X, equal to 0 - which was required.
Remark 2 It is worth noticing that the above
theorem cannot be converted. Let C be the Cantor set of
positive measure in closed interval [0,1] and ((an,bn)}

n€N
the family of components of [0,1]\ C. It is not dffficult to

© a+b + b
see that both sets A = U [an, ] and B = U |= 5 n ,bn]
1

2

n=
are regular open and A n B = @. Let X, be a d-density point
of C. It can be easily seen that G(R \ A) = B, hence

C n [G(A) VG(R \ A)] = 2 ; so c-density of A, as well as of
R \ A at point Xy is equal to O.

One can ask now 1if we obtained something really
different from well known concept of d-density (measure
density) and I-density (category density). The following
examples will give positive answer to this question.

Examp1le 1. There exists a set A1 € B8 such that 0
is a d-density point of A .but not a c-density point of A1
As a set A we can take the set A from Theorem 1.6. 1in [2]
A is there a set of the first category such that m(R\A) =

Example 2. There exists a set A2 € B such that 0
is a c-density point of A2 but not a d-density point of A2
As a set A2 we can take the set R \ A1 where A1 is from
Example 1.
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Example 3. There exists a set A3 € B such that 0
is a c-density point but not an I-density point of A:3 . The
sequence r1T , n € N converges to O from the right side.

Let € be a given monotone sequence of positive reals,

convergent to 0. From each interval [ t_n:%r'_' rlx_' ] let us
remove the open set Bn of the form
n i+
B = U 1 ; : where 8 1is a positive
=, L nt(n+1) * nt(n+1) ’ n

1 1
number small enough to ensure m(B ) < € [ o7 T DT ] As

n

[+

UBn ] Really, it is not
=1

n

a set A3 we can take R \ Cl[

difficult to notice that A3 is regular open and for each h €

1 1 h
DT * of | ve bave
o0
m[ UB n [0,h] ] 1 .
n=1 n < in+1)! en + 6n = en + an(ntl)'
h - 1 + 3 1 + 8 (n+1)!
(n+1)! n "
In view of Sn(n+1)! < € we have also
€ + 3 (n+1)! € + 8 (n+1)!
0=<-=2 n < =2 n <2¢
1+ 5 (n+1)! 1 n

[+ 4]
which implies that 0 is d-dispersion point of U Bn .

n=1
, 0 ®
Asm[Cl[ UB]] m[ UB ] , 0 is a d-density point of
n=1 n n n
A3 ; hence 0 is a c-density point of Aa .

=1
Now we shall show that O is not an I-density point of
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AB.It is enough to point out a subsequence m of natural

numbers such that x does not converge I-almost
(mnAa)n[-l,il
every- where to 1. A subsequence m = n! is good here. In
" n i 148
] loe = i
fact, we have n!(R \ As) >nle B yl[ 3T’ BEl ]

1

n i i+8n
Let Dn = lL_,l[ m , W] . We have

o oo
lim sup n!(R \ A3) >N UDn . It is not difficult to
n=1

n m=n

-]
observe that the set UD is open and dense in [0,1] for
m=n n
> 4] [++]

every m and we have U Dn to be a residual on [0,1] and
. n=1 m=n

G6 set. That implies 1lim inf (n!- Aa) to be a subset of the

first category set and ;ence O is not an I-density point of A3
Example 4. There exists a set A4 € B such that O
is an I-density point but not a c-density point of A4' As a
set A4 we can take the set R \ E4 where E4 is the set from
Theorem 1 d) in [6].
Let us now list some properties of operation 9 -
Theorem 3. For any A € B we have
a) Int (¢°(A)) = @ if and only if A is of the first
category,
b) wc(A) \ G(A) is a nowhere dense set of measure 0 ,
c) G(A) = Int ¢C(A) = Int C1(G(A)). _
Proof. a) If A eI we have Int ¢C(A) = @ directly
from Theorem 1.2). If A ¢ I then G(A) #* @ and in view of
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G(A) ¢ ¢C(A) we have Int wc(A) > G(A) # o.

b) As ¢C(A) ¢ Cl1 G(A) we have ¢C(A) \ G(A) ¢ Cl
G(A)\G(A) and the last set is nowhere dense. The fact that
¢c(A)\ G(A) is a set of measure zero comes directly from the
Lebesgue density theorem.

c) Is obvioﬁs in view of G(A) = Int C1(G(A)) and G(A) <
c ¢C(A) < Cl1 G(A).

We shall introduce now the topology related to the
concept of c-density. Put 7c = { ¢C(A)\ P: Ae3B Pell}.

Theorem 4. ﬂc is the topology on the real line.

Proof. Dealing with the same o-ideal I and in view
of the fact that operation . is the lower density we can
carry out the proof exactly the same way as proof of Theorem
3 in [3].

Let us now list some properties of ﬂc~topology.

Theorem 5. The following conditions on a subset

A of space (R,ﬂc) are equivalent :

a) A is of the first category ,
b) A is 7c- nowhere dense ,
c) Ais 9c— of the first category ,
d) A is 7c— closed discrete .
Proof. a) e b) can be proved in an analogous way
to the proof of Theorem 22.6 in [2].
b) < c) comes directly from a) < b).
a) =» d) any set of the first category P is 9;— closed
since we have P = R \ (R \ P) where R \ P is 7c— open.
Any subset of P being of the first category is 9c— closed,

too.

- 803 -



W. Wo jdowski

d) = a) if closed discrete set were not a first category
set it would include a set not having the Baire property
hence not ﬂc— closed.

Corollary 1. (R,ﬂc) is neither separable nor
locally separable at any point.

Proof. It is clear since we have from Theorem 5
that countable sets are closed and no point of (R,ﬂc) has
countable neighbourhood.

Corollary 2. Any 90— compact subset of (R,ﬂc)
is finite.

Proof. Let K be any ?Tc- compact subset of R.

Suppose A = U {xa} is the set of all points of the first
o<W

category set wh;;h has the cardinality Ro and is a subset of
K. We have (R \ A) v {xa} , @ < o to be ﬂc- open cover of K
which has no finite subcover - that contradicts that K is
7c— compact.

Coroltlary 3. In (R, ﬂc) each sequence of
different points contains no convergent subsequence.

Theorem B. '(R,ﬂc) is not regular.

Proof. Let Q be any dense in R and ﬂc— closed set
and & point X, from R \ Q. Let Q be a subset of ¢C(A) \ P,
where A€ Band Pe I. As Q ¢ ¢C(A) we have ¢c(A) dense in R
and therefore G(A) dense in R, in view of Theorem 3 b). The
set G(A) being regular open and dense in R must be equal to
R - hence ¢C(A) = R. The set R \ (wc(A) \ P) = P contains no
nonempty set from ﬂc, =1] xo and Q cannot be separated by ﬂc—

open sets.
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Theorem 7. The family of 9;- Borel sets coincide
with the family of sets having the Baire property.

Proof. Let A be any ﬂc— open set then it has the
Baire property, in view of Theorem 1 1). Hence every
ﬂ;-Borel set has the Baire property. Conversely, if a set A
has the Baire property we can present it in a form A = (G\
Pl) v P2, where G = G(A) and P1' P2 € I. We have G = ¢c(A) \
(¢c(A) \ G) and ¢c(A) \ G is of the first category,
according to Theorem 3 b). Hence G \ P is 7;- open set. As
P2 is 7c- closed we have A to be 7c- Borel set.

Cor o/l lary 4. Every ﬂ;— Borel set is the union
of 3;- open set and ﬂ;- closed set.

Theorem 8.

1) The set A € 3B is ﬂc- regular open if and only if
A= ¢C(D) for some D € 3.

2) Every ﬂc— regularopen set is FmS .

Proof. 1) analogous to the proof of Theorem 22.8 in
[2].

2) follows from the fact that every ﬂa— regular open set is
Fos (see [51]).

T he orem 9, (R,ﬂc) satisfies countable chain
condition.

Proof. It follows from the fact that every 70- open
set has the Baire property and the family of Baire sets
satisfies countable chain condition.

Theorem 10. (R,ﬂc) is a Baire space.

Proof. Comes directly from Theorem 5.

Theorem 11. (R,ﬂc) is connected.
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Proolf. Suppose R Is a union of two nonempty
disjoint sets A and B, both 7c- open. We have A = ¢d(G) \P
and B = wd(Q)\ S, where G = G(A), Q = G(B) and P, S are of

the first category. We can assume here P ¢ pd(G) and S ¢

n

c wd(Q) and as AUB=R and AnB=g we have also P
¢h(0) and S ¢ ¢d(G), hence P U S ¢ ¢d(G) n ¢d(Q). The sets G

and Q are regular open - thus qu(G) = goc(G) and god(Q)
= ¢°(Q).

Suppose that P v S is nonempty. This implies ¢C(G)n ¢C(Q)¢z,
hence from Theorem 1 4) and 1) G n Q is nonempty, hence of
the second category. As G n Q ¢ ¢E(G) n ¢C(Q) we have ¢C(G)n
n ¢C(Q), as well as (¢C(G) \ P) n (¢C(Q) \ S) to be of the
second category. The last is in contradiction with earlier
supposition, that An B = @, so we have P v S to be empty.
Thus R = wc(G) v ¢C(Q) and ¢C(G) n ¢C(Q) = @. Which in view
of ¢C(G), ¢C(Q) € ﬂd is in contradiction with the fact that
(R,ﬂ;) is connected space.

Theorem 12, (R,ﬂc) is not locally connected at

any point.
Proof. The set [0,1] \ Q, where Q is the set of
. - 21
rationals is the neighbourhood of the point x = > in the

7c— topology, and no subset of it is 7c- open and ﬂc-
connected. Indeed, suppose that there exists B ¢ [0,1] \ Q,
ﬂc— open and ﬂc- connected and containing x. Let a be any
element of the set (infB, supB) n Q. We have the sets
(0,a)nB and («,1) n B to be 7c- open and as B is a subset of

(0,x) v v (a,1) it cannot be ﬂ;— connected. As o-algebras
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and o-ideals, we are dealing with, are invariant in respect
to linear transformation the property holds at any point
from R.

T he orenm 13. Every set of measure zero is
contained in ﬂc- open set of measure zero. Every set of the
first category is contained in 57d- open set of the first
category.

Proof. We can represent R as the union of two
disjoint sets A1 and A2 , Where A1 is of the first category
and A2 is of measure zero. If A is a set of measure zero
then A2 U A is the required ﬂc- open set of measure zero. If
A is a set of the first category, then A1 v A is the
required ﬂd- open set of the first category. '

Let us consider now some properties of continuous
functions from (R,ﬂc) into R equipped with the natural
toplogy.

Def inition 4. We shall say that a function
f : R——> R is c-approximately continuous at Xy if and only
if for every € > O the set f-l((f(xo)-e, f(x0)+e)) has x  as
a c-density point.

Def inition 5. We shall say that a function
f :R —— R 1s c-approximately continuous if and only if
for every interval (y,, y,) the set f-l((yi,yz)) belongs to
gc

From the above definitions we obtain immediately the
following theorem.

Theorem 14, A function f : R —— R is c-appro-

ximately continuous if and only if it is c-approximately
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continuous at every point.

We have also

Theorem 15. A function f : R —— R has a Baire
property if and only if it is c-approximately continuous I -
a.e. '

Proof. We shall start with the following lemma.

Lemma 2. If the function f :R —— R is c-approxi-
mately continuous at point Xy » then for every € > 0 the set
f-l((f(xo)—e, f(x )+e)) includes a neighbourhood of x  in
the ﬂc- topology, which has the Baire property.

Proof of the lemma. Let f : R —— R be c-approxi-
mateiy continuous at point xo and € be an arblitrary positive
real number. According to Def. 4. the set D = f"((f(xo)-e,
f(xo)+ €)) has x, as a c-density point i.e. x € qJC(D).
Obviously, X, € D n ¢c(D) which is 5c— open since D n ¢c(D)=
¢C(D) \ (q)c(D) \ D) , where (pc(D) \ D, is from I. From
Theorem 7 we have D n ¢C(D) to have the Baire property. This
ends the proof of the lemma.

The theorem can be now be proved in a way similar to the
proof of Theorem 7 in [3].

T heorem 16. If a function f : R —— R is
c-approximately continuous, then it is continuous in a.e.-
topology.

Proof. Suppose f : R —— R is c-approximately
continuous function.

Let (a,b) ¢ R. We have £ '((a,b)) = (G \ H) U P where G
is regular open, P c¢ goc(G) = wd(G) and H,P € I and we can

assume H ¢ G and P n G = @. From Theorem 3.b it is clear
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that P is nowhere dense set of measure zero. Let x € H. We
shall show that f(x) € [a,b]l. Really, as f |is
c-approximately continuous we have from Theorem 2 that the
set £ 1((f(x)-e, f(x)+e)) has common points with £ '((a,b))
for every € since the last set is residual in G. Hence for
every ¢ the set (a,b) intersects with (f(x)-g, f(x)+g) and
therefore f(x) € [a,b]. This implies that G is a subset: of
£ (la,bl),

We can repeat the above considerations for every set of

the form (a + rl_l’ b - %), where n € N and we have f;l((a + rl_{’

b - l)) = (GN H) v P , where G 1is regular open, Pc

n n n n n n

¢ (G)=¢(G), H and P are fromI, Hc G, Pn G= g,
c n d n n n n n n

n
. -1 1
Pn is nowhere dense set of measure zero and Gc f ([a + ~E
n

[
b - l]). Hence we have f'l((a,b)) =U f'l((a + 1 , b - l)) c
n ne1 n n
o ® 1 1
c UGnu Pnc Uf-l([a+r—1, b_H]) = £'((a,b)), thus
n=1 n=1

]
Ucup = £ 1((a,b)).

n=1

0 ] 0 o
We have UGuUu P = UGu UP where UG 1is open
n n n n n
n=1 n=1 n=1 n=1
[»]
and U Pn is of the first category and of measure zero.

n=1

00 w
Since for every n e N P c ¢ (G) c ¢ ( U G) then U P c

n=1 n=1

[+ -] [+ ]
Cgod( U Gn) and we have U G v Pn= £71((a,b)) to be an a.e.-
n=1 n=94
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open set.

Corollary 65. The a.e.- topology is the
coarsests topology, for which every c-approximately
continuous function is continuous.

Corollary 6. Every c-approximately continuous
function is d-approximately continuous.

Corollary 7. Every c-approximately continuous
function is of the first class of Baire and has the Darboux
property.

Theorem 17. There is a function f : R — R
which is d-approximately continuous d-almost everywhere ;
but the set of c-approximate discontinuity of f 1is of
positive measure.

Proof. Let C be a Cantor set of positive measure in
[0,1]. We put f(x) = 0 for x € R\ ([0,1] \ C) and to be a

"hat" function of altitude 1 on every component (an, bn) of

[0,11 \C, i.e. fla) = f(b) =0, f( L (a+ b)) = 1 and £
n n 2 n n
is linear on [a , 1 (a+ b)) and on [ 1 (a+ b), bl
n 2 n n 2 n n n

Then, obviously, f 1is d-approximately continuous at any

point of the set (C n wd(C)) v (R\C). Now let X € Cn ¢d(C).
We shall show that f is not c-approximately continuous at

X, Indeed, the set {x : f(x) < %} has not c-density 1 at

X . It is not difficult to see, as G({x : f(x) < %}), equal
® b-a o b-a

to (0,00 ulU (a, a+ 2 2)ulU(b--22,b)lu(1,),
ey M n 4 hoy P 4 n

being disjoint with C, has not d-density 1 at xo .
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Theorem 18. In (R,ﬂc) space a set is connected
iff it has the form (a,b), (a,bl, [a,b), I[a,b]l (a = b,
a,b € R), or (-o,w), (-w,a), (-w,a], (a,w), [a,=) (a € R).

Pr o of. As Euclidean continuous functions are
c-approximately continuous and ﬂ;— connected sets are
Euclidean connected we can follow proof of (10.1.16) from

(1].

Author was recently informed that 7;— topology can be
also defined as a *-modification of a.e.- topology (see [7]
for definition).
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